softfloat: Implement run-time-configurable meaning of signaling NaN bit

This patch modifies SoftFloat library so that it can be configured in
run-time in relation to the meaning of signaling NaN bit, while, at the
same time, strictly preserving its behavior on all existing platforms.

Background:

In floating-point calculations, there is a need for denoting undefined or
unrepresentable values. This is achieved by defining certain floating-point
numerical values to be NaNs (which stands for "not a number"). For additional
reasons, virtually all modern floating-point unit implementations use two
kinds of NaNs: quiet and signaling. The binary representations of these two
kinds of NaNs, as a rule, differ only in one bit (that bit is, traditionally,
the first bit of mantissa).

Up to 2008, standards for floating-point did not specify all details about
binary representation of NaNs. More specifically, the meaning of the bit
that is used for distinguishing between signaling and quiet NaNs was not
strictly prescribed. (IEEE 754-2008 was the first floating-point standard
that defined that meaning clearly, see [1], p. 35) As a result, different
platforms took different approaches, and that presented considerable
challenge for multi-platform emulators like QEMU.

Mips platform represents the most complex case among QEMU-supported
platforms regarding signaling NaN bit. Up to the Release 6 of Mips
architecture, "1" in signaling NaN bit denoted signaling NaN, which is
opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
that, Mips architecture for SIMD (also known as MSA, or vector instructions)
also specifies signaling bit in accordance to IEEE standard. MSA unit can be
implemented with both pre-Release 6 and Release 6 main processor units.

QEMU uses SoftFloat library to implement various floating-point-related
instructions on all platforms. The current QEMU implementation allows for
defining meaning of signaling NaN bit during build time, and is implemented
via preprocessor macro called SNAN_BIT_IS_ONE.

On the other hand, the change in this patch enables SoftFloat library to be
configured in run-time. This configuration is meant to occur during CPU
initialization, at the moment when it is definitely known what desired
behavior for particular CPU (or any additional FPUs) is.

The change is implemented so that it is consistent with existing
implementation of similar cases. This means that structure float_status is
used for passing the information about desired signaling NaN bit on each
invocation of SoftFloat functions. The additional field in float_status is
called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.

IMPORTANT:

This change is not meant to create any change in emulator behavior or
functionality on any platform. It just provides the means for SoftFloat
library to be used in a more flexible way - in other words, it will just
prepare SoftFloat library for usage related to Mips platform and its
specifics regarding signaling bit meaning, which is done in some of
subsequent patches from this series.

Further break down of changes:

1) Added field snan_bit_is_one to the structure float_status, and
correspondent setter function set_snan_bit_is_one().

2) Constants <float16|float32|float64|floatx80|float128>_default_nan
(used both internally and externally) converted to functions
<float16|float32|float64|floatx80|float128>_default_nan(float_status*).
This is necessary since they are dependent on signaling bit meaning.
At the same time, for the sake of code cleanup and simplicity, constants
<floatx80|float128>_default_nan_<low|high> (used only internally within
SoftFloat library) are removed, as not needed.

3) Added a float_status* argument to SoftFloat library functions
XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
XXX_maybe_silence_nan(XXX a_). This argument must be present in
order to enable correct invocation of new version of functions
XXX_default_nan(). (XXX is <float16|float32|float64|floatx80|float128>
here)

4) Updated code for all platforms to reflect changes in SoftFloat library.
This change is twofolds: it includes modifications of SoftFloat library
functions invocations, and an addition of invocation of function
set_snan_bit_is_one() during CPU initialization, with arguments that
are appropriate for each particular platform. It was established that
all platforms zero their main CPU data structures, so snan_bit_is_one(0)
in appropriate places is not added, as it is not needed.

[1] "IEEE Standard for Floating-Point Arithmetic",
IEEE Computer Society, August 29, 2008.

Backports commit af39bc8c49224771ec0d38f1b693ea78e221d7bc from qemu
This commit is contained in:
Aleksandar Markovic 2018-02-24 19:43:05 -05:00 committed by Lioncash
parent 096ca207af
commit 6eb4fa54f6
No known key found for this signature in database
GPG key ID: 4E3C3CC1031BA9C7
17 changed files with 531 additions and 528 deletions

View file

@ -79,16 +79,6 @@ this code that are retained.
* version 2 or later. See the COPYING file in the top-level directory. * version 2 or later. See the COPYING file in the top-level directory.
*/ */
/* Does the target distinguish signaling NaNs from non-signaling NaNs
* by setting the most significant bit of the mantissa for a signaling NaN?
* (The more common choice is to have it be zero for SNaN and one for QNaN.)
*/
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
#define SNAN_BIT_IS_ONE 1
#else
#define SNAN_BIT_IS_ONE 0
#endif
#if defined(TARGET_XTENSA) #if defined(TARGET_XTENSA)
/* Define for architectures which deviate from IEEE in not supporting /* Define for architectures which deviate from IEEE in not supporting
* signaling NaNs (so all NaNs are treated as quiet). * signaling NaNs (so all NaNs are treated as quiet).
@ -99,69 +89,93 @@ this code that are retained.
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN. | The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float16 float16_default_nan(float_status *status)
{
#if defined(TARGET_ARM) #if defined(TARGET_ARM)
const float16 float16_default_nan = const_float16(0x7E00); return const_float16(0x7E00);
#elif SNAN_BIT_IS_ONE
const float16 float16_default_nan = const_float16(0x7DFF);
#else #else
const float16 float16_default_nan = const_float16(0xFE00); if (status->snan_bit_is_one) {
return const_float16(0x7DFF);
} else {
return const_float16(0xFE00);
}
#endif #endif
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN. | The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float32 float32_default_nan(float_status *status)
{
#if defined(TARGET_SPARC) #if defined(TARGET_SPARC)
const float32 float32_default_nan = const_float32(0x7FFFFFFF); return const_float32(0x7FFFFFFF);
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \ #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
defined(TARGET_XTENSA) defined(TARGET_XTENSA)
const float32 float32_default_nan = const_float32(0x7FC00000); return const_float32(0x7FC00000);
#elif SNAN_BIT_IS_ONE
const float32 float32_default_nan = const_float32(0x7FBFFFFF);
#else #else
const float32 float32_default_nan = const_float32(0xFFC00000); if (status->snan_bit_is_one) {
return const_float32(0x7FBFFFFF);
} else {
return const_float32(0xFFC00000);
}
#endif #endif
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN. | The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float64 float64_default_nan(float_status *status)
{
#if defined(TARGET_SPARC) #if defined(TARGET_SPARC)
const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF )); return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 )); return const_float64(LIT64(0x7FF8000000000000));
#elif SNAN_BIT_IS_ONE
const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
#else #else
const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 )); if (status->snan_bit_is_one) {
return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
} else {
return const_float64(LIT64(0xFFF8000000000000));
}
#endif #endif
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN. | The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
#if SNAN_BIT_IS_ONE floatx80 floatx80_default_nan(float_status *status)
#define floatx80_default_nan_high 0x7FFF {
#define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF) floatx80 r;
#else
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
#endif
const floatx80 floatx80_default_nan if (status->snan_bit_is_one) {
= make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low); r.low = LIT64(0xBFFFFFFFFFFFFFFF);
r.high = 0x7FFF;
} else {
r.low = LIT64(0xC000000000000000);
r.high = 0xFFFF;
}
return r;
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN. The `high' and | The pattern for a default generated quadruple-precision NaN.
| `low' values hold the most- and least-significant bits, respectively.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
#if SNAN_BIT_IS_ONE float128 float128_default_nan(float_status *status)
#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF) {
#define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF) float128 r;
#else
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
#define float128_default_nan_low LIT64( 0x0000000000000000 )
#endif
const float128 float128_default_nan if (status->snan_bit_is_one) {
= make_float128_init(float128_default_nan_high, float128_default_nan_low); r.low = LIT64(0xFFFFFFFFFFFFFFFF);
r.high = LIT64(0x7FFF7FFFFFFFFFFF);
} else {
r.low = LIT64(0x0000000000000000);
#if defined(TARGET_S390X)
r.high = LIT64(0x7FFF800000000000);
#else
r.high = LIT64(0xFFFF800000000000);
#endif
}
return r;
}
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'. Floating-point traps can be | Raises the exceptions specified by `flags'. Floating-point traps can be
@ -184,12 +198,12 @@ typedef struct {
} commonNaNT; } commonNaNT;
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int float16_is_quiet_nan(float16 a_) int float16_is_quiet_nan(float16 a_, float_status *status)
{ {
return float16_is_any_nan(a_); return float16_is_any_nan(a_);
} }
int float16_is_signaling_nan(float16 a_) int float16_is_signaling_nan(float16 a_, float_status *status)
{ {
return 0; return 0;
} }
@ -199,14 +213,14 @@ int float16_is_signaling_nan(float16 a_)
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float16_is_quiet_nan(float16 a_) int float16_is_quiet_nan(float16 a_, float_status *status)
{ {
uint16_t a = float16_val(a_); uint16_t a = float16_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#else } else {
return ((a & ~0x8000) >= 0x7c80); return ((a & ~0x8000) >= 0x7C80);
#endif }
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -214,14 +228,14 @@ int float16_is_quiet_nan(float16 a_)
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float16_is_signaling_nan(float16 a_) int float16_is_signaling_nan(float16 a_, float_status *status)
{ {
uint16_t a = float16_val(a_); uint16_t a = float16_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return ((a & ~0x8000) >= 0x7c80); return ((a & ~0x8000) >= 0x7C80);
#else } else {
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#endif }
} }
#endif #endif
@ -229,21 +243,18 @@ int float16_is_signaling_nan(float16 a_)
| Returns a quiet NaN if the half-precision floating point value `a' is a | Returns a quiet NaN if the half-precision floating point value `a' is a
| signaling NaN; otherwise returns `a'. | signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float16 float16_maybe_silence_nan(float16 a_) float16 float16_maybe_silence_nan(float16 a_, float_status *status)
{ {
if (float16_is_signaling_nan(a_)) { if (float16_is_signaling_nan(a_, status)) {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) return float16_default_nan(status);
return float16_default_nan; } else {
# else
# error Rules for silencing a signaling NaN are target-specific
# endif
#else
uint16_t a = float16_val(a_); uint16_t a = float16_val(a_);
a |= (1 << 9); a |= (1 << 9);
return make_float16(a); return make_float16(a);
#endif
} }
}
return a_; return a_;
} }
@ -257,7 +268,7 @@ static commonNaNT float16ToCommonNaN( float16 a, float_status *status)
{ {
commonNaNT z; commonNaNT z;
if (float16_is_signaling_nan(a)) { if (float16_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
z.sign = float16_val(a) >> 15; z.sign = float16_val(a) >> 15;
@ -276,24 +287,24 @@ static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
uint16_t mantissa = a.high>>54; uint16_t mantissa = a.high>>54;
if (status->default_nan_mode) { if (status->default_nan_mode) {
return float16_default_nan; return float16_default_nan(status);
} }
if (mantissa) { if (mantissa) {
return make_float16(((((uint16_t) a.sign) << 15) return make_float16(((((uint16_t) a.sign) << 15)
| (0x1F << 10) | mantissa)); | (0x1F << 10) | mantissa));
} else { } else {
return float16_default_nan; return float16_default_nan(status);
} }
} }
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int float32_is_quiet_nan(float32 a_) int float32_is_quiet_nan(float32 a_, float_status *status)
{ {
return float32_is_any_nan(a_); return float32_is_any_nan(a_);
} }
int float32_is_signaling_nan(float32 a_) int float32_is_signaling_nan(float32 a_, float_status *status)
{ {
return 0; return 0;
} }
@ -303,14 +314,14 @@ int float32_is_signaling_nan(float32 a_)
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float32_is_quiet_nan( float32 a_ ) int float32_is_quiet_nan(float32 a_, float_status *status)
{ {
uint32_t a = float32_val(a_); uint32_t a = float32_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff); return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
#else } else {
return ((uint32_t)(a << 1) >= 0xff800000); return ((uint32_t)(a << 1) >= 0xFF800000);
#endif }
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -318,14 +329,14 @@ int float32_is_quiet_nan( float32 a_ )
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float32_is_signaling_nan( float32 a_ ) int float32_is_signaling_nan(float32 a_, float_status *status)
{ {
uint32_t a = float32_val(a_); uint32_t a = float32_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return ((uint32_t)(a << 1) >= 0xff800000); return ((uint32_t)(a << 1) >= 0xFF800000);
#else } else {
return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF); return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
#endif }
} }
#endif #endif
@ -334,20 +345,16 @@ int float32_is_signaling_nan( float32 a_ )
| signaling NaN; otherwise returns `a'. | signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float32 float32_maybe_silence_nan( float32 a_ ) float32 float32_maybe_silence_nan(float32 a_, float_status *status)
{ {
if (float32_is_signaling_nan(a_)) { if (float32_is_signaling_nan(a_, status)) {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) return float32_default_nan(status);
return float32_default_nan; } else {
# else
# error Rules for silencing a signaling NaN are target-specific
# endif
#else
uint32_t a = float32_val(a_); uint32_t a = float32_val(a_);
a |= (1 << 22); a |= (1 << 22);
return make_float32(a); return make_float32(a);
#endif }
} }
return a_; return a_;
} }
@ -362,7 +369,7 @@ static commonNaNT float32ToCommonNaN( float32 a, float_status *status)
{ {
commonNaNT z; commonNaNT z;
if (float32_is_signaling_nan(a)) { if (float32_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
z.sign = float32_val(a)>>31; z.sign = float32_val(a)>>31;
@ -381,14 +388,15 @@ static float32 commonNaNToFloat32( commonNaNT a, float_status *status)
uint32_t mantissa = a.high>>41; uint32_t mantissa = a.high>>41;
if (status->default_nan_mode) { if (status->default_nan_mode) {
return float32_default_nan; return float32_default_nan(status);
} }
if ( mantissa ) if (mantissa) {
return make_float32( return make_float32(
( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
else } else {
return float32_default_nan; return float32_default_nan(status);
}
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -618,10 +626,10 @@ static float32 propagateFloat32NaN( float32 a, float32 b, float_status *status)
flag aIsLargerSignificand; flag aIsLargerSignificand;
uint32_t av, bv; uint32_t av, bv;
aIsQuietNaN = float32_is_quiet_nan( a ); aIsQuietNaN = float32_is_quiet_nan(a, status);
aIsSignalingNaN = float32_is_signaling_nan( a ); aIsSignalingNaN = float32_is_signaling_nan(a, status);
bIsQuietNaN = float32_is_quiet_nan( b ); bIsQuietNaN = float32_is_quiet_nan(b, status);
bIsSignalingNaN = float32_is_signaling_nan( b ); bIsSignalingNaN = float32_is_signaling_nan(b, status);
av = float32_val(a); av = float32_val(a);
bv = float32_val(b); bv = float32_val(b);
@ -630,7 +638,7 @@ static float32 propagateFloat32NaN( float32 a, float32 b, float_status *status)
} }
if (status->default_nan_mode) { if (status->default_nan_mode) {
return float32_default_nan; return float32_default_nan(status);
} }
if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) { if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
@ -643,9 +651,9 @@ static float32 propagateFloat32NaN( float32 a, float32 b, float_status *status)
if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
aIsLargerSignificand)) { aIsLargerSignificand)) {
return float32_maybe_silence_nan(b); return float32_maybe_silence_nan(b, status);
} else { } else {
return float32_maybe_silence_nan(a); return float32_maybe_silence_nan(a, status);
} }
} }
@ -665,12 +673,12 @@ static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
cIsQuietNaN, cIsSignalingNaN; cIsQuietNaN, cIsSignalingNaN;
int which; int which;
aIsQuietNaN = float32_is_quiet_nan(a); aIsQuietNaN = float32_is_quiet_nan(a, status);
aIsSignalingNaN = float32_is_signaling_nan(a); aIsSignalingNaN = float32_is_signaling_nan(a, status);
bIsQuietNaN = float32_is_quiet_nan(b); bIsQuietNaN = float32_is_quiet_nan(b, status);
bIsSignalingNaN = float32_is_signaling_nan(b); bIsSignalingNaN = float32_is_signaling_nan(b, status);
cIsQuietNaN = float32_is_quiet_nan(c); cIsQuietNaN = float32_is_quiet_nan(c, status);
cIsSignalingNaN = float32_is_signaling_nan(c); cIsSignalingNaN = float32_is_signaling_nan(c, status);
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
@ -684,29 +692,29 @@ static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
/* Note that this check is after pickNaNMulAdd so that function /* Note that this check is after pickNaNMulAdd so that function
* has an opportunity to set the Invalid flag. * has an opportunity to set the Invalid flag.
*/ */
return float32_default_nan; return float32_default_nan(status);
} }
switch (which) { switch (which) {
case 0: case 0:
return float32_maybe_silence_nan(a); return float32_maybe_silence_nan(a, status);
case 1: case 1:
return float32_maybe_silence_nan(b); return float32_maybe_silence_nan(b, status);
case 2: case 2:
return float32_maybe_silence_nan(c); return float32_maybe_silence_nan(c, status);
case 3: case 3:
default: default:
return float32_default_nan; return float32_default_nan(status);
} }
} }
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int float64_is_quiet_nan(float64 a_) int float64_is_quiet_nan(float64 a_, float_status *status)
{ {
return float64_is_any_nan(a_); return float64_is_any_nan(a_);
} }
int float64_is_signaling_nan(float64 a_) int float64_is_signaling_nan(float64 a_, float_status *status)
{ {
return 0; return 0;
} }
@ -716,15 +724,15 @@ int float64_is_signaling_nan(float64 a_)
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float64_is_quiet_nan( float64 a_ ) int float64_is_quiet_nan(float64 a_, float_status *status)
{ {
uint64_t a = float64_val(a_); uint64_t a = float64_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return (((a >> 51) & 0xfff) == 0xffe) return (((a >> 51) & 0xFFF) == 0xFFE)
&& (a & 0x0007ffffffffffffULL); && (a & 0x0007FFFFFFFFFFFFULL);
#else } else {
return ((a << 1) >= 0xfff0000000000000ULL); return ((a << 1) >= 0xFFF0000000000000ULL);
#endif }
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -732,16 +740,15 @@ int float64_is_quiet_nan( float64 a_ )
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float64_is_signaling_nan( float64 a_ ) int float64_is_signaling_nan(float64 a_, float_status *status)
{ {
uint64_t a = float64_val(a_); uint64_t a = float64_val(a_);
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return ((a << 1) >= 0xfff0000000000000ULL); return ((a << 1) >= 0xFFF0000000000000ULL);
#else } else {
return return (((a >> 51) & 0xFFF) == 0xFFE)
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& (a & LIT64(0x0007FFFFFFFFFFFF)); && (a & LIT64(0x0007FFFFFFFFFFFF));
#endif }
} }
#endif #endif
@ -750,20 +757,16 @@ int float64_is_signaling_nan( float64 a_ )
| signaling NaN; otherwise returns `a'. | signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float64 float64_maybe_silence_nan( float64 a_ ) float64 float64_maybe_silence_nan(float64 a_, float_status *status)
{ {
if (float64_is_signaling_nan(a_)) { if (float64_is_signaling_nan(a_, status)) {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) return float64_default_nan(status);
return float64_default_nan; } else {
# else
# error Rules for silencing a signaling NaN are target-specific
# endif
#else
uint64_t a = float64_val(a_); uint64_t a = float64_val(a_);
a |= LIT64(0x0008000000000000); a |= LIT64(0x0008000000000000);
return make_float64(a); return make_float64(a);
#endif }
} }
return a_; return a_;
} }
@ -778,7 +781,7 @@ static commonNaNT float64ToCommonNaN( float64 a, float_status *status)
{ {
commonNaNT z; commonNaNT z;
if (float64_is_signaling_nan(a)) { if (float64_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
z.sign = float64_val(a)>>63; z.sign = float64_val(a)>>63;
@ -797,16 +800,17 @@ static float64 commonNaNToFloat64( commonNaNT a, float_status *status)
uint64_t mantissa = a.high>>12; uint64_t mantissa = a.high>>12;
if (status->default_nan_mode) { if (status->default_nan_mode) {
return float64_default_nan; return float64_default_nan(status);
} }
if ( mantissa ) if (mantissa) {
return make_float64( return make_float64(
( ( (uint64_t) a.sign )<<63 ) ( ( (uint64_t) a.sign )<<63 )
| LIT64( 0x7FF0000000000000 ) | LIT64( 0x7FF0000000000000 )
| ( a.high>>12 )); | ( a.high>>12 ));
else } else {
return float64_default_nan; return float64_default_nan(status);
}
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -821,10 +825,10 @@ static float64 propagateFloat64NaN( float64 a, float64 b, float_status *status)
flag aIsLargerSignificand; flag aIsLargerSignificand;
uint64_t av, bv; uint64_t av, bv;
aIsQuietNaN = float64_is_quiet_nan( a ); aIsQuietNaN = float64_is_quiet_nan(a, status);
aIsSignalingNaN = float64_is_signaling_nan( a ); aIsSignalingNaN = float64_is_signaling_nan(a, status);
bIsQuietNaN = float64_is_quiet_nan( b ); bIsQuietNaN = float64_is_quiet_nan(b, status);
bIsSignalingNaN = float64_is_signaling_nan( b ); bIsSignalingNaN = float64_is_signaling_nan(b, status);
av = float64_val(a); av = float64_val(a);
bv = float64_val(b); bv = float64_val(b);
@ -833,7 +837,7 @@ static float64 propagateFloat64NaN( float64 a, float64 b, float_status *status)
} }
if (status->default_nan_mode) { if (status->default_nan_mode) {
return float64_default_nan; return float64_default_nan(status);
} }
if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) { if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
@ -846,9 +850,9 @@ static float64 propagateFloat64NaN( float64 a, float64 b, float_status *status)
if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
aIsLargerSignificand)) { aIsLargerSignificand)) {
return float64_maybe_silence_nan(b); return float64_maybe_silence_nan(b, status);
} else { } else {
return float64_maybe_silence_nan(a); return float64_maybe_silence_nan(a, status);
} }
} }
@ -868,12 +872,12 @@ static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
cIsQuietNaN, cIsSignalingNaN; cIsQuietNaN, cIsSignalingNaN;
int which; int which;
aIsQuietNaN = float64_is_quiet_nan(a); aIsQuietNaN = float64_is_quiet_nan(a, status);
aIsSignalingNaN = float64_is_signaling_nan(a); aIsSignalingNaN = float64_is_signaling_nan(a, status);
bIsQuietNaN = float64_is_quiet_nan(b); bIsQuietNaN = float64_is_quiet_nan(b, status);
bIsSignalingNaN = float64_is_signaling_nan(b); bIsSignalingNaN = float64_is_signaling_nan(b, status);
cIsQuietNaN = float64_is_quiet_nan(c); cIsQuietNaN = float64_is_quiet_nan(c, status);
cIsSignalingNaN = float64_is_signaling_nan(c); cIsSignalingNaN = float64_is_signaling_nan(c, status);
if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) { if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
@ -887,29 +891,29 @@ static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
/* Note that this check is after pickNaNMulAdd so that function /* Note that this check is after pickNaNMulAdd so that function
* has an opportunity to set the Invalid flag. * has an opportunity to set the Invalid flag.
*/ */
return float64_default_nan; return float64_default_nan(status);
} }
switch (which) { switch (which) {
case 0: case 0:
return float64_maybe_silence_nan(a); return float64_maybe_silence_nan(a, status);
case 1: case 1:
return float64_maybe_silence_nan(b); return float64_maybe_silence_nan(b, status);
case 2: case 2:
return float64_maybe_silence_nan(c); return float64_maybe_silence_nan(c, status);
case 3: case 3:
default: default:
return float64_default_nan; return float64_default_nan(status);
} }
} }
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int floatx80_is_quiet_nan(floatx80 a_) int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
{ {
return floatx80_is_any_nan(a_); return floatx80_is_any_nan(a_);
} }
int floatx80_is_signaling_nan(floatx80 a_) int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
{ {
return 0; return 0;
} }
@ -920,19 +924,18 @@ int floatx80_is_signaling_nan(floatx80 a_)
| function for other types as floatx80 has an explicit bit. | function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int floatx80_is_quiet_nan( floatx80 a ) int floatx80_is_quiet_nan(floatx80 a, float_status *status)
{ {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
uint64_t aLow; uint64_t aLow;
aLow = a.low & ~0x4000000000000000ULL; aLow = a.low & ~0x4000000000000000ULL;
return ((a.high & 0x7fff) == 0x7fff) return ((a.high & 0x7FFF) == 0x7FFF)
&& (aLow << 1) && (aLow << 1)
&& (a.low == aLow); && (a.low == aLow);
#else } else {
return ((a.high & 0x7FFF) == 0x7FFF) return ((a.high & 0x7FFF) == 0x7FFF)
&& (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1))); && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
#endif }
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -941,20 +944,18 @@ int floatx80_is_quiet_nan( floatx80 a )
| function for other types as floatx80 has an explicit bit. | function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int floatx80_is_signaling_nan( floatx80 a ) int floatx80_is_signaling_nan(floatx80 a, float_status *status)
{ {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return ((a.high & 0x7fff) == 0x7fff) return ((a.high & 0x7FFF) == 0x7FFF)
&& ((a.low << 1) >= 0x8000000000000000ULL); && ((a.low << 1) >= 0x8000000000000000ULL);
#else } else {
uint64_t aLow; uint64_t aLow;
aLow = a.low & ~LIT64(0x4000000000000000); aLow = a.low & ~LIT64(0x4000000000000000);
return return ((a.high & 0x7FFF) == 0x7FFF)
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (uint64_t)(aLow << 1) && (uint64_t)(aLow << 1)
&& (a.low == aLow); && (a.low == aLow);
#endif }
} }
#endif #endif
@ -963,20 +964,15 @@ int floatx80_is_signaling_nan( floatx80 a )
| `a' is a signaling NaN; otherwise returns `a'. | `a' is a signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
floatx80 floatx80_maybe_silence_nan( floatx80 a ) floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
{ {
if (floatx80_is_signaling_nan(a)) { if (floatx80_is_signaling_nan(a, status)) {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) a = floatx80_default_nan(status);
a.low = floatx80_default_nan_low; } else {
a.high = floatx80_default_nan_high;
# else
# error Rules for silencing a signaling NaN are target-specific
# endif
#else
a.low |= LIT64(0xC000000000000000); a.low |= LIT64(0xC000000000000000);
return a; return a;
#endif }
} }
return a; return a;
} }
@ -989,9 +985,10 @@ floatx80 floatx80_maybe_silence_nan( floatx80 a )
static commonNaNT floatx80ToCommonNaN( floatx80 a, float_status *status) static commonNaNT floatx80ToCommonNaN( floatx80 a, float_status *status)
{ {
floatx80 dflt;
commonNaNT z; commonNaNT z;
if (floatx80_is_signaling_nan(a)) { if (floatx80_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
if ( a.low >> 63 ) { if ( a.low >> 63 ) {
@ -999,9 +996,10 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a, float_status *status)
z.low = 0; z.low = 0;
z.high = a.low << 1; z.high = a.low << 1;
} else { } else {
z.sign = floatx80_default_nan_high >> 15; dflt = floatx80_default_nan(status);
z.sign = dflt.high >> 15;
z.low = 0; z.low = 0;
z.high = floatx80_default_nan_low << 1; z.high = dflt.low << 1;
} }
return z; return z;
} }
@ -1016,19 +1014,15 @@ static floatx80 commonNaNToFloatx80( commonNaNT a, float_status *status)
floatx80 z; floatx80 z;
if (status->default_nan_mode) { if (status->default_nan_mode) {
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
if (a.high >> 1) { if (a.high >> 1) {
z.low = LIT64( 0x8000000000000000 ) | a.high >> 1; z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF; z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
} else { } else {
z.low = floatx80_default_nan_low; z = floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
} }
return z; return z;
} }
@ -1043,19 +1037,17 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b, float_status *stat
flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand; flag aIsLargerSignificand;
aIsQuietNaN = floatx80_is_quiet_nan( a ); aIsQuietNaN = floatx80_is_quiet_nan(a, status);
aIsSignalingNaN = floatx80_is_signaling_nan( a ); aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
bIsQuietNaN = floatx80_is_quiet_nan( b ); bIsQuietNaN = floatx80_is_quiet_nan(b, status);
bIsSignalingNaN = floatx80_is_signaling_nan( b ); bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
if (aIsSignalingNaN | bIsSignalingNaN) { if (aIsSignalingNaN | bIsSignalingNaN) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
if (status->default_nan_mode) { if (status->default_nan_mode) {
a.low = floatx80_default_nan_low; return floatx80_default_nan(status);
a.high = floatx80_default_nan_high;
return a;
} }
if (a.low < b.low) { if (a.low < b.low) {
@ -1068,19 +1060,19 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b, float_status *stat
if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
aIsLargerSignificand)) { aIsLargerSignificand)) {
return floatx80_maybe_silence_nan(b); return floatx80_maybe_silence_nan(b, status);
} else { } else {
return floatx80_maybe_silence_nan(a); return floatx80_maybe_silence_nan(a, status);
} }
} }
#ifdef NO_SIGNALING_NANS #ifdef NO_SIGNALING_NANS
int float128_is_quiet_nan(float128 a_) int float128_is_quiet_nan(float128 a_, float_status *status)
{ {
return float128_is_any_nan(a_); return float128_is_any_nan(a_);
} }
int float128_is_signaling_nan(float128 a_) int float128_is_signaling_nan(float128 a_, float_status *status)
{ {
return 0; return 0;
} }
@ -1090,16 +1082,15 @@ int float128_is_signaling_nan(float128 a_)
| NaN; otherwise returns 0. | NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float128_is_quiet_nan( float128 a ) int float128_is_quiet_nan(float128 a, float_status *status)
{ {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return (((a.high >> 47) & 0xffff) == 0xfffe) return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
&& (a.low || (a.high & 0x00007fffffffffffULL)); && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
#else } else {
return return ((a.high << 1) >= 0xFFFF000000000000ULL)
((a.high << 1) >= 0xffff000000000000ULL) && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
&& (a.low || (a.high & 0x0000ffffffffffffULL)); }
#endif
} }
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
@ -1107,17 +1098,15 @@ int float128_is_quiet_nan( float128 a )
| signaling NaN; otherwise returns 0. | signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float128_is_signaling_nan( float128 a ) int float128_is_signaling_nan(float128 a, float_status *status)
{ {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
return return ((a.high << 1) >= 0xFFFF000000000000ULL)
((a.high << 1) >= 0xffff000000000000ULL) && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
&& (a.low || (a.high & 0x0000ffffffffffffULL)); } else {
#else return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF))); && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
#endif }
} }
#endif #endif
@ -1126,20 +1115,15 @@ int float128_is_signaling_nan( float128 a )
| a signaling NaN; otherwise returns `a'. | a signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
float128 float128_maybe_silence_nan( float128 a ) float128 float128_maybe_silence_nan(float128 a, float_status *status)
{ {
if (float128_is_signaling_nan(a)) { if (float128_is_signaling_nan(a, status)) {
#if SNAN_BIT_IS_ONE if (status->snan_bit_is_one) {
# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) a = float128_default_nan(status);
a.low = float128_default_nan_low; } else {
a.high = float128_default_nan_high;
# else
# error Rules for silencing a signaling NaN are target-specific
# endif
#else
a.high |= LIT64(0x0000800000000000); a.high |= LIT64(0x0000800000000000);
return a; return a;
#endif }
} }
return a; return a;
} }
@ -1154,7 +1138,7 @@ static commonNaNT float128ToCommonNaN( float128 a, float_status *status)
{ {
commonNaNT z; commonNaNT z;
if (float128_is_signaling_nan(a)) { if (float128_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
z.sign = a.high>>63; z.sign = a.high>>63;
@ -1172,9 +1156,7 @@ static float128 commonNaNToFloat128( commonNaNT a, float_status *status)
float128 z; float128 z;
if (status->default_nan_mode) { if (status->default_nan_mode) {
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
shift128Right( a.high, a.low, 16, &z.high, &z.low ); shift128Right( a.high, a.low, 16, &z.high, &z.low );
@ -1193,19 +1175,17 @@ static float128 propagateFloat128NaN( float128 a, float128 b, float_status *stat
flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand; flag aIsLargerSignificand;
aIsQuietNaN = float128_is_quiet_nan( a ); aIsQuietNaN = float128_is_quiet_nan(a, status);
aIsSignalingNaN = float128_is_signaling_nan( a ); aIsSignalingNaN = float128_is_signaling_nan(a, status);
bIsQuietNaN = float128_is_quiet_nan( b ); bIsQuietNaN = float128_is_quiet_nan(b, status);
bIsSignalingNaN = float128_is_signaling_nan( b ); bIsSignalingNaN = float128_is_signaling_nan(b, status);
if (aIsSignalingNaN | bIsSignalingNaN) { if (aIsSignalingNaN | bIsSignalingNaN) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
if (status->default_nan_mode) { if (status->default_nan_mode) {
a.low = float128_default_nan_low; return float128_default_nan(status);
a.high = float128_default_nan_high;
return a;
} }
if (lt128(a.high<<1, a.low, b.high<<1, b.low)) { if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
@ -1218,9 +1198,8 @@ static float128 propagateFloat128NaN( float128 a, float128 b, float_status *stat
if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
aIsLargerSignificand)) { aIsLargerSignificand)) {
return float128_maybe_silence_nan(b); return float128_maybe_silence_nan(b, status);
} else { } else {
return float128_maybe_silence_nan(a); return float128_maybe_silence_nan(a, status);
} }
} }

View file

@ -2072,7 +2072,7 @@ static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, float_status *st
return propagateFloat32NaN(a, b, status); return propagateFloat32NaN(a, b, status);
} }
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
aExp = 1; aExp = 1;
@ -2201,7 +2201,7 @@ float32 float32_mul(float32 a, float32 b, float_status *status)
} }
if ( ( bExp | bSig ) == 0 ) { if ( ( bExp | bSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
return packFloat32( zSign, 0xFF, 0 ); return packFloat32( zSign, 0xFF, 0 );
} }
@ -2211,7 +2211,7 @@ float32 float32_mul(float32 a, float32 b, float_status *status)
} }
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
return packFloat32( zSign, 0xFF, 0 ); return packFloat32( zSign, 0xFF, 0 );
} }
@ -2264,7 +2264,7 @@ float32 float32_div(float32 a, float32 b, float_status *status)
return propagateFloat32NaN(a, b, status); return propagateFloat32NaN(a, b, status);
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
return packFloat32( zSign, 0xFF, 0 ); return packFloat32( zSign, 0xFF, 0 );
} }
@ -2278,7 +2278,7 @@ float32 float32_div(float32 a, float32 b, float_status *status)
if ( bSig == 0 ) { if ( bSig == 0 ) {
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
float_raise(float_flag_divbyzero, status); float_raise(float_flag_divbyzero, status);
return packFloat32( zSign, 0xFF, 0 ); return packFloat32( zSign, 0xFF, 0 );
@ -2332,7 +2332,7 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
return propagateFloat32NaN(a, b, status); return propagateFloat32NaN(a, b, status);
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if ( bExp == 0xFF ) { if ( bExp == 0xFF ) {
if (bSig) { if (bSig) {
@ -2343,7 +2343,7 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
if ( bExp == 0 ) { if ( bExp == 0 ) {
if ( bSig == 0 ) { if ( bSig == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
normalizeFloat32Subnormal( bSig, &bExp, &bSig ); normalizeFloat32Subnormal( bSig, &bExp, &bSig );
} }
@ -2458,7 +2458,7 @@ float32 float32_muladd(float32 a, float32 b, float32 c, int flags, float_status
if (infzero) { if (infzero) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if (flags & float_muladd_negate_c) { if (flags & float_muladd_negate_c) {
@ -2479,7 +2479,7 @@ float32 float32_muladd(float32 a, float32 b, float32 c, int flags, float_status
if (pInf && (pSign ^ cSign)) { if (pInf && (pSign ^ cSign)) {
/* addition of opposite-signed infinities => InvalidOperation */ /* addition of opposite-signed infinities => InvalidOperation */
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
/* Otherwise generate an infinity of the same sign */ /* Otherwise generate an infinity of the same sign */
return packFloat32(cSign ^ signflip, 0xff, 0); return packFloat32(cSign ^ signflip, 0xff, 0);
@ -2655,12 +2655,12 @@ float32 float32_sqrt(float32 a, float_status *status)
} }
if ( ! aSign ) return a; if ( ! aSign ) return a;
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if ( aSign ) { if ( aSign ) {
if ( ( aExp | aSig ) == 0 ) return a; if ( ( aExp | aSig ) == 0 ) return a;
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
if ( aSig == 0 ) return float32_zero; if ( aSig == 0 ) return float32_zero;
@ -2793,7 +2793,7 @@ float32 float32_log2(float32 a, float_status *status)
} }
if ( aSign ) { if ( aSign ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
if ( aExp == 0xFF ) { if ( aExp == 0xFF ) {
if (aSig) { if (aSig) {
@ -2939,7 +2939,8 @@ int float32_eq_quiet(float32 a, float32 b, float_status *status)
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) { ) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { if (float32_is_signaling_nan(a, status)
|| float32_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -2965,7 +2966,8 @@ int float32_le_quiet(float32 a, float32 b, float_status *status)
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) { ) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { if (float32_is_signaling_nan(a, status)
|| float32_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -2996,7 +2998,8 @@ int float32_lt_quiet(float32 a, float32 b, float_status *status)
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) { ) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { if (float32_is_signaling_nan(a, status)
|| float32_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -3025,7 +3028,8 @@ int float32_unordered_quiet(float32 a, float32 b, float_status *status)
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) { ) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { if (float32_is_signaling_nan(a, status)
|| float32_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 1; return 1;
@ -3858,7 +3862,7 @@ static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, float_status *st
return propagateFloat64NaN(a, b, status); return propagateFloat64NaN(a, b, status);
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
aExp = 1; aExp = 1;
@ -3985,7 +3989,7 @@ float64 float64_mul(float64 a, float64 b, float_status *status)
} }
if ( ( bExp | bSig ) == 0 ) { if ( ( bExp | bSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
return packFloat64( zSign, 0x7FF, 0 ); return packFloat64( zSign, 0x7FF, 0 );
} }
@ -3995,7 +3999,7 @@ float64 float64_mul(float64 a, float64 b, float_status *status)
} }
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
return packFloat64( zSign, 0x7FF, 0 ); return packFloat64( zSign, 0x7FF, 0 );
} }
@ -4052,7 +4056,7 @@ float64 float64_div(float64 a, float64 b, float_status *status)
return propagateFloat64NaN(a, b, status); return propagateFloat64NaN(a, b, status);
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
return packFloat64( zSign, 0x7FF, 0 ); return packFloat64( zSign, 0x7FF, 0 );
} }
@ -4066,7 +4070,7 @@ float64 float64_div(float64 a, float64 b, float_status *status)
if ( bSig == 0 ) { if ( bSig == 0 ) {
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
float_raise(float_flag_divbyzero, status); float_raise(float_flag_divbyzero, status);
return packFloat64( zSign, 0x7FF, 0 ); return packFloat64( zSign, 0x7FF, 0 );
@ -4124,7 +4128,7 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
return propagateFloat64NaN(a, b, status); return propagateFloat64NaN(a, b, status);
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if ( bExp == 0x7FF ) { if ( bExp == 0x7FF ) {
if (bSig) { if (bSig) {
@ -4135,7 +4139,7 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
if ( bExp == 0 ) { if ( bExp == 0 ) {
if ( bSig == 0 ) { if ( bSig == 0 ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
normalizeFloat64Subnormal( bSig, &bExp, &bSig ); normalizeFloat64Subnormal( bSig, &bExp, &bSig );
} }
@ -4236,7 +4240,7 @@ float64 float64_muladd(float64 a, float64 b, float64 c, int flags, float_status
if (infzero) { if (infzero) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if (flags & float_muladd_negate_c) { if (flags & float_muladd_negate_c) {
@ -4257,7 +4261,7 @@ float64 float64_muladd(float64 a, float64 b, float64 c, int flags, float_status
if (pInf && (pSign ^ cSign)) { if (pInf && (pSign ^ cSign)) {
/* addition of opposite-signed infinities => InvalidOperation */ /* addition of opposite-signed infinities => InvalidOperation */
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
/* Otherwise generate an infinity of the same sign */ /* Otherwise generate an infinity of the same sign */
return packFloat64(cSign ^ signflip, 0x7ff, 0); return packFloat64(cSign ^ signflip, 0x7ff, 0);
@ -4455,12 +4459,12 @@ float64 float64_sqrt(float64 a, float_status *status)
} }
if ( ! aSign ) return a; if ( ! aSign ) return a;
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if ( aSign ) { if ( aSign ) {
if ( ( aExp | aSig ) == 0 ) return a; if ( ( aExp | aSig ) == 0 ) return a;
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
if ( aSig == 0 ) return float64_zero; if ( aSig == 0 ) return float64_zero;
@ -4508,7 +4512,7 @@ float64 float64_log2(float64 a, float_status *status)
} }
if ( aSign ) { if ( aSign ) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
if ( aExp == 0x7FF ) { if ( aExp == 0x7FF ) {
if (aSig) { if (aSig) {
@ -4655,7 +4659,8 @@ int float64_eq_quiet(float64 a, float64 b, float_status *status)
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) { ) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { if (float64_is_signaling_nan(a, status)
|| float64_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 0; return 0;
@ -4683,7 +4688,8 @@ int float64_le_quiet(float64 a, float64 b, float_status *status)
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) { ) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { if (float64_is_signaling_nan(a, status)
|| float64_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 0; return 0;
@ -4714,7 +4720,8 @@ int float64_lt_quiet(float64 a, float64 b, float_status *status)
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) { ) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { if (float64_is_signaling_nan(a, status)
|| float64_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 0; return 0;
@ -4743,7 +4750,8 @@ int float64_unordered_quiet(float64 a, float64 b, float_status *status)
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) { ) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { if (float64_is_signaling_nan(a, status)
|| float64_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 1; return 1;
@ -4942,7 +4950,7 @@ float32 floatx80_to_float32(floatx80 a, float_status *status)
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float32_default_nan; return float32_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -4974,7 +4982,7 @@ float64 floatx80_to_float64(floatx80 a, float_status *status)
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float64_default_nan; return float64_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5006,7 +5014,7 @@ float128 floatx80_to_float128(floatx80 a, float_status *status)
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return float128_default_nan; return float128_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5035,7 +5043,7 @@ floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
if ( 0x403E <= aExp ) { if ( 0x403E <= aExp ) {
@ -5198,7 +5206,6 @@ static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, float_status
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig, bSig, zSig0, zSig1; uint64_t aSig, bSig, zSig0, zSig1;
int32_t expDiff; int32_t expDiff;
floatx80 z;
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5212,9 +5219,7 @@ static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, float_status
return propagateFloatx80NaN( a, b, status ); return propagateFloatx80NaN( a, b, status );
} }
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
aExp = 1; aExp = 1;
@ -5265,7 +5270,7 @@ floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSign = extractFloatx80Sign( a ); aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b ); bSign = extractFloatx80Sign( b );
@ -5290,7 +5295,7 @@ floatx80 floatx80_sub( floatx80 a, floatx80 b, float_status *status )
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSign = extractFloatx80Sign( a ); aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b ); bSign = extractFloatx80Sign( b );
@ -5314,11 +5319,10 @@ floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
flag aSign, bSign, zSign; flag aSign, bSign, zSign;
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig, bSig, zSig0, zSig1; uint64_t aSig, bSig, zSig0, zSig1;
floatx80 z;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5340,9 +5344,7 @@ floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
invalid: invalid:
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
} }
@ -5378,11 +5380,10 @@ floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig, bSig, zSig0, zSig1; uint64_t aSig, bSig, zSig0, zSig1;
uint64_t rem0, rem1, rem2, term0, term1, term2; uint64_t rem0, rem1, rem2, term0, term1, term2;
floatx80 z;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5408,9 +5409,7 @@ floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
if ( ( aExp | aSig ) == 0 ) { if ( ( aExp | aSig ) == 0 ) {
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
float_raise(float_flag_divbyzero, status); float_raise(float_flag_divbyzero, status);
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
@ -5462,11 +5461,10 @@ floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
int32_t aExp, bExp, expDiff; int32_t aExp, bExp, expDiff;
uint64_t aSig0, aSig1, bSig; uint64_t aSig0, aSig1, bSig;
uint64_t q, term0, term1, alternateASig0, alternateASig1; uint64_t q, term0, term1, alternateASig0, alternateASig1;
floatx80 z;
if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSig0 = extractFloatx80Frac( a ); aSig0 = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5488,9 +5486,7 @@ floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
if ( bSig == 0 ) { if ( bSig == 0 ) {
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
} }
@ -5562,11 +5558,10 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *status)
int32_t aExp, zExp; int32_t aExp, zExp;
uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
floatx80 z;
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSig0 = extractFloatx80Frac( a ); aSig0 = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );
@ -5580,9 +5575,7 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *status)
if ( ( aExp | aSig0 ) == 0 ) return a; if ( ( aExp | aSig0 ) == 0 ) return a;
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = floatx80_default_nan_low; return floatx80_default_nan(status);
z.high = floatx80_default_nan_high;
return z;
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
@ -5760,8 +5753,8 @@ int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
|| ( ( extractFloatx80Exp( b ) == 0x7FFF ) || ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) { ) {
if ( floatx80_is_signaling_nan( a ) if (floatx80_is_signaling_nan(a, status)
|| floatx80_is_signaling_nan( b ) ) { || floatx80_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 0; return 0;
@ -5795,8 +5788,8 @@ int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
|| ( ( extractFloatx80Exp( b ) == 0x7FFF ) || ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) { ) {
if ( floatx80_is_signaling_nan( a ) if (floatx80_is_signaling_nan(a, status)
|| floatx80_is_signaling_nan( b ) ) { || floatx80_is_signaling_nan(b, status)) {
float_raise( float_flag_invalid, status); float_raise( float_flag_invalid, status);
} }
return 0; return 0;
@ -5835,8 +5828,8 @@ int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
|| ( ( extractFloatx80Exp( b ) == 0x7FFF ) || ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) { ) {
if ( floatx80_is_signaling_nan( a ) if (floatx80_is_signaling_nan(a, status)
|| floatx80_is_signaling_nan( b ) ) { || floatx80_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -5872,8 +5865,8 @@ int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
|| ( ( extractFloatx80Exp( b ) == 0x7FFF ) || ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
) { ) {
if ( floatx80_is_signaling_nan( a ) if (floatx80_is_signaling_nan(a, status)
|| floatx80_is_signaling_nan( b ) ) { || floatx80_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 1; return 1;
@ -6402,7 +6395,6 @@ static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, float_status
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
int32_t expDiff; int32_t expDiff;
float128 z;
aSig1 = extractFloat128Frac1( a ); aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a ); aSig0 = extractFloat128Frac0( a );
@ -6420,9 +6412,7 @@ static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, float_status
return propagateFloat128NaN( a, b, status ); return propagateFloat128NaN( a, b, status );
} }
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
aExp = 1; aExp = 1;
@ -6526,7 +6516,6 @@ float128 float128_mul(float128 a, float128 b, float_status *status)
flag aSign, bSign, zSign; flag aSign, bSign, zSign;
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
float128 z;
aSig1 = extractFloat128Frac1( a ); aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a ); aSig0 = extractFloat128Frac0( a );
@ -6550,9 +6539,7 @@ float128 float128_mul(float128 a, float128 b, float_status *status)
if ( ( aExp | aSig0 | aSig1 ) == 0 ) { if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
return packFloat128( zSign, 0x7FFF, 0, 0 ); return packFloat128( zSign, 0x7FFF, 0, 0 );
} }
@ -6591,7 +6578,6 @@ float128 float128_div(float128 a, float128 b, float_status *status)
int32_t aExp, bExp, zExp; int32_t aExp, bExp, zExp;
uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a ); aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a ); aSig0 = extractFloat128Frac0( a );
@ -6619,9 +6605,7 @@ float128 float128_div(float128 a, float128 b, float_status *status)
if ( ( aExp | aSig0 | aSig1 ) == 0 ) { if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
float_raise( float_flag_divbyzero, status); float_raise( float_flag_divbyzero, status);
return packFloat128( zSign, 0x7FFF, 0, 0 ); return packFloat128( zSign, 0x7FFF, 0, 0 );
@ -6676,7 +6660,6 @@ float128 float128_rem(float128 a, float128 b, float_status *status)
uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
uint64_t allZero, alternateASig0, alternateASig1, sigMean1; uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
int64_t sigMean0; int64_t sigMean0;
float128 z;
aSig1 = extractFloat128Frac1( a ); aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a ); aSig0 = extractFloat128Frac0( a );
@ -6700,9 +6683,7 @@ float128 float128_rem(float128 a, float128 b, float_status *status)
if ( ( bSig0 | bSig1 ) == 0 ) { if ( ( bSig0 | bSig1 ) == 0 ) {
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
} }
@ -6784,7 +6765,6 @@ float128 float128_sqrt(float128 a, float_status *status)
int32_t aExp, zExp; int32_t aExp, zExp;
uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a ); aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a ); aSig0 = extractFloat128Frac0( a );
@ -6799,9 +6779,7 @@ float128 float128_sqrt(float128 a, float_status *status)
if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
invalid: invalid:
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
z.low = float128_default_nan_low; return float128_default_nan(status);
z.high = float128_default_nan_high;
return z;
} }
if ( aExp == 0 ) { if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
@ -6969,8 +6947,8 @@ int float128_eq_quiet(float128 a, float128 b, float_status *status)
|| ( ( extractFloat128Exp( b ) == 0x7FFF ) || ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) { ) {
if ( float128_is_signaling_nan( a ) if (float128_is_signaling_nan(a, status)
|| float128_is_signaling_nan( b ) ) { || float128_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -7000,8 +6978,8 @@ int float128_le_quiet(float128 a, float128 b, float_status *status)
|| ( ( extractFloat128Exp( b ) == 0x7FFF ) || ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) { ) {
if ( float128_is_signaling_nan( a ) if (float128_is_signaling_nan(a, status)
|| float128_is_signaling_nan( b ) ) { || float128_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -7036,8 +7014,8 @@ int float128_lt_quiet(float128 a, float128 b, float_status *status)
|| ( ( extractFloat128Exp( b ) == 0x7FFF ) || ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) { ) {
if ( float128_is_signaling_nan( a ) if (float128_is_signaling_nan(a, status)
|| float128_is_signaling_nan( b ) ) { || float128_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 0; return 0;
@ -7070,8 +7048,8 @@ int float128_unordered_quiet(float128 a, float128 b, float_status *status)
|| ( ( extractFloat128Exp( b ) == 0x7FFF ) || ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) { ) {
if ( float128_is_signaling_nan( a ) if (float128_is_signaling_nan(a, status)
|| float128_is_signaling_nan( b ) ) { || float128_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return 1; return 1;
@ -7352,8 +7330,8 @@ static inline int float ## s ## _compare_internal(float ## s a, float ## s b,
( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
extractFloat ## s ## Frac( b ) )) { \ extractFloat ## s ## Frac( b ) )) { \
if (!is_quiet || \ if (!is_quiet || \
float ## s ## _is_signaling_nan( a ) || \ float ## s ## _is_signaling_nan(a, status) || \
float ## s ## _is_signaling_nan( b ) ) { \ float ## s ## _is_signaling_nan(b, status)) { \
float_raise( float_flag_invalid, status); \ float_raise( float_flag_invalid, status); \
} \ } \
return float_relation_unordered; \ return float_relation_unordered; \
@ -7405,8 +7383,8 @@ static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
( ( extractFloatx80Exp( b ) == 0x7fff ) && ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
( extractFloatx80Frac( b )<<1 ) )) { ( extractFloatx80Frac( b )<<1 ) )) {
if (!is_quiet || if (!is_quiet ||
floatx80_is_signaling_nan( a ) || floatx80_is_signaling_nan(a, status) ||
floatx80_is_signaling_nan( b ) ) { floatx80_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return float_relation_unordered; return float_relation_unordered;
@ -7451,8 +7429,8 @@ static inline int float128_compare_internal(float128 a, float128 b,
( ( extractFloat128Exp( b ) == 0x7fff ) && ( ( extractFloat128Exp( b ) == 0x7fff ) &&
( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
if (!is_quiet || if (!is_quiet ||
float128_is_signaling_nan( a ) || float128_is_signaling_nan(a, status) ||
float128_is_signaling_nan( b ) ) { float128_is_signaling_nan(b, status)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
} }
return float_relation_unordered; return float_relation_unordered;
@ -7511,10 +7489,10 @@ static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \
if (float ## s ## _is_any_nan(a) || \ if (float ## s ## _is_any_nan(a) || \
float ## s ## _is_any_nan(b)) { \ float ## s ## _is_any_nan(b)) { \
if (isieee) { \ if (isieee) { \
if (float ## s ## _is_quiet_nan(a) && \ if (float ## s ## _is_quiet_nan(a, status) && \
!float ## s ##_is_any_nan(b)) { \ !float ## s ##_is_any_nan(b)) { \
return b; \ return b; \
} else if (float ## s ## _is_quiet_nan(b) && \ } else if (float ## s ## _is_quiet_nan(b, status) && \
!float ## s ## _is_any_nan(a)) { \ !float ## s ## _is_any_nan(a)) { \
return a; \ return a; \
} \ } \
@ -7666,7 +7644,7 @@ floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
if (floatx80_invalid_encoding(a)) { if (floatx80_invalid_encoding(a)) {
float_raise(float_flag_invalid, status); float_raise(float_flag_invalid, status);
return floatx80_default_nan; return floatx80_default_nan(status);
} }
aSig = extractFloatx80Frac( a ); aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a ); aExp = extractFloatx80Exp( a );

View file

@ -3219,6 +3219,10 @@ mips_symbols = (
'cpu_mips_init', 'cpu_mips_init',
'cpu_state_reset', 'cpu_state_reset',
'do_raise_exception_err', 'do_raise_exception_err',
'float_class_d',
'float_class_s',
'gen_helper_float_class_d',
'gen_helper_float_class_s',
'helper_msa_andi_b', 'helper_msa_andi_b',
'helper_msa_ori_b', 'helper_msa_ori_b',
'helper_msa_nori_b', 'helper_msa_nori_b',

View file

@ -213,6 +213,7 @@ typedef struct float_status {
/* should denormalised inputs go to zero and set the input_denormal flag? */ /* should denormalised inputs go to zero and set the input_denormal flag? */
flag flush_inputs_to_zero; flag flush_inputs_to_zero;
flag default_nan_mode; flag default_nan_mode;
flag snan_bit_is_one;
} float_status; } float_status;
static inline void set_float_detect_tininess(int val, float_status *status) static inline void set_float_detect_tininess(int val, float_status *status)
@ -243,6 +244,10 @@ static inline void set_default_nan_mode(flag val, float_status *status)
{ {
status->default_nan_mode = val; status->default_nan_mode = val;
} }
static inline void set_snan_bit_is_one(flag val, float_status *status)
{
status->snan_bit_is_one = val;
}
static inline int get_float_detect_tininess(float_status *status) static inline int get_float_detect_tininess(float_status *status)
{ {
return status->float_detect_tininess; return status->float_detect_tininess;
@ -349,9 +354,9 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Software half-precision operations. | Software half-precision operations.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
int float16_is_quiet_nan( float16 ); int float16_is_quiet_nan(float16, float_status *status);
int float16_is_signaling_nan( float16 ); int float16_is_signaling_nan(float16, float_status *status);
float16 float16_maybe_silence_nan( float16 ); float16 float16_maybe_silence_nan(float16, float_status *status);
static inline int float16_is_any_nan(float16 a) static inline int float16_is_any_nan(float16 a)
{ {
@ -361,7 +366,7 @@ static inline int float16_is_any_nan(float16 a)
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN. | The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
extern const float16 float16_default_nan; float16 float16_default_nan(float_status *status);
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines. | Software IEC/IEEE single-precision conversion routines.
@ -411,9 +416,9 @@ float32 float32_minnum(float32, float32, float_status *status);
float32 float32_maxnum(float32, float32, float_status *status); float32 float32_maxnum(float32, float32, float_status *status);
float32 float32_minnummag(float32, float32, float_status *status); float32 float32_minnummag(float32, float32, float_status *status);
float32 float32_maxnummag(float32, float32, float_status *status); float32 float32_maxnummag(float32, float32, float_status *status);
int float32_is_quiet_nan( float32 ); int float32_is_quiet_nan(float32, float_status *status);
int float32_is_signaling_nan( float32 ); int float32_is_signaling_nan(float32, float_status *status);
float32 float32_maybe_silence_nan( float32 ); float32 float32_maybe_silence_nan(float32, float_status *status);
float32 float32_scalbn( float32, int, float_status *status ); float32 float32_scalbn( float32, int, float_status *status );
static inline float32 float32_abs(float32 a) static inline float32 float32_abs(float32 a)
@ -473,7 +478,7 @@ static inline float32 float32_set_sign(float32 a, int sign)
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN. | The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
extern const float32 float32_default_nan; float32 float32_default_nan(float_status *status);
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines. | Software IEC/IEEE double-precision conversion routines.
@ -523,9 +528,9 @@ float64 float64_minnum(float64, float64, float_status *status);
float64 float64_maxnum(float64, float64, float_status *status); float64 float64_maxnum(float64, float64, float_status *status);
float64 float64_minnummag(float64, float64, float_status *status); float64 float64_minnummag(float64, float64, float_status *status);
float64 float64_maxnummag(float64, float64, float_status *status); float64 float64_maxnummag(float64, float64, float_status *status);
int float64_is_quiet_nan( float64 a ); int float64_is_quiet_nan(float64 a, float_status *status);
int float64_is_signaling_nan( float64 ); int float64_is_signaling_nan(float64, float_status *status);
float64 float64_maybe_silence_nan( float64 ); float64 float64_maybe_silence_nan(float64, float_status *status);
float64 float64_scalbn( float64, int, float_status *status ); float64 float64_scalbn( float64, int, float_status *status );
static inline float64 float64_abs(float64 a) static inline float64 float64_abs(float64 a)
@ -585,7 +590,7 @@ static inline float64 float64_set_sign(float64 a, int sign)
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN. | The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
extern const float64 float64_default_nan; float64 float64_default_nan(float_status *status);
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines. | Software IEC/IEEE extended double-precision conversion routines.
@ -618,9 +623,9 @@ int floatx80_lt_quiet( floatx80, floatx80, float_status *status );
int floatx80_unordered_quiet( floatx80, floatx80, float_status *status ); int floatx80_unordered_quiet( floatx80, floatx80, float_status *status );
int floatx80_compare( floatx80, floatx80, float_status *status ); int floatx80_compare( floatx80, floatx80, float_status *status );
int floatx80_compare_quiet( floatx80, floatx80, float_status *status ); int floatx80_compare_quiet( floatx80, floatx80, float_status *status );
int floatx80_is_quiet_nan( floatx80 ); int floatx80_is_quiet_nan(floatx80, float_status *status);
int floatx80_is_signaling_nan( floatx80 ); int floatx80_is_signaling_nan(floatx80, float_status *status);
floatx80 floatx80_maybe_silence_nan( floatx80 ); floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
floatx80 floatx80_scalbn( floatx80, int, float_status *status ); floatx80 floatx80_scalbn( floatx80, int, float_status *status );
static inline floatx80 floatx80_abs(floatx80 a) static inline floatx80 floatx80_abs(floatx80 a)
@ -685,7 +690,7 @@ static inline bool floatx80_invalid_encoding(floatx80 a)
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN. | The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
extern const floatx80 floatx80_default_nan; floatx80 floatx80_default_nan(float_status *status);
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| Software IEC/IEEE quadruple-precision conversion routines. | Software IEC/IEEE quadruple-precision conversion routines.
@ -718,9 +723,9 @@ int float128_lt_quiet( float128, float128, float_status *status );
int float128_unordered_quiet( float128, float128, float_status *status ); int float128_unordered_quiet( float128, float128, float_status *status );
int float128_compare( float128, float128, float_status *status ); int float128_compare( float128, float128, float_status *status );
int float128_compare_quiet( float128, float128, float_status *status ); int float128_compare_quiet( float128, float128, float_status *status );
int float128_is_quiet_nan( float128 ); int float128_is_quiet_nan(float128, float_status *status);
int float128_is_signaling_nan( float128 ); int float128_is_signaling_nan(float128, float_status *status);
float128 float128_maybe_silence_nan( float128 ); float128 float128_maybe_silence_nan(float128, float_status *status);
float128 float128_scalbn( float128, int, float_status *status ); float128 float128_scalbn( float128, int, float_status *status );
static inline float128 float128_abs(float128 a) static inline float128 float128_abs(float128 a)
@ -766,6 +771,6 @@ static inline int float128_is_any_nan(float128 a)
/*---------------------------------------------------------------------------- /*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN. | The pattern for a default generated quadruple-precision NaN.
*----------------------------------------------------------------------------*/ *----------------------------------------------------------------------------*/
extern const float128 float128_default_nan; float128 float128_default_nan(float_status *status);
#endif /* !SOFTFLOAT_H */ #endif /* !SOFTFLOAT_H */

View file

@ -3164,6 +3164,10 @@
#define cpu_mips_init cpu_mips_init_mips #define cpu_mips_init cpu_mips_init_mips
#define cpu_state_reset cpu_state_reset_mips #define cpu_state_reset cpu_state_reset_mips
#define do_raise_exception_err do_raise_exception_err_mips #define do_raise_exception_err do_raise_exception_err_mips
#define float_class_d float_class_d_mips
#define float_class_s float_class_s_mips
#define gen_helper_float_class_d gen_helper_float_class_d_mips
#define gen_helper_float_class_s gen_helper_float_class_s_mips
#define helper_msa_andi_b helper_msa_andi_b_mips #define helper_msa_andi_b helper_msa_andi_b_mips
#define helper_msa_ori_b helper_msa_ori_b_mips #define helper_msa_ori_b helper_msa_ori_b_mips
#define helper_msa_nori_b helper_msa_nori_b_mips #define helper_msa_nori_b helper_msa_nori_b_mips

View file

@ -3164,6 +3164,10 @@
#define cpu_mips_init cpu_mips_init_mips64 #define cpu_mips_init cpu_mips_init_mips64
#define cpu_state_reset cpu_state_reset_mips64 #define cpu_state_reset cpu_state_reset_mips64
#define do_raise_exception_err do_raise_exception_err_mips64 #define do_raise_exception_err do_raise_exception_err_mips64
#define float_class_d float_class_d_mips64
#define float_class_s float_class_s_mips64
#define gen_helper_float_class_d gen_helper_float_class_d_mips64
#define gen_helper_float_class_s gen_helper_float_class_s_mips64
#define helper_msa_andi_b helper_msa_andi_b_mips64 #define helper_msa_andi_b helper_msa_andi_b_mips64
#define helper_msa_ori_b helper_msa_ori_b_mips64 #define helper_msa_ori_b helper_msa_ori_b_mips64
#define helper_msa_nori_b helper_msa_nori_b_mips64 #define helper_msa_nori_b helper_msa_nori_b_mips64

View file

@ -3164,6 +3164,10 @@
#define cpu_mips_init cpu_mips_init_mips64el #define cpu_mips_init cpu_mips_init_mips64el
#define cpu_state_reset cpu_state_reset_mips64el #define cpu_state_reset cpu_state_reset_mips64el
#define do_raise_exception_err do_raise_exception_err_mips64el #define do_raise_exception_err do_raise_exception_err_mips64el
#define float_class_d float_class_d_mips64el
#define float_class_s float_class_s_mips64el
#define gen_helper_float_class_d gen_helper_float_class_d_mips64el
#define gen_helper_float_class_s gen_helper_float_class_s_mips64el
#define helper_msa_andi_b helper_msa_andi_b_mips64el #define helper_msa_andi_b helper_msa_andi_b_mips64el
#define helper_msa_ori_b helper_msa_ori_b_mips64el #define helper_msa_ori_b helper_msa_ori_b_mips64el
#define helper_msa_nori_b helper_msa_nori_b_mips64el #define helper_msa_nori_b helper_msa_nori_b_mips64el

View file

@ -3164,6 +3164,10 @@
#define cpu_mips_init cpu_mips_init_mipsel #define cpu_mips_init cpu_mips_init_mipsel
#define cpu_state_reset cpu_state_reset_mipsel #define cpu_state_reset cpu_state_reset_mipsel
#define do_raise_exception_err do_raise_exception_err_mipsel #define do_raise_exception_err do_raise_exception_err_mipsel
#define float_class_d float_class_d_mipsel
#define float_class_s float_class_s_mipsel
#define gen_helper_float_class_d gen_helper_float_class_d_mipsel
#define gen_helper_float_class_s gen_helper_float_class_s_mipsel
#define helper_msa_andi_b helper_msa_andi_b_mipsel #define helper_msa_andi_b helper_msa_andi_b_mipsel
#define helper_msa_ori_b helper_msa_ori_b_mipsel #define helper_msa_ori_b helper_msa_ori_b_mipsel
#define helper_msa_nori_b helper_msa_nori_b_mipsel #define helper_msa_nori_b helper_msa_nori_b_mipsel

View file

@ -337,12 +337,12 @@ float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
if (float32_is_any_nan(a)) { if (float32_is_any_nan(a)) {
float32 nan = a; float32 nan = a;
if (float32_is_signaling_nan(a)) { if (float32_is_signaling_nan(a, fpst)) {
float_raise(float_flag_invalid, fpst); float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(a); nan = float32_maybe_silence_nan(a, fpst);
} }
if (fpst->default_nan_mode) { if (fpst->default_nan_mode) {
nan = float32_default_nan; nan = float32_default_nan(fpst);
} }
return nan; return nan;
} }
@ -366,12 +366,12 @@ float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
if (float64_is_any_nan(a)) { if (float64_is_any_nan(a)) {
float64 nan = a; float64 nan = a;
if (float64_is_signaling_nan(a)) { if (float64_is_signaling_nan(a, fpst)) {
float_raise(float_flag_invalid, fpst); float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(a); nan = float64_maybe_silence_nan(a, fpst);
} }
if (fpst->default_nan_mode) { if (fpst->default_nan_mode) {
nan = float64_default_nan; nan = float64_default_nan(fpst);
} }
return nan; return nan;
} }
@ -400,7 +400,7 @@ float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
set_float_rounding_mode(float_round_to_zero, &tstat); set_float_rounding_mode(float_round_to_zero, &tstat);
set_float_exception_flags(0, &tstat); set_float_exception_flags(0, &tstat);
r = float64_to_float32(a, &tstat); r = float64_to_float32(a, &tstat);
r = float32_maybe_silence_nan(r); r = float32_maybe_silence_nan(r, fpst);
exflags = get_float_exception_flags(&tstat); exflags = get_float_exception_flags(&tstat);
if (exflags & float_flag_inexact) { if (exflags & float_flag_inexact) {
r = make_float32(float32_val(r) | 1); r = make_float32(float32_val(r) | 1);

View file

@ -7940,7 +7940,7 @@ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
/* ARM requires that S<->D conversion of any kind of NaN generates /* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1. * a quiet NaN by forcing the most significant frac bit to 1.
*/ */
return float64_maybe_silence_nan(r); return float64_maybe_silence_nan(r, &env->vfp.fp_status);
} }
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
@ -7949,7 +7949,7 @@ float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
/* ARM requires that S<->D conversion of any kind of NaN generates /* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1. * a quiet NaN by forcing the most significant frac bit to 1.
*/ */
return float32_maybe_silence_nan(r); return float32_maybe_silence_nan(r, &env->vfp.fp_status);
} }
/* VFP3 fixed point conversion. */ /* VFP3 fixed point conversion. */
@ -8048,7 +8048,7 @@ static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float32 r = float16_to_float32(make_float16(a), ieee, s); float32 r = float16_to_float32(make_float16(a), ieee, s);
if (ieee) { if (ieee) {
return float32_maybe_silence_nan(r); return float32_maybe_silence_nan(r, s);
} }
return r; return r;
} }
@ -8058,7 +8058,7 @@ static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float32_to_float16(a, ieee, s); float16 r = float32_to_float16(a, ieee, s);
if (ieee) { if (ieee) {
r = float16_maybe_silence_nan(r); r = float16_maybe_silence_nan(r, s);
} }
return float16_val(r); return float16_val(r);
} }
@ -8088,7 +8088,7 @@ float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
if (ieee) { if (ieee) {
return float64_maybe_silence_nan(r); return float64_maybe_silence_nan(r, &env->vfp.fp_status);
} }
return r; return r;
} }
@ -8098,7 +8098,7 @@ uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
if (ieee) { if (ieee) {
r = float16_maybe_silence_nan(r); r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
} }
return float16_val(r); return float16_val(r);
} }
@ -8251,12 +8251,12 @@ float32 HELPER(recpe_f32)(float32 input, void *fpstp)
if (float32_is_any_nan(f32)) { if (float32_is_any_nan(f32)) {
float32 nan = f32; float32 nan = f32;
if (float32_is_signaling_nan(f32)) { if (float32_is_signaling_nan(f32, fpst)) {
float_raise(float_flag_invalid, fpst); float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(f32); nan = float32_maybe_silence_nan(f32, fpst);
} }
if (fpst->default_nan_mode) { if (fpst->default_nan_mode) {
nan = float32_default_nan; nan = float32_default_nan(fpst);
} }
return nan; return nan;
} else if (float32_is_infinity(f32)) { } else if (float32_is_infinity(f32)) {
@ -8305,12 +8305,12 @@ float64 HELPER(recpe_f64)(float64 input, void *fpstp)
/* Deal with any special cases */ /* Deal with any special cases */
if (float64_is_any_nan(f64)) { if (float64_is_any_nan(f64)) {
float64 nan = f64; float64 nan = f64;
if (float64_is_signaling_nan(f64)) { if (float64_is_signaling_nan(f64, fpst)) {
float_raise(float_flag_invalid, fpst); float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(f64); nan = float64_maybe_silence_nan(f64, fpst);
} }
if (fpst->default_nan_mode) { if (fpst->default_nan_mode) {
nan = float64_default_nan; nan = float64_default_nan(fpst);
} }
return nan; return nan;
} else if (float64_is_infinity(f64)) { } else if (float64_is_infinity(f64)) {
@ -8414,12 +8414,12 @@ float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
if (float32_is_any_nan(f32)) { if (float32_is_any_nan(f32)) {
float32 nan = f32; float32 nan = f32;
if (float32_is_signaling_nan(f32)) { if (float32_is_signaling_nan(f32, s)) {
float_raise(float_flag_invalid, s); float_raise(float_flag_invalid, s);
nan = float32_maybe_silence_nan(f32); nan = float32_maybe_silence_nan(f32, s);
} }
if (s->default_nan_mode) { if (s->default_nan_mode) {
nan = float32_default_nan; nan = float32_default_nan(s);
} }
return nan; return nan;
} else if (float32_is_zero(f32)) { } else if (float32_is_zero(f32)) {
@ -8427,7 +8427,7 @@ float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
return float32_set_sign(float32_infinity, float32_is_neg(f32)); return float32_set_sign(float32_infinity, float32_is_neg(f32));
} else if (float32_is_neg(f32)) { } else if (float32_is_neg(f32)) {
float_raise(float_flag_invalid, s); float_raise(float_flag_invalid, s);
return float32_default_nan; return float32_default_nan(s);
} else if (float32_is_infinity(f32)) { } else if (float32_is_infinity(f32)) {
return float32_zero; return float32_zero;
} }
@ -8478,12 +8478,12 @@ float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
if (float64_is_any_nan(f64)) { if (float64_is_any_nan(f64)) {
float64 nan = f64; float64 nan = f64;
if (float64_is_signaling_nan(f64)) { if (float64_is_signaling_nan(f64, s)) {
float_raise(float_flag_invalid, s); float_raise(float_flag_invalid, s);
nan = float64_maybe_silence_nan(f64); nan = float64_maybe_silence_nan(f64, s);
} }
if (s->default_nan_mode) { if (s->default_nan_mode) {
nan = float64_default_nan; nan = float64_default_nan(s);
} }
return nan; return nan;
} else if (float64_is_zero(f64)) { } else if (float64_is_zero(f64)) {
@ -8491,7 +8491,7 @@ float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
return float64_set_sign(float64_infinity, float64_is_neg(f64)); return float64_set_sign(float64_infinity, float64_is_neg(f64));
} else if (float64_is_neg(f64)) { } else if (float64_is_neg(f64)) {
float_raise(float_flag_invalid, s); float_raise(float_flag_invalid, s);
return float64_default_nan; return float64_default_nan(s);
} else if (float64_is_infinity(f64)) { } else if (float64_is_infinity(f64)) {
return float64_zero; return float64_zero;
} }

View file

@ -472,10 +472,10 @@ float64 HELPER(sub_cmp_f64)(CPUM68KState *env, float64 a, float64 b)
/* ??? Should flush denormals to zero. */ /* ??? Should flush denormals to zero. */
float64 res; float64 res;
res = float64_sub(a, b, &env->fp_status); res = float64_sub(a, b, &env->fp_status);
if (float64_is_quiet_nan(res)) { if (float64_is_quiet_nan(res, &env->fp_status)) {
/* +/-inf compares equal against itself, but sub returns nan. */ /* +/-inf compares equal against itself, but sub returns nan. */
if (!float64_is_quiet_nan(a) if (!float64_is_quiet_nan(a, &env->fp_status)
&& !float64_is_quiet_nan(b)) { && !float64_is_quiet_nan(b, &env->fp_status)) {
res = float64_zero; res = float64_zero;
if (float64_lt_quiet(a, res, &env->fp_status)) if (float64_lt_quiet(a, res, &env->fp_status))
res = float64_chs(res); res = float64_chs(res);

View file

@ -815,6 +815,11 @@ void cpu_mips_soft_irq(CPUMIPSState *env, int irq, int level);
/* helper.c */ /* helper.c */
int mips_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw, int mips_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
int mmu_idx); int mmu_idx);
/* op_helper.c */
uint32_t float_class_s(uint32_t arg, float_status *fst);
uint64_t float_class_d(uint64_t arg, float_status *fst);
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra); void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra);
hwaddr cpu_mips_translate_address (CPUMIPSState *env, target_ulong address, hwaddr cpu_mips_translate_address (CPUMIPSState *env, target_ulong address,

View file

@ -221,8 +221,8 @@ DEF_HELPER_2(float_cvtw_d, i32, env, i64)
DEF_HELPER_3(float_addr_ps, i64, env, i64, i64) DEF_HELPER_3(float_addr_ps, i64, env, i64, i64)
DEF_HELPER_3(float_mulr_ps, i64, env, i64, i64) DEF_HELPER_3(float_mulr_ps, i64, env, i64, i64)
DEF_HELPER_FLAGS_1(float_class_s, TCG_CALL_NO_RWG_SE, i32, i32) DEF_HELPER_FLAGS_2(float_class_s, TCG_CALL_NO_RWG_SE, i32, env, i32)
DEF_HELPER_FLAGS_1(float_class_d, TCG_CALL_NO_RWG_SE, i64, i64) DEF_HELPER_FLAGS_2(float_class_d, TCG_CALL_NO_RWG_SE, i64, env, i64)
#define FOP_PROTO(op) \ #define FOP_PROTO(op) \
DEF_HELPER_4(float_ ## op ## _s, i32, env, i32, i32, i32) \ DEF_HELPER_4(float_ ## op ## _s, i32, env, i32, i32, i32) \

View file

@ -1494,11 +1494,11 @@ MSA_UNOP_DF(pcnt)
#define FLOAT_ONE32 make_float32(0x3f8 << 20) #define FLOAT_ONE32 make_float32(0x3f8 << 20)
#define FLOAT_ONE64 make_float64(0x3ffULL << 52) #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
#define FLOAT_SNAN16 (float16_default_nan ^ 0x0220) #define FLOAT_SNAN16(s) (float16_default_nan(s) ^ 0x0220)
/* 0x7c20 */ /* 0x7c20 */
#define FLOAT_SNAN32 (float32_default_nan ^ 0x00400020) #define FLOAT_SNAN32(s) (float32_default_nan(s) ^ 0x00400020)
/* 0x7f800020 */ /* 0x7f800020 */
#define FLOAT_SNAN64 (float64_default_nan ^ 0x0008000000000020ULL) #define FLOAT_SNAN64(s) (float64_default_nan(s) ^ 0x0008000000000020ULL)
/* 0x7ff0000000000020 */ /* 0x7ff0000000000020 */
static inline void clear_msacsr_cause(CPUMIPSState *env) static inline void clear_msacsr_cause(CPUMIPSState *env)
@ -1610,7 +1610,7 @@ static inline float16 float16_from_float32(int32_t a, flag ieee, float_status *s
float16 f_val; float16 f_val;
f_val = float32_to_float16((float32)a, ieee , status); f_val = float32_to_float16((float32)a, ieee , status);
f_val = float16_maybe_silence_nan(f_val); f_val = float16_maybe_silence_nan(f_val, status);
return a < 0 ? (f_val | (1 << 15)) : f_val; return a < 0 ? (f_val | (1 << 15)) : f_val;
} }
@ -1620,7 +1620,7 @@ static inline float32 float32_from_float64(int64_t a, float_status *status)
float32 f_val; float32 f_val;
f_val = float64_to_float32((float64)a, status); f_val = float64_to_float32((float64)a, status);
f_val = float32_maybe_silence_nan(f_val); f_val = float32_maybe_silence_nan(f_val, status);
return a < 0 ? (f_val | (1 << 31)) : f_val; return a < 0 ? (f_val | (1 << 31)) : f_val;
} }
@ -1630,7 +1630,7 @@ static inline float32 float32_from_float16(int16_t a, flag ieee, float_status *s
float32 f_val; float32 f_val;
f_val = float16_to_float32((float16)a, ieee, status); f_val = float16_to_float32((float16)a, ieee, status);
f_val = float32_maybe_silence_nan(f_val); f_val = float32_maybe_silence_nan(f_val, status);
return a < 0 ? (f_val | (1 << 31)) : f_val; return a < 0 ? (f_val | (1 << 31)) : f_val;
} }
@ -1640,7 +1640,7 @@ static inline float64 float64_from_float32(int32_t a, float_status *status)
float64 f_val; float64 f_val;
f_val = float32_to_float64((float64)a, status); f_val = float32_to_float64((float64)a, status);
f_val = float64_maybe_silence_nan(f_val); f_val = float64_maybe_silence_nan(f_val, status);
return a < 0 ? (f_val | (1ULL << 63)) : f_val; return a < 0 ? (f_val | (1ULL << 63)) : f_val;
} }
@ -1786,7 +1786,7 @@ static inline int32_t float64_to_q32(float64 a, float_status *status)
c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \ c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -2385,7 +2385,7 @@ void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -2521,7 +2521,7 @@ void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -2640,7 +2640,7 @@ void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -2691,7 +2691,7 @@ void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## XBITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## XBITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -2728,9 +2728,9 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
msa_move_v(pwd, pwx); msa_move_v(pwd, pwx);
} }
#define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS) \ #define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS, STATUS) \
!float ## BITS ## _is_any_nan(ARG1) \ !float ## BITS ## _is_any_nan(ARG1) \
&& float ## BITS ## _is_quiet_nan(ARG2) && float ## BITS ## _is_quiet_nan(ARG2, STATUS)
#define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \ #define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \
do { \ do { \
@ -2742,18 +2742,18 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, 0, 0); \ c = update_msacsr(env, 0, 0); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
#define FMAXMIN_A(F, G, X, _S, _T, BITS) \ #define FMAXMIN_A(F, G, X, _S, _T, BITS, STATUS) \
do { \ do { \
uint## BITS ##_t S = _S, T = _T; \ uint## BITS ##_t S = _S, T = _T; \
uint## BITS ##_t as, at, xs, xt, xd; \ uint## BITS ##_t as, at, xs, xt, xd; \
if (NUMBER_QNAN_PAIR(S, T, BITS)) { \ if (NUMBER_QNAN_PAIR(S, T, BITS, STATUS)) { \
T = S; \ T = S; \
} \ } \
else if (NUMBER_QNAN_PAIR(T, S, BITS)) { \ else if (NUMBER_QNAN_PAIR(T, S, BITS, STATUS)) { \
S = T; \ S = T; \
} \ } \
as = float## BITS ##_abs(S); \ as = float## BITS ##_abs(S); \
@ -2767,6 +2767,7 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd, void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
uint32_t ws, uint32_t wt) uint32_t ws, uint32_t wt)
{ {
float_status *status = &env->active_tc.msa_fp_status;
wr_t wx, *pwx = &wx; wr_t wx, *pwx = &wx;
wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@ -2778,9 +2779,9 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
switch (df) { switch (df) {
case DF_WORD: case DF_WORD:
for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) { if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32);
} else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) { } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32);
} else { } else {
MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32);
@ -2789,9 +2790,9 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
break; break;
case DF_DOUBLE: case DF_DOUBLE:
for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) { if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64);
} else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) { } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64);
} else { } else {
MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64);
@ -2810,6 +2811,7 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
uint32_t ws, uint32_t wt) uint32_t ws, uint32_t wt)
{ {
float_status *status = &env->active_tc.msa_fp_status;
wr_t wx, *pwx = &wx; wr_t wx, *pwx = &wx;
wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@ -2821,12 +2823,12 @@ void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
switch (df) { switch (df) {
case DF_WORD: case DF_WORD:
for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32); FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
} }
break; break;
case DF_DOUBLE: case DF_DOUBLE:
for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64); FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
} }
break; break;
default: default:
@ -2841,6 +2843,7 @@ void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd, void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
uint32_t ws, uint32_t wt) uint32_t ws, uint32_t wt)
{ {
float_status *status = &env->active_tc.msa_fp_status;
wr_t wx, *pwx = &wx; wr_t wx, *pwx = &wx;
wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@ -2852,9 +2855,9 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
switch (df) { switch (df) {
case DF_WORD: case DF_WORD:
for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) { if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32);
} else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) { } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32);
} else { } else {
MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32); MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32);
@ -2863,9 +2866,9 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
break; break;
case DF_DOUBLE: case DF_DOUBLE:
for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) { if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64);
} else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) { } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64);
} else { } else {
MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64); MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64);
@ -2884,6 +2887,7 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
uint32_t ws, uint32_t wt) uint32_t ws, uint32_t wt)
{ {
float_status *status = &env->active_tc.msa_fp_status;
wr_t wx, *pwx = &wx; wr_t wx, *pwx = &wx;
wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@ -2895,12 +2899,12 @@ void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
switch (df) { switch (df) {
case DF_WORD: case DF_WORD:
for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32); FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
} }
break; break;
case DF_DOUBLE: case DF_DOUBLE:
for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64); FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
} }
break; break;
default: default:
@ -2915,16 +2919,17 @@ void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df, void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
uint32_t wd, uint32_t ws) uint32_t wd, uint32_t ws)
{ {
float_status* status = &env->active_tc.msa_fp_status;
wr_t *pwd = &(env->active_fpu.fpr[wd].wr); wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
wr_t *pws = &(env->active_fpu.fpr[ws].wr); wr_t *pws = &(env->active_fpu.fpr[ws].wr);
if (df == DF_WORD) { if (df == DF_WORD) {
pwd->w[0] = helper_float_class_s(pws->w[0]); pwd->w[0] = float_class_s(pws->w[0], status);
pwd->w[1] = helper_float_class_s(pws->w[1]); pwd->w[1] = float_class_s(pws->w[1], status);
pwd->w[2] = helper_float_class_s(pws->w[2]); pwd->w[2] = float_class_s(pws->w[2], status);
pwd->w[3] = helper_float_class_s(pws->w[3]); pwd->w[3] = float_class_s(pws->w[3], status);
} else { } else {
pwd->d[0] = helper_float_class_d(pws->d[0]); pwd->d[0] = float_class_d(pws->d[0], status);
pwd->d[1] = helper_float_class_d(pws->d[1]); pwd->d[1] = float_class_d(pws->d[1], status);
} }
} }
@ -2938,7 +2943,7 @@ void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} else if (float ## BITS ## _is_any_nan(ARG)) { \ } else if (float ## BITS ## _is_any_nan(ARG)) { \
DEST = 0; \ DEST = 0; \
} \ } \
@ -3042,12 +3047,12 @@ void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
set_float_exception_flags(0, status); \ set_float_exception_flags(0, status); \
DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \ DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \
c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \ c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \
float ## BITS ## _is_quiet_nan(DEST) ? \ float ## BITS ## _is_quiet_nan(DEST, status) ? \
0 : RECIPROCAL_INEXACT, \ 0 : RECIPROCAL_INEXACT, \
IS_DENORMAL(DEST, BITS)); \ IS_DENORMAL(DEST, BITS)); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)
@ -3163,7 +3168,7 @@ void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
\ \
if (get_enabled_exceptions(env, c)) { \ if (get_enabled_exceptions(env, c)) { \
DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
} \ } \
} while (0) } while (0)

View file

@ -2644,7 +2644,7 @@ uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
uint64_t fdt2; uint64_t fdt2;
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
fdt2 = float64_maybe_silence_nan(fdt2); fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC()); update_fcr31(env, GETPC());
return fdt2; return fdt2;
} }
@ -2734,7 +2734,7 @@ uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
uint32_t fst2; uint32_t fst2;
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
fst2 = float32_maybe_silence_nan(fst2); fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC()); update_fcr31(env, GETPC());
return fst2; return fst2;
} }
@ -3184,11 +3184,12 @@ FLOAT_RINT(rint_d, 64)
#define FLOAT_CLASS_POSITIVE_ZERO 0x200 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
#define FLOAT_CLASS(name, bits) \ #define FLOAT_CLASS(name, bits) \
uint ## bits ## _t helper_float_ ## name (uint ## bits ## _t arg) \ uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
float_status *status) \
{ \ { \
if (float ## bits ## _is_signaling_nan(arg)) { \ if (float ## bits ## _is_signaling_nan(arg, status)) { \
return FLOAT_CLASS_SIGNALING_NAN; \ return FLOAT_CLASS_SIGNALING_NAN; \
} else if (float ## bits ## _is_quiet_nan(arg)) { \ } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
return FLOAT_CLASS_QUIET_NAN; \ return FLOAT_CLASS_QUIET_NAN; \
} else if (float ## bits ## _is_neg(arg)) { \ } else if (float ## bits ## _is_neg(arg)) { \
if (float ## bits ## _is_infinity(arg)) { \ if (float ## bits ## _is_infinity(arg)) { \
@ -3211,6 +3212,12 @@ uint ## bits ## _t helper_float_ ## name (uint ## bits ## _t arg) \
return FLOAT_CLASS_POSITIVE_NORMAL; \ return FLOAT_CLASS_POSITIVE_NORMAL; \
} \ } \
} \ } \
} \
\
uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
uint ## bits ## _t arg) \
{ \
return float_ ## name(arg, &env->active_fpu.fp_status); \
} }
FLOAT_CLASS(class_s, 32) FLOAT_CLASS(class_s, 32)

View file

@ -8889,6 +8889,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
int ft, int fs, int fd, int cc) int ft, int fs, int fd, int cc)
{ {
TCGContext *tcg_ctx = ctx->uc->tcg_ctx; TCGContext *tcg_ctx = ctx->uc->tcg_ctx;
TCGv *cpu_gpr = tcg_ctx->cpu_gpr; TCGv *cpu_gpr = tcg_ctx->cpu_gpr;
uint32_t func = ctx->opcode & 0x3f; uint32_t func = ctx->opcode & 0x3f;
switch (op1) { switch (op1) {
@ -9190,7 +9191,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
{ {
TCGv_i32 fp0 = tcg_temp_new_i32(tcg_ctx); TCGv_i32 fp0 = tcg_temp_new_i32(tcg_ctx);
gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp0, fs);
gen_helper_float_class_s(tcg_ctx, fp0, fp0); gen_helper_float_class_s(tcg_ctx, fp0, tcg_ctx->cpu_env, fp0);
gen_store_fpr32(ctx, fp0, fd); gen_store_fpr32(ctx, fp0, fd);
tcg_temp_free_i32(tcg_ctx, fp0); tcg_temp_free_i32(tcg_ctx, fp0);
} }
@ -9688,7 +9689,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
{ {
TCGv_i64 fp0 = tcg_temp_new_i64(tcg_ctx); TCGv_i64 fp0 = tcg_temp_new_i64(tcg_ctx);
gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp0, fs);
gen_helper_float_class_d(tcg_ctx, fp0, fp0); gen_helper_float_class_d(tcg_ctx, fp0, tcg_ctx->cpu_env, fp0);
gen_store_fpr64(ctx, fp0, fd); gen_store_fpr64(ctx, fp0, fd);
tcg_temp_free_i64(tcg_ctx, fp0); tcg_temp_free_i64(tcg_ctx, fp0);
} }
@ -20277,6 +20278,7 @@ void cpu_state_reset(CPUMIPSState *env)
env->CP0_PageGrain = env->cpu_model->CP0_PageGrain; env->CP0_PageGrain = env->cpu_model->CP0_PageGrain;
env->active_fpu.fcr0 = env->cpu_model->CP1_fcr0; env->active_fpu.fcr0 = env->cpu_model->CP1_fcr0;
env->active_fpu.fcr31 = env->cpu_model->CP1_fcr31; env->active_fpu.fcr31 = env->cpu_model->CP1_fcr31;
set_snan_bit_is_one(1, &env->active_fpu.fp_status);
env->msair = env->cpu_model->MSAIR; env->msair = env->cpu_model->MSAIR;
env->insn_flags = env->cpu_model->insn_flags; env->insn_flags = env->cpu_model->insn_flags;

View file

@ -1142,4 +1142,6 @@ static void msa_reset(CPUMIPSState *env)
/* clear float_status nan mode */ /* clear float_status nan mode */
set_default_nan_mode(0, &env->active_tc.msa_fp_status); set_default_nan_mode(0, &env->active_tc.msa_fp_status);
set_snan_bit_is_one(1, &env->active_tc.msa_fp_status);
} }