mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-18 17:37:15 +00:00
target/arm: Simplify DC_ZVA
Now that we know that the operation is on a single page, we need not loop over pages while probing. Backports commit e26d0d226892f67435cadcce86df0ddfb9943174 from qemu
This commit is contained in:
parent
7de60598d5
commit
5b3ddcf2e2
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_aarch64
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_aarch64
|
||||
#define cpu_single_step cpu_single_step_aarch64
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_aarch64
|
||||
#define cpu_tb_exec cpu_tb_exec_aarch64
|
||||
#define cpu_to_be64 cpu_to_be64_aarch64
|
||||
#define cpu_to_le32 cpu_to_le32_aarch64
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_aarch64eb
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_aarch64eb
|
||||
#define cpu_single_step cpu_single_step_aarch64eb
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_aarch64eb
|
||||
#define cpu_tb_exec cpu_tb_exec_aarch64eb
|
||||
#define cpu_to_be64 cpu_to_be64_aarch64eb
|
||||
#define cpu_to_le32 cpu_to_le32_aarch64eb
|
||||
|
|
|
@ -1532,6 +1532,22 @@ void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
|||
store_helper(env, addr, val, oi, retaddr, MO_BEQ);
|
||||
}
|
||||
|
||||
static inline void
|
||||
cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
|
||||
int mmu_idx, uintptr_t retaddr, MemOp op)
|
||||
{
|
||||
TCGMemOpIdx oi;
|
||||
|
||||
oi = make_memop_idx(op, mmu_idx);
|
||||
store_helper(env, addr, val, oi, retaddr, op);
|
||||
}
|
||||
|
||||
void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
|
||||
int mmu_idx, uintptr_t retaddr)
|
||||
{
|
||||
cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
|
||||
}
|
||||
|
||||
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
||||
them callable from other helpers. */
|
||||
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_arm
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_arm
|
||||
#define cpu_single_step cpu_single_step_arm
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_arm
|
||||
#define cpu_tb_exec cpu_tb_exec_arm
|
||||
#define cpu_to_be64 cpu_to_be64_arm
|
||||
#define cpu_to_le32 cpu_to_le32_arm
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_armeb
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_armeb
|
||||
#define cpu_single_step cpu_single_step_armeb
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_armeb
|
||||
#define cpu_tb_exec cpu_tb_exec_armeb
|
||||
#define cpu_to_be64 cpu_to_be64_armeb
|
||||
#define cpu_to_le32 cpu_to_le32_armeb
|
||||
|
|
|
@ -333,6 +333,7 @@ symbols = (
|
|||
'cpu_restore_state',
|
||||
'cpu_restore_state_from_tb',
|
||||
'cpu_single_step',
|
||||
'cpu_stb_mmuidx_ra',
|
||||
'cpu_tb_exec',
|
||||
'cpu_to_be64',
|
||||
'cpu_to_le32',
|
||||
|
|
|
@ -416,6 +416,9 @@ static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
|
|||
#undef MEMSUFFIX
|
||||
#undef SOFTMMU_CODE_ACCESS
|
||||
|
||||
void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
|
||||
int mmu_idx, uintptr_t retaddr);
|
||||
|
||||
#endif /* defined(CONFIG_USER_ONLY) */
|
||||
|
||||
/**
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_m68k
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_m68k
|
||||
#define cpu_single_step cpu_single_step_m68k
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_m68k
|
||||
#define cpu_tb_exec cpu_tb_exec_m68k
|
||||
#define cpu_to_be64 cpu_to_be64_m68k
|
||||
#define cpu_to_le32 cpu_to_le32_m68k
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_mips
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips
|
||||
#define cpu_single_step cpu_single_step_mips
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips
|
||||
#define cpu_tb_exec cpu_tb_exec_mips
|
||||
#define cpu_to_be64 cpu_to_be64_mips
|
||||
#define cpu_to_le32 cpu_to_le32_mips
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_mips64
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips64
|
||||
#define cpu_single_step cpu_single_step_mips64
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips64
|
||||
#define cpu_tb_exec cpu_tb_exec_mips64
|
||||
#define cpu_to_be64 cpu_to_be64_mips64
|
||||
#define cpu_to_le32 cpu_to_le32_mips64
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_mips64el
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mips64el
|
||||
#define cpu_single_step cpu_single_step_mips64el
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mips64el
|
||||
#define cpu_tb_exec cpu_tb_exec_mips64el
|
||||
#define cpu_to_be64 cpu_to_be64_mips64el
|
||||
#define cpu_to_le32 cpu_to_le32_mips64el
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_mipsel
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_mipsel
|
||||
#define cpu_single_step cpu_single_step_mipsel
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_mipsel
|
||||
#define cpu_tb_exec cpu_tb_exec_mipsel
|
||||
#define cpu_to_be64 cpu_to_be64_mipsel
|
||||
#define cpu_to_le32 cpu_to_le32_mipsel
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_powerpc
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_powerpc
|
||||
#define cpu_single_step cpu_single_step_powerpc
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_powerpc
|
||||
#define cpu_tb_exec cpu_tb_exec_powerpc
|
||||
#define cpu_to_be64 cpu_to_be64_powerpc
|
||||
#define cpu_to_le32 cpu_to_le32_powerpc
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_riscv32
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_riscv32
|
||||
#define cpu_single_step cpu_single_step_riscv32
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_riscv32
|
||||
#define cpu_tb_exec cpu_tb_exec_riscv32
|
||||
#define cpu_to_be64 cpu_to_be64_riscv32
|
||||
#define cpu_to_le32 cpu_to_le32_riscv32
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_riscv64
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_riscv64
|
||||
#define cpu_single_step cpu_single_step_riscv64
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_riscv64
|
||||
#define cpu_tb_exec cpu_tb_exec_riscv64
|
||||
#define cpu_to_be64 cpu_to_be64_riscv64
|
||||
#define cpu_to_le32 cpu_to_le32_riscv64
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_sparc
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_sparc
|
||||
#define cpu_single_step cpu_single_step_sparc
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_sparc
|
||||
#define cpu_tb_exec cpu_tb_exec_sparc
|
||||
#define cpu_to_be64 cpu_to_be64_sparc
|
||||
#define cpu_to_le32 cpu_to_le32_sparc
|
||||
|
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_sparc64
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_sparc64
|
||||
#define cpu_single_step cpu_single_step_sparc64
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_sparc64
|
||||
#define cpu_tb_exec cpu_tb_exec_sparc64
|
||||
#define cpu_to_be64 cpu_to_be64_sparc64
|
||||
#define cpu_to_le32 cpu_to_le32_sparc64
|
||||
|
|
|
@ -1096,94 +1096,41 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
|
|||
* alignment faults or any memory attribute handling).
|
||||
*/
|
||||
|
||||
ARMCPU *cpu = env_archcpu(env);
|
||||
uint64_t blocklen = 4 << cpu->dcz_blocksize;
|
||||
int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
|
||||
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
void *mem;
|
||||
|
||||
/*
|
||||
* Trapless lookup. In addition to actual invalid page, may
|
||||
* return NULL for I/O, watchpoints, clean pages, etc.
|
||||
*/
|
||||
mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
|
||||
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
{
|
||||
if (unlikely(!mem)) {
|
||||
uintptr_t ra = GETPC();
|
||||
/*
|
||||
* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
|
||||
* the block size so we might have to do more than one TLB lookup.
|
||||
* We know that in fact for any v8 CPU the page size is at least 4K
|
||||
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
|
||||
* 1K as an artefact of legacy v5 subpage support being present in the
|
||||
* same QEMU executable. So in practice the hostaddr[] array has
|
||||
* two entries, given the current setting of TARGET_PAGE_BITS_MIN.
|
||||
* Trap if accessing an invalid page. DC_ZVA requires that we supply
|
||||
* the original pointer for an invalid page. But watchpoints require
|
||||
* that we probe the actual space. So do both.
|
||||
*/
|
||||
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
|
||||
// msvc doesnt allow non-constant array sizes, so we work out the size it would be
|
||||
// TARGET_PAGE_SIZE is 1024
|
||||
// blocklen is 64
|
||||
// maxidx = (blocklen+TARGET_PAGE_SIZE-1) / TARGET_PAGE_SIZE
|
||||
// = (64+1024-1) / 1024
|
||||
// = 1
|
||||
#ifdef _MSC_VER
|
||||
void *hostaddr[1];
|
||||
#else
|
||||
void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
|
||||
#endif
|
||||
int try, i;
|
||||
unsigned mmu_idx = cpu_mmu_index(env, false);
|
||||
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
|
||||
(void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
|
||||
mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
|
||||
|
||||
assert(maxidx <= ARRAY_SIZE(hostaddr));
|
||||
|
||||
for (try = 0; try < 2; try++) {
|
||||
|
||||
for (i = 0; i < maxidx; i++) {
|
||||
hostaddr[i] = tlb_vaddr_to_host(env,
|
||||
vaddr + TARGET_PAGE_SIZE * i,
|
||||
1, mmu_idx);
|
||||
if (!hostaddr[i]) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i == maxidx) {
|
||||
/*
|
||||
* If it's all in the TLB it's fair game for just writing to;
|
||||
* we know we don't need to update dirty status, etc.
|
||||
*/
|
||||
for (i = 0; i < maxidx - 1; i++) {
|
||||
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
|
||||
}
|
||||
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
|
||||
return;
|
||||
}
|
||||
if (unlikely(!mem)) {
|
||||
/*
|
||||
* OK, try a store and see if we can populate the tlb. This
|
||||
* might cause an exception if the memory isn't writable,
|
||||
* in which case we will longjmp out of here. We must for
|
||||
* this purpose use the actual register value passed to us
|
||||
* so that we get the fault address right.
|
||||
* The only remaining reason for mem == NULL is I/O.
|
||||
* Just do a series of byte writes as the architecture demands.
|
||||
*/
|
||||
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
|
||||
/* Now we can populate the other TLB entries, if any */
|
||||
for (i = 0; i < maxidx; i++) {
|
||||
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
|
||||
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
|
||||
helper_ret_stb_mmu(env, va, 0, oi, GETPC());
|
||||
}
|
||||
for (int i = 0; i < blocklen; i++) {
|
||||
cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Slow path (probably attempt to do this to an I/O device or
|
||||
* similar, or clearing of a block of code we have translations
|
||||
* cached for). Just do a series of byte writes as the architecture
|
||||
* demands. It's not worth trying to use a cpu_physical_memory_map(),
|
||||
* memset(), unmap() sequence here because:
|
||||
* + we'd need to account for the blocksize being larger than a page
|
||||
* + the direct-RAM access case is almost always going to be dealt
|
||||
* with in the fastpath code above, so there's no speed benefit
|
||||
* + we would have to deal with the map returning NULL because the
|
||||
* bounce buffer was in use
|
||||
*/
|
||||
for (i = 0; i < blocklen; i++) {
|
||||
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
|
||||
return;
|
||||
}
|
||||
}
|
||||
#else
|
||||
memset(g2h(vaddr), 0, blocklen);
|
||||
#endif
|
||||
|
||||
memset(mem, 0, blocklen);
|
||||
}
|
||||
|
|
276
qemu/target/arm/mte_helper.c
Normal file
276
qemu/target/arm/mte_helper.c
Normal file
|
@ -0,0 +1,276 @@
|
|||
/*
|
||||
* ARM v8.5-MemTag Operations
|
||||
*
|
||||
* Copyright (c) 2020 Linaro, Ltd.
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "qemu/osdep.h"
|
||||
#include "cpu.h"
|
||||
#include "internals.h"
|
||||
#include "exec/exec-all.h"
|
||||
#include "exec/cpu_ldst.h"
|
||||
#include "exec/helper-proto.h"
|
||||
|
||||
|
||||
static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
|
||||
{
|
||||
if (exclude == 0xffff) {
|
||||
return 0;
|
||||
}
|
||||
if (offset == 0) {
|
||||
while (exclude & (1 << tag)) {
|
||||
tag = (tag + 1) & 15;
|
||||
}
|
||||
} else {
|
||||
do {
|
||||
do {
|
||||
tag = (tag + 1) & 15;
|
||||
} while (exclude & (1 << tag));
|
||||
} while (--offset > 0);
|
||||
}
|
||||
return tag;
|
||||
}
|
||||
|
||||
/**
|
||||
* allocation_tag_mem:
|
||||
* @env: the cpu environment
|
||||
* @ptr_mmu_idx: the addressing regime to use for the virtual address
|
||||
* @ptr: the virtual address for which to look up tag memory
|
||||
* @ptr_access: the access to use for the virtual address
|
||||
* @ptr_size: the number of bytes in the normal memory access
|
||||
* @tag_access: the access to use for the tag memory
|
||||
* @tag_size: the number of bytes in the tag memory access
|
||||
* @ra: the return address for exception handling
|
||||
*
|
||||
* Our tag memory is formatted as a sequence of little-endian nibbles.
|
||||
* That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
|
||||
* tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
|
||||
* for the higher addr.
|
||||
*
|
||||
* Here, resolve the physical address from the virtual address, and return
|
||||
* a pointer to the corresponding tag byte. Exit with exception if the
|
||||
* virtual address is not accessible for @ptr_access.
|
||||
*
|
||||
* The @ptr_size and @tag_size values may not have an obvious relation
|
||||
* due to the alignment of @ptr, and the number of tag checks required.
|
||||
*
|
||||
* If there is no tag storage corresponding to @ptr, return NULL.
|
||||
*/
|
||||
static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
|
||||
uint64_t ptr, MMUAccessType ptr_access,
|
||||
int ptr_size, MMUAccessType tag_access,
|
||||
int tag_size, uintptr_t ra)
|
||||
{
|
||||
/* Tag storage not implemented. */
|
||||
return NULL;
|
||||
}
|
||||
|
||||
uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
|
||||
{
|
||||
int rtag;
|
||||
|
||||
/*
|
||||
* Our IMPDEF choice for GCR_EL1.RRND==1 is to behave as if
|
||||
* GCR_EL1.RRND==0, always producing deterministic results.
|
||||
*/
|
||||
uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
|
||||
int start = extract32(env->cp15.rgsr_el1, 0, 4);
|
||||
int seed = extract32(env->cp15.rgsr_el1, 8, 16);
|
||||
int offset, i;
|
||||
|
||||
/* RandomTag */
|
||||
for (i = offset = 0; i < 4; ++i) {
|
||||
/* NextRandomTagBit */
|
||||
int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
|
||||
extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
|
||||
seed = (top << 15) | (seed >> 1);
|
||||
offset |= top << i;
|
||||
}
|
||||
rtag = choose_nonexcluded_tag(start, offset, exclude);
|
||||
env->cp15.rgsr_el1 = rtag | (seed << 8);
|
||||
|
||||
return address_with_allocation_tag(rn, rtag);
|
||||
}
|
||||
|
||||
uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
|
||||
int32_t offset, uint32_t tag_offset)
|
||||
{
|
||||
int start_tag = allocation_tag_from_addr(ptr);
|
||||
uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
|
||||
int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
|
||||
|
||||
return address_with_allocation_tag(ptr + offset, rtag);
|
||||
}
|
||||
|
||||
static int load_tag1(uint64_t ptr, uint8_t *mem)
|
||||
{
|
||||
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
||||
return extract32(*mem, ofs, 4);
|
||||
}
|
||||
|
||||
uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
||||
{
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
uint8_t *mem;
|
||||
int rtag = 0;
|
||||
|
||||
/* Trap if accessing an invalid page. */
|
||||
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
|
||||
MMU_DATA_LOAD, 1, GETPC());
|
||||
|
||||
/* Load if page supports tags. */
|
||||
if (mem) {
|
||||
rtag = load_tag1(ptr, mem);
|
||||
}
|
||||
|
||||
return address_with_allocation_tag(xt, rtag);
|
||||
}
|
||||
|
||||
static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
|
||||
{
|
||||
if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
|
||||
arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
|
||||
cpu_mmu_index(env, false), ra);
|
||||
g_assert_not_reached();
|
||||
}
|
||||
}
|
||||
|
||||
/* For use in a non-parallel context, store to the given nibble. */
|
||||
static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
|
||||
{
|
||||
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
||||
*mem = deposit32(*mem, ofs, 4, tag);
|
||||
}
|
||||
|
||||
/* For use in a parallel context, atomically store to the given nibble. */
|
||||
static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
|
||||
{
|
||||
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
|
||||
uint8_t old = atomic_read(mem);
|
||||
|
||||
while (1) {
|
||||
uint8_t new = deposit32(old, ofs, 4, tag);
|
||||
uint8_t cmp = atomic_cmpxchg(mem, old, new);
|
||||
if (likely(cmp == old)) {
|
||||
return;
|
||||
}
|
||||
old = cmp;
|
||||
}
|
||||
}
|
||||
|
||||
typedef void stg_store1(uint64_t, uint8_t *, int);
|
||||
|
||||
static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
|
||||
uintptr_t ra, stg_store1 store1)
|
||||
{
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
uint8_t *mem;
|
||||
|
||||
check_tag_aligned(env, ptr, ra);
|
||||
|
||||
/* Trap if accessing an invalid page. */
|
||||
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
|
||||
MMU_DATA_STORE, 1, ra);
|
||||
|
||||
/* Store if page supports tags. */
|
||||
if (mem) {
|
||||
store1(ptr, mem, allocation_tag_from_addr(xt));
|
||||
}
|
||||
}
|
||||
|
||||
void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
||||
{
|
||||
do_stg(env, ptr, xt, GETPC(), store_tag1);
|
||||
}
|
||||
|
||||
void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
||||
{
|
||||
do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
|
||||
}
|
||||
|
||||
void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
|
||||
{
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
uintptr_t ra = GETPC();
|
||||
|
||||
check_tag_aligned(env, ptr, ra);
|
||||
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
|
||||
}
|
||||
|
||||
static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
|
||||
uintptr_t ra, stg_store1 store1)
|
||||
{
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
int tag = allocation_tag_from_addr(xt);
|
||||
uint8_t *mem1, *mem2;
|
||||
|
||||
check_tag_aligned(env, ptr, ra);
|
||||
|
||||
/*
|
||||
* Trap if accessing an invalid page(s).
|
||||
* This takes priority over !allocation_tag_access_enabled.
|
||||
*/
|
||||
if (ptr & TAG_GRANULE) {
|
||||
/* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
|
||||
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
|
||||
TAG_GRANULE, MMU_DATA_STORE, 1, ra);
|
||||
mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
|
||||
MMU_DATA_STORE, TAG_GRANULE,
|
||||
MMU_DATA_STORE, 1, ra);
|
||||
|
||||
/* Store if page(s) support tags. */
|
||||
if (mem1) {
|
||||
store1(TAG_GRANULE, mem1, tag);
|
||||
}
|
||||
if (mem2) {
|
||||
store1(0, mem2, tag);
|
||||
}
|
||||
} else {
|
||||
/* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
|
||||
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
|
||||
2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
|
||||
if (mem1) {
|
||||
tag |= tag << 4;
|
||||
atomic_set(mem1, tag);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
||||
{
|
||||
do_st2g(env, ptr, xt, GETPC(), store_tag1);
|
||||
}
|
||||
|
||||
void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
|
||||
{
|
||||
do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
|
||||
}
|
||||
|
||||
void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
|
||||
{
|
||||
int mmu_idx = cpu_mmu_index(env, false);
|
||||
uintptr_t ra = GETPC();
|
||||
int in_page = -(ptr | TARGET_PAGE_MASK);
|
||||
|
||||
check_tag_aligned(env, ptr, ra);
|
||||
|
||||
if (likely(in_page >= 2 * TAG_GRANULE)) {
|
||||
probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
|
||||
} else {
|
||||
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
|
||||
probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
|
||||
}
|
||||
}
|
|
@ -327,6 +327,7 @@
|
|||
#define cpu_restore_state cpu_restore_state_x86_64
|
||||
#define cpu_restore_state_from_tb cpu_restore_state_from_tb_x86_64
|
||||
#define cpu_single_step cpu_single_step_x86_64
|
||||
#define cpu_stb_mmuidx_ra cpu_stb_mmuidx_ra_x86_64
|
||||
#define cpu_tb_exec cpu_tb_exec_x86_64
|
||||
#define cpu_to_be64 cpu_to_be64_x86_64
|
||||
#define cpu_to_le32 cpu_to_le32_x86_64
|
||||
|
|
Loading…
Reference in a new issue