target/arm: Simplify DC_ZVA

Now that we know that the operation is on a single page,
we need not loop over pages while probing.

Backports commit e26d0d226892f67435cadcce86df0ddfb9943174 from qemu
This commit is contained in:
Richard Henderson 2021-02-25 15:18:47 -05:00 committed by Lioncash
parent 7de60598d5
commit 5b3ddcf2e2
20 changed files with 335 additions and 77 deletions

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_aarch64
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_aarch64
#define cpu_single_step cpu_single_step_aarch64
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_aarch64
#define cpu_tb_exec cpu_tb_exec_aarch64
#define cpu_to_be64 cpu_to_be64_aarch64
#define cpu_to_le32 cpu_to_le32_aarch64

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_aarch64eb
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_aarch64eb
#define cpu_single_step cpu_single_step_aarch64eb
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_aarch64eb
#define cpu_tb_exec cpu_tb_exec_aarch64eb
#define cpu_to_be64 cpu_to_be64_aarch64eb
#define cpu_to_le32 cpu_to_le32_aarch64eb

View file

@ -1532,6 +1532,22 @@ void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
store_helper(env, addr, val, oi, retaddr, MO_BEQ);
}
static inline void
cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
int mmu_idx, uintptr_t retaddr, MemOp op)
{
TCGMemOpIdx oi;
oi = make_memop_idx(op, mmu_idx);
store_helper(env, addr, val, oi, retaddr, op);
}
void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
int mmu_idx, uintptr_t retaddr)
{
cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
}
/* First set of helpers allows passing in of OI and RETADDR. This makes
them callable from other helpers. */

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_arm
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_arm
#define cpu_single_step cpu_single_step_arm
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_arm
#define cpu_tb_exec cpu_tb_exec_arm
#define cpu_to_be64 cpu_to_be64_arm
#define cpu_to_le32 cpu_to_le32_arm

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_armeb
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_armeb
#define cpu_single_step cpu_single_step_armeb
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_armeb
#define cpu_tb_exec cpu_tb_exec_armeb
#define cpu_to_be64 cpu_to_be64_armeb
#define cpu_to_le32 cpu_to_le32_armeb

View file

@ -333,6 +333,7 @@ symbols = (
'cpu_restore_state',
'cpu_restore_state_from_tb',
'cpu_single_step',
'cpu_stb_mmuidx_ra',
'cpu_tb_exec',
'cpu_to_be64',
'cpu_to_le32',

View file

@ -416,6 +416,9 @@ static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
#undef MEMSUFFIX
#undef SOFTMMU_CODE_ACCESS
void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
#endif /* defined(CONFIG_USER_ONLY) */
/**

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_m68k
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_m68k
#define cpu_single_step cpu_single_step_m68k
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_m68k
#define cpu_tb_exec cpu_tb_exec_m68k
#define cpu_to_be64 cpu_to_be64_m68k
#define cpu_to_le32 cpu_to_le32_m68k

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_mips
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips
#define cpu_single_step cpu_single_step_mips
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips
#define cpu_tb_exec cpu_tb_exec_mips
#define cpu_to_be64 cpu_to_be64_mips
#define cpu_to_le32 cpu_to_le32_mips

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_mips64
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips64
#define cpu_single_step cpu_single_step_mips64
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips64
#define cpu_tb_exec cpu_tb_exec_mips64
#define cpu_to_be64 cpu_to_be64_mips64
#define cpu_to_le32 cpu_to_le32_mips64

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_mips64el
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips64el
#define cpu_single_step cpu_single_step_mips64el
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips64el
#define cpu_tb_exec cpu_tb_exec_mips64el
#define cpu_to_be64 cpu_to_be64_mips64el
#define cpu_to_le32 cpu_to_le32_mips64el

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_mipsel
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mipsel
#define cpu_single_step cpu_single_step_mipsel
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mipsel
#define cpu_tb_exec cpu_tb_exec_mipsel
#define cpu_to_be64 cpu_to_be64_mipsel
#define cpu_to_le32 cpu_to_le32_mipsel

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_powerpc
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_powerpc
#define cpu_single_step cpu_single_step_powerpc
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_powerpc
#define cpu_tb_exec cpu_tb_exec_powerpc
#define cpu_to_be64 cpu_to_be64_powerpc
#define cpu_to_le32 cpu_to_le32_powerpc

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_riscv32
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_riscv32
#define cpu_single_step cpu_single_step_riscv32
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_riscv32
#define cpu_tb_exec cpu_tb_exec_riscv32
#define cpu_to_be64 cpu_to_be64_riscv32
#define cpu_to_le32 cpu_to_le32_riscv32

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_riscv64
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_riscv64
#define cpu_single_step cpu_single_step_riscv64
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_riscv64
#define cpu_tb_exec cpu_tb_exec_riscv64
#define cpu_to_be64 cpu_to_be64_riscv64
#define cpu_to_le32 cpu_to_le32_riscv64

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_sparc
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_sparc
#define cpu_single_step cpu_single_step_sparc
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_sparc
#define cpu_tb_exec cpu_tb_exec_sparc
#define cpu_to_be64 cpu_to_be64_sparc
#define cpu_to_le32 cpu_to_le32_sparc

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_sparc64
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_sparc64
#define cpu_single_step cpu_single_step_sparc64
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_sparc64
#define cpu_tb_exec cpu_tb_exec_sparc64
#define cpu_to_be64 cpu_to_be64_sparc64
#define cpu_to_le32 cpu_to_le32_sparc64

View file

@ -1096,94 +1096,41 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
* alignment faults or any memory attribute handling).
*/
ARMCPU *cpu = env_archcpu(env);
uint64_t blocklen = 4 << cpu->dcz_blocksize;
int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
int mmu_idx = cpu_mmu_index(env, false);
void *mem;
/*
* Trapless lookup. In addition to actual invalid page, may
* return NULL for I/O, watchpoints, clean pages, etc.
*/
mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
#ifndef CONFIG_USER_ONLY
{
if (unlikely(!mem)) {
uintptr_t ra = GETPC();
/*
* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
* the block size so we might have to do more than one TLB lookup.
* We know that in fact for any v8 CPU the page size is at least 4K
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
* 1K as an artefact of legacy v5 subpage support being present in the
* same QEMU executable. So in practice the hostaddr[] array has
* two entries, given the current setting of TARGET_PAGE_BITS_MIN.
* Trap if accessing an invalid page. DC_ZVA requires that we supply
* the original pointer for an invalid page. But watchpoints require
* that we probe the actual space. So do both.
*/
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
// msvc doesnt allow non-constant array sizes, so we work out the size it would be
// TARGET_PAGE_SIZE is 1024
// blocklen is 64
// maxidx = (blocklen+TARGET_PAGE_SIZE-1) / TARGET_PAGE_SIZE
// = (64+1024-1) / 1024
// = 1
#ifdef _MSC_VER
void *hostaddr[1];
#else
void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
#endif
int try, i;
unsigned mmu_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
(void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
assert(maxidx <= ARRAY_SIZE(hostaddr));
for (try = 0; try < 2; try++) {
for (i = 0; i < maxidx; i++) {
hostaddr[i] = tlb_vaddr_to_host(env,
vaddr + TARGET_PAGE_SIZE * i,
1, mmu_idx);
if (!hostaddr[i]) {
break;
}
}
if (i == maxidx) {
/*
* If it's all in the TLB it's fair game for just writing to;
* we know we don't need to update dirty status, etc.
*/
for (i = 0; i < maxidx - 1; i++) {
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
}
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
return;
}
if (unlikely(!mem)) {
/*
* OK, try a store and see if we can populate the tlb. This
* might cause an exception if the memory isn't writable,
* in which case we will longjmp out of here. We must for
* this purpose use the actual register value passed to us
* so that we get the fault address right.
* The only remaining reason for mem == NULL is I/O.
* Just do a series of byte writes as the architecture demands.
*/
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
/* Now we can populate the other TLB entries, if any */
for (i = 0; i < maxidx; i++) {
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
helper_ret_stb_mmu(env, va, 0, oi, GETPC());
}
for (int i = 0; i < blocklen; i++) {
cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
}
}
/*
* Slow path (probably attempt to do this to an I/O device or
* similar, or clearing of a block of code we have translations
* cached for). Just do a series of byte writes as the architecture
* demands. It's not worth trying to use a cpu_physical_memory_map(),
* memset(), unmap() sequence here because:
* + we'd need to account for the blocksize being larger than a page
* + the direct-RAM access case is almost always going to be dealt
* with in the fastpath code above, so there's no speed benefit
* + we would have to deal with the map returning NULL because the
* bounce buffer was in use
*/
for (i = 0; i < blocklen; i++) {
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
return;
}
}
#else
memset(g2h(vaddr), 0, blocklen);
#endif
memset(mem, 0, blocklen);
}

View file

@ -0,0 +1,276 @@
/*
* ARM v8.5-MemTag Operations
*
* Copyright (c) 2020 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
{
if (exclude == 0xffff) {
return 0;
}
if (offset == 0) {
while (exclude & (1 << tag)) {
tag = (tag + 1) & 15;
}
} else {
do {
do {
tag = (tag + 1) & 15;
} while (exclude & (1 << tag));
} while (--offset > 0);
}
return tag;
}
/**
* allocation_tag_mem:
* @env: the cpu environment
* @ptr_mmu_idx: the addressing regime to use for the virtual address
* @ptr: the virtual address for which to look up tag memory
* @ptr_access: the access to use for the virtual address
* @ptr_size: the number of bytes in the normal memory access
* @tag_access: the access to use for the tag memory
* @tag_size: the number of bytes in the tag memory access
* @ra: the return address for exception handling
*
* Our tag memory is formatted as a sequence of little-endian nibbles.
* That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
* tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
* for the higher addr.
*
* Here, resolve the physical address from the virtual address, and return
* a pointer to the corresponding tag byte. Exit with exception if the
* virtual address is not accessible for @ptr_access.
*
* The @ptr_size and @tag_size values may not have an obvious relation
* due to the alignment of @ptr, and the number of tag checks required.
*
* If there is no tag storage corresponding to @ptr, return NULL.
*/
static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
uint64_t ptr, MMUAccessType ptr_access,
int ptr_size, MMUAccessType tag_access,
int tag_size, uintptr_t ra)
{
/* Tag storage not implemented. */
return NULL;
}
uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
{
int rtag;
/*
* Our IMPDEF choice for GCR_EL1.RRND==1 is to behave as if
* GCR_EL1.RRND==0, always producing deterministic results.
*/
uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
int start = extract32(env->cp15.rgsr_el1, 0, 4);
int seed = extract32(env->cp15.rgsr_el1, 8, 16);
int offset, i;
/* RandomTag */
for (i = offset = 0; i < 4; ++i) {
/* NextRandomTagBit */
int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
seed = (top << 15) | (seed >> 1);
offset |= top << i;
}
rtag = choose_nonexcluded_tag(start, offset, exclude);
env->cp15.rgsr_el1 = rtag | (seed << 8);
return address_with_allocation_tag(rn, rtag);
}
uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
int32_t offset, uint32_t tag_offset)
{
int start_tag = allocation_tag_from_addr(ptr);
uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
return address_with_allocation_tag(ptr + offset, rtag);
}
static int load_tag1(uint64_t ptr, uint8_t *mem)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
return extract32(*mem, ofs, 4);
}
uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
int mmu_idx = cpu_mmu_index(env, false);
uint8_t *mem;
int rtag = 0;
/* Trap if accessing an invalid page. */
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
MMU_DATA_LOAD, 1, GETPC());
/* Load if page supports tags. */
if (mem) {
rtag = load_tag1(ptr, mem);
}
return address_with_allocation_tag(xt, rtag);
}
static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
{
if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
cpu_mmu_index(env, false), ra);
g_assert_not_reached();
}
}
/* For use in a non-parallel context, store to the given nibble. */
static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
*mem = deposit32(*mem, ofs, 4, tag);
}
/* For use in a parallel context, atomically store to the given nibble. */
static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
uint8_t old = atomic_read(mem);
while (1) {
uint8_t new = deposit32(old, ofs, 4, tag);
uint8_t cmp = atomic_cmpxchg(mem, old, new);
if (likely(cmp == old)) {
return;
}
old = cmp;
}
}
typedef void stg_store1(uint64_t, uint8_t *, int);
static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
uintptr_t ra, stg_store1 store1)
{
int mmu_idx = cpu_mmu_index(env, false);
uint8_t *mem;
check_tag_aligned(env, ptr, ra);
/* Trap if accessing an invalid page. */
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
MMU_DATA_STORE, 1, ra);
/* Store if page supports tags. */
if (mem) {
store1(ptr, mem, allocation_tag_from_addr(xt));
}
}
void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_stg(env, ptr, xt, GETPC(), store_tag1);
}
void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
}
void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
{
int mmu_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
check_tag_aligned(env, ptr, ra);
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
}
static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
uintptr_t ra, stg_store1 store1)
{
int mmu_idx = cpu_mmu_index(env, false);
int tag = allocation_tag_from_addr(xt);
uint8_t *mem1, *mem2;
check_tag_aligned(env, ptr, ra);
/*
* Trap if accessing an invalid page(s).
* This takes priority over !allocation_tag_access_enabled.
*/
if (ptr & TAG_GRANULE) {
/* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
TAG_GRANULE, MMU_DATA_STORE, 1, ra);
mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
MMU_DATA_STORE, TAG_GRANULE,
MMU_DATA_STORE, 1, ra);
/* Store if page(s) support tags. */
if (mem1) {
store1(TAG_GRANULE, mem1, tag);
}
if (mem2) {
store1(0, mem2, tag);
}
} else {
/* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
if (mem1) {
tag |= tag << 4;
atomic_set(mem1, tag);
}
}
}
void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_st2g(env, ptr, xt, GETPC(), store_tag1);
}
void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
}
void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
{
int mmu_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
int in_page = -(ptr | TARGET_PAGE_MASK);
check_tag_aligned(env, ptr, ra);
if (likely(in_page >= 2 * TAG_GRANULE)) {
probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
} else {
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
}
}

View file

@ -327,6 +327,7 @@
#define cpu_restore_state cpu_restore_state_x86_64
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_x86_64
#define cpu_single_step cpu_single_step_x86_64
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_x86_64
#define cpu_tb_exec cpu_tb_exec_x86_64
#define cpu_to_be64 cpu_to_be64_x86_64
#define cpu_to_le32 cpu_to_le32_x86_64