Haskell bindings

These Haskell bindings make large use of c2hs to generate much of the code, so
Unicorn's const_generator is not used.

The emulator is based on the Either monad transformer. The IO monad is used to
run the underlying Unicorn library, while the Either monad is used to handle
errors.

Instructions on how to build the bindings are located in
bindings/haskell/README.TXT. The same samples found in samples/ can be found
in bindings/haskell/samples. They should produce the same output, with slight
differences in their error handling and messaging.
This commit is contained in:
Adrian Herrera 2016-04-06 09:21:36 +10:00
parent affe94d5fe
commit 74aaf3b321
28 changed files with 2994 additions and 1 deletions

View file

@ -60,3 +60,4 @@ Ryan Hileman: Go binding
Antonio Parata: .NET binding
Jonathon Reinhart: C unit test
Sascha Schirra: Ruby binding
Adrian Herrera: Haskell binding

View file

@ -13,7 +13,7 @@ Unicorn offers some unparalleled features:
- Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC, and X86 (16, 32, 64-bit)
- Clean/simple/lightweight/intuitive architecture-neutral API
- Implemented in pure C language, with bindings for Ruby, Python, Java, MSVC, .NET, Go and Delphi/Free Pascal.
- Implemented in pure C language, with bindings for Ruby, Python, Java, MSVC, .NET, Go, Delphi/Free Pascal and Haskell.
- Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)
- High performance via Just-In-Time compilation
- Support for fine-grained instrumentation at various levels

View file

@ -8,6 +8,7 @@ The following bindings are contributed by community.
- .NET binding: by Antonio Parata.
- MSVC binding: by Zak Escano
- Ruby binding: by Sascha Schirra
- Haskell binding: by Adrian Herrera.
More bindings created & maintained externally by community are available as follows.

16
bindings/haskell/.gitignore vendored Normal file
View file

@ -0,0 +1,16 @@
dist
cabal-dev
*.o
*.hi
*.chi
*.chs.h
*.dyn_o
*.dyn_hi
.virtualenv
.hpc
.hsenv
.cabal-sandbox/
cabal.sandbox.config
*.prof
*.aux
*.hp

View file

@ -0,0 +1,21 @@
This documentation explains how to install Haskell binding for Unicorn
from source.
0. Install the core engine as dependency
Follow README in the root directory to compile & install the core.
On *nix, this can simply be done by (project root directory):
$ sudo ./make.sh install
1. Change directories into the Haskell bindings, build and install
$ cd bindings/haskell
$ cabal build
$ cabal install
If the build fails, try installing c2hs manually (cabal install c2hs) and make
sure that $HOME/.cabal/bin is on your PATH.

View file

@ -0,0 +1,2 @@
import Distribution.Simple
main = defaultMain

View file

@ -0,0 +1,133 @@
-- Sample code to demonstrate how to emulate ARM code
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.Arm as Arm
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
-- Code to be emulated
--
-- mov r0, #0x37; sub r1, r2, r3
armCode :: BS.ByteString
armCode = BS.pack [0x37, 0x00, 0xa0, 0xe3, 0x03, 0x10, 0x42, 0xe0]
-- sub sp, #0xc
thumbCode :: BS.ByteString
thumbCode = BS.pack [0x83, 0xb0]
-- Memory address where emulation starts
address :: Word64
address = 0x10000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
hookCode :: CodeHook ()
hookCode _ addr size _ =
putStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
testArm :: IO ()
testArm = do
putStrLn "Emulate ARM code"
result <- runEmulator $ do
-- Initialize emulator in ARM mode
uc <- open ArchArm [ModeArm]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address armCode
-- Initialize machine registers
regWrite uc Arm.R0 0x1234
regWrite uc Arm.R2 0x6789
regWrite uc Arm.R3 0x3333
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing one instruction at address with customized callback
codeHookAdd uc hookCode () address address
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength armCode
start uc address (address + codeLen) Nothing Nothing
-- Return the results
r0 <- regRead uc Arm.R0
r1 <- regRead uc Arm.R1
return (r0, r1)
case result of
Right (r0, r1) -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> R0 = 0x" ++ showHex r0
putStrLn $ ">>> R1 = 0x" ++ showHex r1
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
testThumb :: IO ()
testThumb = do
putStrLn "Emulate THUMB code"
result <- runEmulator $ do
-- Initialize emulator in ARM mode
uc <- open ArchArm [ModeThumb]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address thumbCode
-- Initialize machine registers
regWrite uc Arm.Sp 0x1234
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing one instruction at address with customized callback
codeHookAdd uc hookCode () address address
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength thumbCode
start uc address (address + codeLen) Nothing Nothing
-- Return the results
sp <- regRead uc Arm.Sp
return sp
case result of
Right sp -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> SP = 0x" ++ showHex sp
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
main :: IO ()
main = do
testArm
putStrLn "=========================="
testThumb

View file

@ -0,0 +1,85 @@
-- Sample code to demonstrate how to emulate ARM64 code
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.Arm64 as Arm64
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
-- Code to be emulated
--
-- add x11, x13, x15
armCode :: BS.ByteString
armCode = BS.pack [0xab, 0x01, 0x0f, 0x8b]
-- Memory address where emulation starts
address :: Word64
address = 0x10000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
hookCode :: CodeHook ()
hookCode _ addr size _ =
putStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
testArm64 :: IO ()
testArm64 = do
putStrLn "Emulate ARM64 code"
result <- runEmulator $ do
-- Initialize emulator in ARM mode
uc <- open ArchArm64 [ModeArm]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address armCode
-- Initialize machine registers
regWrite uc Arm64.X11 0x1234
regWrite uc Arm64.X13 0x6789
regWrite uc Arm64.X15 0x3333
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing one instruction at address with customized callback
codeHookAdd uc hookCode ()address address
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength armCode
start uc address (address + codeLen) Nothing Nothing
-- Return the results
x11 <- regRead uc Arm64.X11
return x11
case result of
Right x11 -> do
-- Now print out some registers
putStrLn $ ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> X11 = 0x" ++ showHex x11
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
main :: IO ()
main =
testArm64

View file

@ -0,0 +1,142 @@
-- Sample code to demonstrate how to emulate m68k code
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.M68k as M68k
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
-- Code to be emulated
--
-- movq #-19, %d3
m68kCode :: BS.ByteString
m68kCode = BS.pack [0x76, 0xed]
-- Memory address where emulation starts
address :: Word64
address = 0x10000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
hookCode :: CodeHook ()
hookCode _ addr size _ =
putStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
testM68k :: IO ()
testM68k = do
putStrLn "Emulate M68K code"
result <- runEmulator $ do
-- Initialize emulator in M68K mode
uc <- open ArchM68k [ModeBigEndian]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address m68kCode
-- Initialize machine registers
regWrite uc M68k.D0 0x0000
regWrite uc M68k.D1 0x0000
regWrite uc M68k.D2 0x0000
regWrite uc M68k.D3 0x0000
regWrite uc M68k.D4 0x0000
regWrite uc M68k.D5 0x0000
regWrite uc M68k.D6 0x0000
regWrite uc M68k.D7 0x0000
regWrite uc M68k.A0 0x0000
regWrite uc M68k.A1 0x0000
regWrite uc M68k.A2 0x0000
regWrite uc M68k.A3 0x0000
regWrite uc M68k.A4 0x0000
regWrite uc M68k.A5 0x0000
regWrite uc M68k.A6 0x0000
regWrite uc M68k.A7 0x0000
regWrite uc M68k.Pc 0x0000
regWrite uc M68k.Sr 0x0000
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instruction
codeHookAdd uc hookCode () 1 0
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength m68kCode
start uc address (address + codeLen) Nothing Nothing
-- Return the results
d0 <- regRead uc M68k.D0
d1 <- regRead uc M68k.D1
d2 <- regRead uc M68k.D2
d3 <- regRead uc M68k.D3
d4 <- regRead uc M68k.D4
d5 <- regRead uc M68k.D5
d6 <- regRead uc M68k.D6
d7 <- regRead uc M68k.D7
a0 <- regRead uc M68k.A0
a1 <- regRead uc M68k.A1
a2 <- regRead uc M68k.A2
a3 <- regRead uc M68k.A3
a4 <- regRead uc M68k.A4
a5 <- regRead uc M68k.A5
a6 <- regRead uc M68k.A6
a7 <- regRead uc M68k.A7
pc <- regRead uc M68k.Pc
sr <- regRead uc M68k.Sr
return (d0, d1, d2, d3, d4, d5, d6, d7,
a0, a1, a2, a3, a4, a5, a6, a7,
pc, sr)
case result of
Right (d0, d1, d2, d3, d4, d5, d6, d7,
a0, a1, a2, a3, a4, a5, a6, a7,
pc, sr) -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> A0 = 0x" ++ showHex a0 ++
"\t\t>>> D0 = 0x" ++ showHex d0
putStrLn $ ">>> A1 = 0x" ++ showHex a1 ++
"\t\t>>> D1 = 0x" ++ showHex d1
putStrLn $ ">>> A2 = 0x" ++ showHex a2 ++
"\t\t>>> D2 = 0x" ++ showHex d2
putStrLn $ ">>> A3 = 0x" ++ showHex a3 ++
"\t\t>>> D3 = 0x" ++ showHex d3
putStrLn $ ">>> A4 = 0x" ++ showHex a4 ++
"\t\t>>> D4 = 0x" ++ showHex d4
putStrLn $ ">>> A5 = 0x" ++ showHex a5 ++
"\t\t>>> D5 = 0x" ++ showHex d5
putStrLn $ ">>> A6 = 0x" ++ showHex a6 ++
"\t\t>>> D6 = 0x" ++ showHex d6
putStrLn $ ">>> A7 = 0x" ++ showHex a7 ++
"\t\t>>> D7 = 0x" ++ showHex d7
putStrLn $ ">>> PC = 0x" ++ showHex pc
putStrLn $ ">>> SR = 0x" ++ showHex sr
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
main :: IO ()
main =
testM68k

View file

@ -0,0 +1,129 @@
-- Sample code to demonstrate how to emulate Mips code (big endian)
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.Mips as Mips
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
-- Code to be emulated
--
-- ori $at, $at, 0x3456
mipsCodeEb :: BS.ByteString
mipsCodeEb = BS.pack [0x34, 0x21, 0x34, 0x56]
-- ori $at, $at, 0x3456
mipsCodeEl :: BS.ByteString
mipsCodeEl = BS.pack [0x56, 0x34, 0x21, 0x34]
-- Memory address where emulation starts
address :: Word64
address = 0x10000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
hookCode :: CodeHook ()
hookCode _ addr size _ =
putStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
testMipsEb :: IO ()
testMipsEb = do
putStrLn "Emulate MIPS code (big-endian)"
result <- runEmulator $ do
-- Initialize emulator in MIPS mode
uc <- open ArchMips [ModeMips32, ModeBigEndian]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address mipsCodeEb
-- Initialise machine registers
regWrite uc Mips.Reg1 0x6789
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing one instruction at address with customized callback
codeHookAdd uc hookCode () address address
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength mipsCodeEb
start uc address (address + codeLen) Nothing Nothing
-- Return the results
r1 <- regRead uc Mips.Reg1
return r1
case result of
Right r1 -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> R1 = 0x" ++ showHex r1
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
testMipsEl :: IO ()
testMipsEl = do
putStrLn "==========================="
putStrLn "Emulate MIPS code (little-endian)"
result <- runEmulator $ do
-- Initialize emulator in MIPS mode
uc <- open ArchMips [ModeMips32, ModeLittleEndian]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address mipsCodeEl
-- Initialize machine registers
regWrite uc Mips.Reg1 0x6789
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing one instruction at address with customized callback
codeHookAdd uc hookCode () address address
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength mipsCodeEl
start uc address (address + codeLen) Nothing Nothing
-- Return the results
r1 <- regRead uc Mips.Reg1
return r1
case result of
Right r1 -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> R1 = 0x" ++ showHex r1
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
main :: IO ()
main = do
testMipsEb
testMipsEl

View file

@ -0,0 +1,85 @@
-- Sample code to demonstrate how to emulate Sparc code
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.Sparc as Sparc
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
-- Code to be emulated
--
-- add %g1, %g2, %g3
sparcCode :: BS.ByteString
sparcCode = BS.pack [0x86, 0x00, 0x40, 0x02]
-- Memory address where emulation starts
address :: Word64
address = 0x10000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
hookCode :: CodeHook ()
hookCode _ addr size _ =
putStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
testSparc :: IO ()
testSparc = do
putStrLn "Emulate SPARC code"
result <- runEmulator $ do
-- Initialize emulator in Sparc mode
uc <- open ArchSparc [ModeSparc32, ModeBigEndian]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address sparcCode
-- Initialize machine registers
regWrite uc Sparc.G1 0x1230
regWrite uc Sparc.G2 0x6789
regWrite uc Sparc.G3 0x5555
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instructions with customized callback
codeHookAdd uc hookCode () 1 0
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength sparcCode
start uc address (address + codeLen) Nothing Nothing
-- Return results
g3 <- regRead uc Sparc.G3
return g3
case result of
Right g3 -> do
-- Now print out some registers
putStrLn ">>> Emulation done. Below is the CPU context"
putStrLn $ ">>> G3 = 0x" ++ showHex g3
Left err -> putStrLn $ "Failed with error: " ++ show err ++ " (" ++
strerror err ++ ")"
main :: IO ()
main =
testSparc

View file

@ -0,0 +1,675 @@
-- Sample code to demonstrate how to emulate X86 code
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.X86 as X86
import Control.Monad.Trans.Class (lift)
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
import System.Environment
-- Code to be emulated
--
-- inc ecx; dec edx
x86Code32 :: BS.ByteString
x86Code32 = BS.pack [0x41, 0x4a]
-- jmp 4; nop; nop; nop; nop; nop; nop
x86Code32Jump :: BS.ByteString
x86Code32Jump = BS.pack [0xeb, 0x02, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90]
-- inc ecx; dec edx; jmp self-loop
x86Code32Loop :: BS.ByteString
x86Code32Loop = BS.pack [0x41, 0x4a, 0xeb, 0xfe]
-- mov [0xaaaaaaaa], ecx; inc ecx; dec edx
x86Code32MemWrite :: BS.ByteString
x86Code32MemWrite = BS.pack [0x89, 0x0d, 0xaa, 0xaa, 0xaa, 0xaa, 0x41, 0x4a]
-- mov ecx, [0xaaaaaaaa]; inc ecx; dec edx
x86Code32MemRead :: BS.ByteString
x86Code32MemRead = BS.pack [0x8b, 0x0d, 0xaa, 0xaa, 0xaa, 0xaa, 0x41, 0x4a]
-- jmp ouside; inc ecx; dec edx
x86Code32JmpInvalid :: BS.ByteString
x86Code32JmpInvalid = BS.pack [0xe9, 0xe9, 0xee, 0xee, 0xee, 0x41, 0x4a]
-- inc ecx; in al, 0x3f; dec edx; out 0x46, al; inc ebx
x86Code32InOut :: BS.ByteString
x86Code32InOut = BS.pack [0x41, 0xe4, 0x3f, 0x4a, 0xe6, 0x46, 0x43]
x86Code64 :: BS.ByteString
x86Code64 = BS.pack [0x41, 0xbc, 0x3b, 0xb0, 0x28, 0x2a, 0x49, 0x0f, 0xc9,
0x90, 0x4d, 0x0f, 0xad, 0xcf, 0x49, 0x87, 0xfd, 0x90,
0x48, 0x81, 0xd2, 0x8a, 0xce, 0x77, 0x35, 0x48, 0xf7,
0xd9, 0x4d, 0x29, 0xf4, 0x49, 0x81, 0xc9, 0xf6, 0x8a,
0xc6, 0x53, 0x4d, 0x87, 0xed, 0x48, 0x0f, 0xad, 0xd2,
0x49, 0xf7, 0xd4, 0x48, 0xf7, 0xe1, 0x4d, 0x19, 0xc5,
0x4d, 0x89, 0xc5, 0x48, 0xf7, 0xd6, 0x41, 0xb8, 0x4f,
0x8d, 0x6b, 0x59, 0x4d, 0x87, 0xd0, 0x68, 0x6a, 0x1e,
0x09, 0x3c, 0x59]
-- add byte ptr [bx + si], al
x86Code16 :: BS.ByteString
x86Code16 = BS.pack [0x00, 0x00]
-- SYSCALL
x86Code64Syscall :: BS.ByteString
x86Code64Syscall = BS.pack [0x0f, 0x05]
-- Memory address where emulation starts
address :: Word64
address = 0x1000000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex i =
N.showHex (fromIntegral i :: Word64) ""
-- Pretty-print byte string as hex
showHexBS :: BS.ByteString -> String
showHexBS =
concatMap (flip N.showHex "") . reverse . BS.unpack
-- Write a string (with a newline character) to standard output in the emulator
emuPutStrLn :: String -> Emulator ()
emuPutStrLn =
lift . putStrLn
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
-- Callback for tracing basic blocks
hookBlock :: BlockHook ()
hookBlock _ addr size _ =
putStrLn $ ">>> Tracing basic block at 0x" ++ showHex addr ++
", block size = 0x" ++ (maybe "0" showHex size)
-- Callback for tracing instruction
hookCode :: CodeHook ()
hookCode uc addr size _ = do
runEmulator $ do
emuPutStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
eflags <- regRead uc X86.Eflags
emuPutStrLn $ ">>> --- EFLAGS is 0x" ++ showHex eflags
return ()
-- Callback for tracing instruction
hookCode64 :: CodeHook ()
hookCode64 uc addr size _ = do
runEmulator $ do
rip <- regRead uc X86.Rip
emuPutStrLn $ ">>> Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
emuPutStrLn $ ">>> RIP is 0x" ++ showHex rip
return ()
-- Callback for tracing memory access (READ or WRITE)
hookMemInvalid :: MemoryEventHook ()
hookMemInvalid uc MemWriteUnmapped addr size (Just value) _ = do
runEmulator $ do
emuPutStrLn $ ">>> Missing memory is being WRITE at 0x" ++
showHex addr ++ ", data size = " ++ show size ++
", data value = 0x" ++ showHex value
memMap uc 0xaaaa0000 (2 * 1024 * 1024) [ProtAll]
return True
hookMemInvalid _ _ _ _ _ _ =
return False
hookMem64 :: MemoryHook ()
hookMem64 _ MemRead addr size _ _ =
putStrLn $ ">>> Memory is being READ at 0x" ++ showHex addr ++
", data size = " ++ show size
hookMem64 _ MemWrite addr size (Just value) _ =
putStrLn $ ">>> Memory is being WRITE at 0x" ++ showHex addr ++
", data size = " ++ show size ++ ", data value = 0x" ++
showHex value
-- Callback for IN instruction (X86)
-- This returns the data read from the port
hookIn :: InHook ()
hookIn uc port size _ = do
result <- runEmulator $ do
eip <- regRead uc X86.Eip
emuPutStrLn $ "--- reading from port 0x" ++ showHex port ++
", size: " ++ show size ++ ", address: 0x" ++ showHex eip
case size of
-- Read 1 byte to AL
1 -> return 0xf1
-- Read 2 byte to AX
2 -> return 0xf2
-- Read 4 byte to EAX
4 -> return 0xf4
-- Should never reach this
_ -> return 0
case result of
Right r -> return r
Left _ -> return 0
-- Callback for OUT instruction (X86)
hookOut :: OutHook ()
hookOut uc port size value _ = do
runEmulator $ do
eip <- regRead uc X86.Eip
emuPutStrLn $ "--- writing to port 0x" ++ showHex port ++ ", size: " ++
show size ++ ", value: 0x" ++ showHex value ++
", address: 0x" ++ showHex eip
-- Confirm that value is indeed the value of AL/AX/EAX
case size of
1 -> do
tmp <- regRead uc X86.Al
emuPutStrLn $ "--- register value = 0x" ++ showHex tmp
2 -> do
tmp <- regRead uc X86.Ax
emuPutStrLn $ "--- register value = 0x" ++ showHex tmp
4 -> do
tmp <- regRead uc X86.Eax
emuPutStrLn $ "--- register value = 0x" ++ showHex tmp
-- Should never reach this
_ -> return ()
return ()
-- Callback for SYSCALL instruction (X86)
hookSyscall :: SyscallHook ()
hookSyscall uc _ = do
runEmulator $ do
rax <- regRead uc X86.Rax
if rax == 0x100 then
regWrite uc X86.Rax 0x200
else
emuPutStrLn $ "ERROR: was not expecting rax=0x" ++ showHex rax ++
" in syscall"
return ()
testI386 :: IO ()
testI386 = do
putStrLn "Emulate i386 code"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32
-- Initialize machine registers
regWrite uc X86.Ecx 0x1234
regWrite uc X86.Edx 0x7890
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instruction by having @begin > @end
codeHookAdd uc hookCode () 1 0
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
ecx <- regRead uc X86.Ecx
edx <- regRead uc X86.Edx
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
emuPutStrLn $ ">>> EDX = 0x" ++ showHex edx
-- Read from memory
tmp <- memRead uc address 4
emuPutStrLn $ ">>> Read 4 bytes from [0x" ++ showHex address ++
"] = 0x" ++ showHexBS tmp
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
testI386Jump :: IO ()
testI386Jump = do
putStrLn "==================================="
putStrLn "Emulate i386 code with jump"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32Jump
-- Tracing 1 basic block with customized callback
blockHookAdd uc hookBlock () address address
-- Tracing 1 instruction at address
codeHookAdd uc hookCode () address address
-- Emulate machine code ininfinite time
let codeLen = codeLength x86Code32Jump
start uc address (address + codeLen) Nothing Nothing
emuPutStrLn ">>> Emulation done. Below is the CPU context"
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
-- Emulate code that loop forever
testI386Loop :: IO ()
testI386Loop = do
putStrLn "==================================="
putStrLn "Emulate i386 code that loop forever"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated in memory
memWrite uc address x86Code32Loop
-- Initialize machine registers
regWrite uc X86.Ecx 0x1234
regWrite uc X86.Edx 0x7890
-- Emulate machine code in 2 seconds, so we can quit even if the code
-- loops
let codeLen = codeLength x86Code32Loop
start uc address (address + codeLen) (Just $ 2 * 1000000) Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
ecx <- regRead uc X86.Ecx
edx <- regRead uc X86.Edx
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
emuPutStrLn $ ">>> EDX = 0x" ++ showHex edx
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
-- Emulate code that read invalid memory
testI386InvalidMemRead :: IO ()
testI386InvalidMemRead = do
putStrLn "==================================="
putStrLn "Emulate i386 code that read from invalid memory"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32MemRead
-- Initialize machine registers
regWrite uc X86.Ecx 0x1234
regWrite uc X86.Edx 0x7890
-- Tracing all basic block with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instructions by having @beegin > @end
codeHookAdd uc hookCode () 1 0
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32MemRead
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
ecx <- regRead uc X86.Ecx
edx <- regRead uc X86.Edx
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
emuPutStrLn $ ">>> EDX = 0x" ++ showHex edx
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
-- Emulate code that write invalid memory
testI386InvalidMemWrite :: IO ()
testI386InvalidMemWrite = do
putStrLn "==================================="
putStrLn "Emulate i386 code that write to invalid memory"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32MemWrite
-- Initialize machine registers
regWrite uc X86.Ecx 0x1234
regWrite uc X86.Edx 0x7890
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instruction by having @begin > @end
codeHookAdd uc hookCode () 1 0
-- Intercept invalid memory events
memoryEventHookAdd uc HookMemReadUnmapped hookMemInvalid () 1 0
memoryEventHookAdd uc HookMemWriteUnmapped hookMemInvalid () 1 0
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32MemWrite
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
ecx <- regRead uc X86.Ecx
edx <- regRead uc X86.Edx
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
emuPutStrLn $ ">>> EDX = 0x" ++ showHex edx
-- Read from memory
tmp <- memRead uc 0xaaaaaaaa 4
emuPutStrLn $ ">>> Read 4 bytes from [0x" ++ showHex 0xaaaaaaaa ++
"] = 0x" ++ showHexBS tmp
tmp <- memRead uc 0xffffffaa 4
emuPutStrLn $ ">>> Read 4 bytes from [0x" ++ showHex 0xffffffaa ++
"] = 0x" ++ showHexBS tmp
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
-- Emulate code that jump to invalid memory
testI386JumpInvalid :: IO ()
testI386JumpInvalid = do
putStrLn "==================================="
putStrLn "Emulate i386 code that jumps to invalid memory"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32JmpInvalid
-- Initialize machine registers
regWrite uc X86.Ecx 0x1234
regWrite uc X86.Edx 0x7890
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instructions by having @begin > @end
codeHookAdd uc hookCode () 1 0
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32JmpInvalid
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
ecx <- regRead uc X86.Ecx
edx <- regRead uc X86.Edx
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
emuPutStrLn $ ">>> EDX = 0x" ++ showHex edx
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
testI386InOut :: IO ()
testI386InOut = do
putStrLn "==================================="
putStrLn "Emulate i386 code with IN/OUT instructions"
result <- runEmulator $ do
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32InOut
-- Initialize machine registers
regWrite uc X86.Eax 0x1234
regWrite uc X86.Ecx 0x6789
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instructions
codeHookAdd uc hookCode () 1 0
-- uc IN instruction
inHookAdd uc hookIn () 1 0
-- uc OUT instruction
outHookAdd uc hookOut () 1 0
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32InOut
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
eax <- regRead uc X86.Eax
ecx <- regRead uc X86.Ecx
emuPutStrLn $ ">>> EAX = 0x" ++ showHex eax
emuPutStrLn $ ">>> ECX = 0x" ++ showHex ecx
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
testX8664 :: IO ()
testX8664 = do
putStrLn "Emulate x86_64 code"
result <- runEmulator $ do
-- Initialize emualator in X86-64bit mode
uc <- open ArchX86 [Mode64]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code64
-- Initialize machine registers
regWrite uc X86.Rsp (fromIntegral address + 0x200000)
regWrite uc X86.Rax 0x71f3029efd49d41d
regWrite uc X86.Rbx 0xd87b45277f133ddb
regWrite uc X86.Rcx 0xab40d1ffd8afc461
regWrite uc X86.Rdx 0x919317b4a733f01
regWrite uc X86.Rsi 0x4c24e753a17ea358
regWrite uc X86.Rdi 0xe509a57d2571ce96
regWrite uc X86.R8 0xea5b108cc2b9ab1f
regWrite uc X86.R9 0x19ec097c8eb618c1
regWrite uc X86.R10 0xec45774f00c5f682
regWrite uc X86.R11 0xe17e9dbec8c074aa
regWrite uc X86.R12 0x80f86a8dc0f6d457
regWrite uc X86.R13 0x48288ca5671c5492
regWrite uc X86.R14 0x595f72f6e4017f6e
regWrite uc X86.R15 0x1efd97aea331cccc
-- Tracing all basic blocks with customized callback
blockHookAdd uc hookBlock () 1 0
-- Tracing all instructions in the range [address, address+20]
codeHookAdd uc hookCode64 () address (address + 20)
-- Tracing all memory WRITE access (with @begin > @end)
memoryHookAdd uc HookMemWrite hookMem64 () 1 0
-- Tracing all memory READ access (with @begin > @end)
memoryHookAdd uc HookMemRead hookMem64 () 1 0
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength x86Code64
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
rax <- regRead uc X86.Rax
rbx <- regRead uc X86.Rbx
rcx <- regRead uc X86.Rcx
rdx <- regRead uc X86.Rdx
rsi <- regRead uc X86.Rsi
rdi <- regRead uc X86.Rdi
r8 <- regRead uc X86.R8
r9 <- regRead uc X86.R9
r10 <- regRead uc X86.R10
r11 <- regRead uc X86.R11
r12 <- regRead uc X86.R12
r13 <- regRead uc X86.R13
r14 <- regRead uc X86.R14
r15 <- regRead uc X86.R15
emuPutStrLn $ ">>> RAX = 0x" ++ showHex rax
emuPutStrLn $ ">>> RBX = 0x" ++ showHex rbx
emuPutStrLn $ ">>> RCX = 0x" ++ showHex rcx
emuPutStrLn $ ">>> RDX = 0x" ++ showHex rdx
emuPutStrLn $ ">>> RSI = 0x" ++ showHex rsi
emuPutStrLn $ ">>> RDI = 0x" ++ showHex rdi
emuPutStrLn $ ">>> R8 = 0x" ++ showHex r8
emuPutStrLn $ ">>> R9 = 0x" ++ showHex r9
emuPutStrLn $ ">>> R10 = 0x" ++ showHex r10
emuPutStrLn $ ">>> R11 = 0x" ++ showHex r11
emuPutStrLn $ ">>> R12 = 0x" ++ showHex r12
emuPutStrLn $ ">>> R13 = 0x" ++ showHex r13
emuPutStrLn $ ">>> R14 = 0x" ++ showHex r14
emuPutStrLn $ ">>> R15 = 0x" ++ showHex r15
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
testX8664Syscall :: IO ()
testX8664Syscall = do
putStrLn "==================================="
putStrLn "Emulate x86_64 code with 'syscall' instruction"
result <- runEmulator $ do
-- Initialize emulator in X86-64bit mode
uc <- open ArchX86 [Mode64]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code64Syscall
-- Hook interrupts for syscall
syscallHookAdd uc hookSyscall () 1 0
-- Initialize machine registers
regWrite uc X86.Rax 0x100
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all code
let codeLen = codeLength x86Code64Syscall
start uc address (address + codeLen) Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
rax <- regRead uc X86.Rax
emuPutStrLn $ ">>> RAX = 0x" ++ showHex rax
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
testX8616 :: IO ()
testX8616 = do
putStrLn "Emulate x86 16-bit code"
result <- runEmulator $ do
-- Initialize emulator in X86-16bit mode
uc <- open ArchX86 [Mode16]
-- Map 8KB memory for this emulation
memMap uc 0 (8 * 1024) [ProtAll]
-- Write machine code to be emulated in memory
memWrite uc 0 x86Code16
-- Initialize machine registers
regWrite uc X86.Eax 7
regWrite uc X86.Ebx 5
regWrite uc X86.Esi 6
-- Emulate machine code in infinite time (last param = Nothing), or
-- when finishing all the code
let codeLen = codeLength x86Code16
start uc 0 codeLen Nothing Nothing
-- Now print out some registers
emuPutStrLn ">>> Emulation done. Below is the CPU context"
-- Read from memory
tmp <- memRead uc 11 1
emuPutStrLn $ ">>> Read 1 bytes from [0x" ++ showHex 11 ++
"] = 0x" ++ showHexBS tmp
case result of
Right _ -> return ()
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
main :: IO ()
main = do
progName <- getProgName
args <- getArgs
case args of
["-32"] -> do
testI386
testI386InOut
testI386Jump
testI386Loop
testI386InvalidMemRead
testI386InvalidMemWrite
testI386JumpInvalid
["-64"] -> do
testX8664
testX8664Syscall
["-16"] -> testX8616
-- Test memleak
["-0"] -> testI386
_ -> putStrLn $ "Syntax: " ++ progName ++ " <-16|-32|-64>"

View file

@ -0,0 +1,153 @@
-- Sample code to trace code with Linux code with syscall
import Unicorn
import Unicorn.Hook
import qualified Unicorn.CPU.X86 as X86
import Control.Monad.Trans.Class (lift)
import qualified Data.ByteString as BS
import Data.Word
import qualified Numeric as N (showHex)
import System.Environment
-- Code to be emulated
x86Code32 :: BS.ByteString
x86Code32 = BS.pack [0xeb, 0x19, 0x31, 0xc0, 0x31, 0xdb, 0x31, 0xd2, 0x31,
0xc9, 0xb0, 0x04, 0xb3, 0x01, 0x59, 0xb2, 0x05, 0xcd,
0x80, 0x31, 0xc0, 0xb0, 0x01, 0x31, 0xdb, 0xcd, 0x80,
0xe8, 0xe2, 0xff, 0xff, 0xff, 0x68, 0x65, 0x6c, 0x6c,
0x6f]
x86Code32Self :: BS.ByteString
x86Code32Self = BS.pack [0xeb, 0x1c, 0x5a, 0x89, 0xd6, 0x8b, 0x02, 0x66, 0x3d,
0xca, 0x7d, 0x75, 0x06, 0x66, 0x05, 0x03, 0x03, 0x89,
0x02, 0xfe, 0xc2, 0x3d, 0x41, 0x41, 0x41, 0x41, 0x75,
0xe9, 0xff, 0xe6, 0xe8, 0xdf, 0xff, 0xff, 0xff, 0x31,
0xd2, 0x6a, 0x0b, 0x58, 0x99, 0x52, 0x68, 0x2f, 0x2f,
0x73, 0x68, 0x68, 0x2f, 0x62, 0x69, 0x6e, 0x89, 0xe3,
0x52, 0x53, 0x89, 0xe1, 0xca, 0x7d, 0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41]
-- Memory address where emulation starts
address :: Word64
address = 0x1000000
-- Pretty-print integral as hex
showHex :: (Integral a, Show a) => a -> String
showHex =
flip N.showHex ""
-- Pretty-print byte string as hex
showHexBS :: BS.ByteString -> String
showHexBS =
concatMap (flip N.showHex " ") . BS.unpack
-- Write a string (with a newline character) to standard output in the emulator
emuPutStrLn :: String -> Emulator ()
emuPutStrLn =
lift . putStrLn
-- Calculate code length
codeLength :: Num a => BS.ByteString -> a
codeLength =
fromIntegral . BS.length
-- Callback for tracing instructions
hookCode :: CodeHook ()
hookCode uc addr size _ = do
runEmulator $ do
emuPutStrLn $ "Tracing instruction at 0x" ++ showHex addr ++
", instruction size = 0x" ++ (maybe "0" showHex size)
eip <- regRead uc X86.Eip
tmp <- memRead uc addr (maybe 0 id size)
emuPutStrLn $ "*** EIP = " ++ showHex eip ++ " ***: " ++ showHexBS tmp
return ()
-- Callback for handling interrupts
-- ref: http://syscalls.kernelgrok.com
hookIntr :: InterruptHook ()
hookIntr uc intno _
| intno == 0x80 = do
runEmulator $ do
eax <- regRead uc X86.Eax
eip <- regRead uc X86.Eip
case eax of
-- sys_exit
1 -> do
emuPutStrLn $ ">>> 0x" ++ showHex eip ++
": interrupt 0x" ++ showHex intno ++
", SYS_EXIT. quit!\n"
stop uc
-- sys_write
4 -> do
-- ECX = buffer address
ecx <- regRead uc X86.Ecx
-- EDX = buffer size
edx <- regRead uc X86.Edx
-- Read the buffer in
buffer <- memRead uc (fromIntegral ecx) (fromIntegral edx)
err <- errno uc
if err == ErrOk then
emuPutStrLn $ ">>> 0x" ++ showHex eip ++
": interrupt 0x" ++ showHex intno ++
", SYS_WRITE. buffer = 0x" ++
showHex ecx ++ ", size = " ++
show edx ++ ", content = " ++
showHexBS buffer
else
emuPutStrLn $ ">>> 0x" ++ showHex eip ++
": interrupt 0x" ++ showHex intno ++
", SYS_WRITE. buffer = 0x" ++
showHex ecx ++ ", size = " ++ show edx ++
" (cannot get content)"
_ -> emuPutStrLn $ ">>> 0x" ++ showHex eip ++
": interrupt 0x" ++ showHex intno ++
", EAX = 0x" ++ showHex eax
return ()
| otherwise = return ()
testI386 :: IO ()
testI386 = do
result <- runEmulator $ do
emuPutStrLn "Emulate i386 code"
-- Initialize emulator in X86-32bit mode
uc <- open ArchX86 [Mode32]
-- Map 2MB memory for this emulation
memMap uc address (2 * 1024 * 1024) [ProtAll]
-- Write machine code to be emulated to memory
memWrite uc address x86Code32Self
-- Initialize machine registers
regWrite uc X86.Esp (fromIntegral address + 0x200000)
-- Tracing all instructions by having @begin > @end
codeHookAdd uc hookCode () 1 0
-- Handle interrupt ourself
interruptHookAdd uc hookIntr () 1 0
emuPutStrLn "\n>>> Start tracing this Linux code"
-- Emulate machine code in infinite time
let codeLen = codeLength x86Code32Self
start uc address (address + codeLen) Nothing Nothing
case result of
Right _ -> putStrLn "\n>>> Emulation done."
Left err -> putStrLn $ "Failed with error " ++ show err ++ ": " ++
strerror err
main :: IO ()
main = do
progName <- getProgName
args <- getArgs
case args of
["-32"] -> testI386
_ -> putStrLn $ "Syntax: " ++ progName ++ " <-32|-64>"

View file

@ -0,0 +1,284 @@
{-|
Module : Unicorn
Description : The Unicorn CPU emulator.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Unicorn is a lightweight, multi-platform, multi-architecture CPU emulator
framework based on QEMU.
Further information is available at <http://www.unicorn-engine.org>.
-}
module Unicorn (
-- * Emulator control
Emulator,
Engine,
Architecture(..),
Mode(..),
QueryType(..),
runEmulator,
open,
query,
start,
stop,
-- * Register operations
regWrite,
regRead,
-- * Memory operations
MemoryPermission(..),
MemoryRegion(..),
memWrite,
memRead,
memMap,
memUnmap,
memProtect,
memRegions,
-- * Error handling
Error(..),
errno,
strerror,
-- * Misc.
version,
) where
import Control.Monad (liftM)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Either (hoistEither, left, right, runEitherT)
import Foreign
import Prelude hiding (until)
import Data.ByteString (ByteString, pack)
import Unicorn.Internal.Core
import Unicorn.Internal.Unicorn
-------------------------------------------------------------------------------
-- Emulator control
-------------------------------------------------------------------------------
-- | Run the Unicorn emulator and return a result on success, or an 'Error' on
-- failure.
runEmulator :: Emulator a -- ^ The emulation code to execute
-> IO (Either Error a) -- ^ A result on success, or an 'Error' on
-- failure
runEmulator =
runEitherT
-- | Create a new instance of the Unicorn engine.
open :: Architecture -- ^ CPU architecture
-> [Mode] -- ^ CPU hardware mode
-> Emulator Engine -- ^ A 'Unicorn' engine on success, or an 'Error' on
-- failure
open arch mode = do
(err, ucPtr) <- lift $ ucOpen arch mode
if err == ErrOk then
-- Return a pointer to the unicorn engine if ucOpen completed
-- successfully
lift $ mkEngine ucPtr
else
-- Otherwise return the error
left err
-- | Query internal status of the Unicorn engine.
query :: Engine -- ^ 'Unicorn' engine handle
-> QueryType -- ^ Query type
-> Emulator Int -- ^ The result of the query
query uc queryType = do
(err, result) <- lift $ ucQuery uc queryType
if err == ErrOk then
right result
else
left err
-- | Emulate machine code for a specific duration of time.
start :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Address where emulation starts
-> Word64 -- ^ Address where emulation stops (i.e. when this
-- address is hit)
-> Maybe Int -- ^ Optional duration to emulate code (in
-- microseconds).
-- If 'Nothing' is provided, continue to emulate
-- until the code is finished
-> Maybe Int -- ^ Optional number of instructions to emulate. If
-- 'Nothing' is provided, emulate all the code
-- available, until the code is finished
-> Emulator () -- ^ An 'Error' on failure
start uc begin until timeout count = do
err <- lift $ ucEmuStart uc begin until (maybeZ timeout) (maybeZ count)
if err == ErrOk then
right ()
else
left err
where maybeZ = maybe 0 id
-- | Stop emulation (which was started by 'start').
-- This is typically called from callback functions registered by tracing APIs.
--
-- NOTE: For now, this will stop execution only after the current block.
stop :: Engine -- ^ 'Unicorn' engine handle
-> Emulator () -- ^ An 'Error' on failure
stop uc = do
err <- lift $ ucEmuStop uc
if err == ErrOk then
right ()
else
left err
-------------------------------------------------------------------------------
-- Register operations
-------------------------------------------------------------------------------
-- | Write to register.
regWrite :: Reg r =>
Engine -- ^ 'Unicorn' engine handle
-> r -- ^ Register ID to write to
-> Int64 -- ^ Value to write to register
-> Emulator () -- ^ An 'Error' on failure
regWrite uc regId value = do
err <- lift . alloca $ \ptr -> do
poke ptr value
ucRegWrite uc regId ptr
if err == ErrOk then
right ()
else
left err
-- | Read register value.
regRead :: Reg r =>
Engine -- ^ 'Unicorn' engine handle
-> r -- ^ Register ID to read from
-> Emulator Int64 -- ^ The value read from the register on success,
-- or an 'Error' on failure
regRead uc regId = do
(err, val) <- lift $ ucRegRead uc regId
if err == ErrOk then
right val
else
left err
-------------------------------------------------------------------------------
-- Memory operations
-------------------------------------------------------------------------------
-- | Write to memory.
memWrite :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Starting memory address of bytes to write
-> ByteString -- ^ The data to write
-> Emulator () -- ^ An 'Error' on failure
memWrite uc address bytes = do
err <- lift $ ucMemWrite uc address bytes
if err == ErrOk then
right ()
else
left err
-- | Read memory contents.
memRead :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Starting memory address to read
-- from
-> Int -- ^ Size of memory to read (in bytes)
-> Emulator ByteString -- ^ The memory contents on success, or
-- an 'Error' on failure
memRead uc address size = do
-- Allocate an array of the given size
result <- lift . allocaArray size $ \ptr -> do
err <- ucMemRead uc address ptr size
if err == ErrOk then
-- If ucMemRead completed successfully, pack the contents of the
-- array into a ByteString and return it
liftM (Right . pack) (peekArray size ptr)
else
-- Otherwise return the error
return $ Left err
hoistEither result
-- | Map a range of memory.
memMap :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Start address of the new memory region to
-- be mapped in. This address must be
-- aligned to 4KB, or this will return with
-- 'ErrArg' error
-> Int -- ^ Size of the new memory region to be mapped
-- in. This size must be a multiple of 4KB, or
-- this will return with an 'ErrArg' error
-> [MemoryPermission] -- ^ Permissions for the newly mapped region
-> Emulator () -- ^ An 'Error' on failure
memMap uc address size perms = do
err <- lift $ ucMemMap uc address size perms
if err == ErrOk then
right ()
else
left err
-- | Unmap a range of memory.
memUnmap :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Start addres of the memory region to be unmapped.
-- This address must be aligned to 4KB or this will
-- return with an 'ErrArg' error
-> Int -- ^ Size of the memory region to be modified. This
-- must be a multiple of 4KB, or this will return with
-- an 'ErrArg' error
-> Emulator () -- ^ An 'Error' on failure
memUnmap uc address size = do
err <- lift $ ucMemUnmap uc address size
if err == ErrOk then
right ()
else
left err
-- | Change permissions on a range of memory.
memProtect :: Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Start address of the memory region to
-- modify. This address must be aligned to
-- 4KB, or this will return with an
-- 'ErrArg' error
-> Int -- ^ Size of the memory region to be
-- modified. This size must be a multiple
-- of 4KB, or this will return with an
-- 'ErrArg' error
-> [MemoryPermission] -- ^ New permissions for the mapped region
-> Emulator () -- ^ An 'Error' on failure
memProtect uc address size perms = do
err <- lift $ ucMemProtect uc address size perms
if err == ErrOk then
right ()
else
left err
-- | Retrieve all memory regions mapped by 'memMap'.
memRegions :: Engine -- ^ 'Unicorn' engine handle
-> Emulator [MemoryRegion] -- ^ A list of memory regions
memRegions uc = do
(err, regionPtr, count) <- lift $ ucMemRegions uc
if err == ErrOk then do
regions <- lift $ peekArray count regionPtr
right regions
else
left err
-------------------------------------------------------------------------------
-- Misc.
-------------------------------------------------------------------------------
-- | Combined API version & major and minor version numbers. Returns a
-- hexadecimal number as (major << 8 | minor), which encodes both major and
-- minor versions.
version :: Int
version =
ucVersion nullPtr nullPtr
-- | Report the 'Error' of the last failed API call.
errno :: Engine -- ^ 'Unicorn' engine handle
-> Emulator Error -- ^ The last 'Error' code
errno =
lift . ucErrno
-- | Return a string describing the given 'Error'.
strerror :: Error -- ^ The 'Error' code
-> String -- ^ Description of the error code
strerror =
ucStrerror

View file

@ -0,0 +1,29 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.Arm
Description : Definitions for the ARM architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the ARM architecture.
-}
module Unicorn.CPU.Arm (
Register(..),
) where
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/arm.h>
-- | ARM registers.
{# enum uc_arm_reg as Register
{underscoreToCase}
omit (UC_ARM_REG_INVALID,
UC_ARM_REG_ENDING)
with prefix="UC_ARM_REG_"
deriving (Show, Eq) #}
instance Reg Register

View file

@ -0,0 +1,29 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.Arm64
Description : Definitions for the ARM64 (ARMv8) architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the ARM64 (ARMv8) architecture.
-}
module Unicorn.CPU.Arm64 (
Register(..),
) where
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/arm64.h>
-- | ARM64 registers.
{# enum uc_arm64_reg as Register
{underscoreToCase}
omit (UC_ARM64_REG_INVALID,
UC_ARM64_REG_ENDING)
with prefix="UC_ARM64_REG_"
deriving (Show, Eq) #}
instance Reg Register

View file

@ -0,0 +1,29 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.Mk68k
Description : Definitions for the MK68K architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the MK68K architecture.
-}
module Unicorn.CPU.M68k (
Register(..),
) where
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/m68k.h>
-- | M68K registers.
{# enum uc_m68k_reg as Register
{underscoreToCase}
omit (UC_M68K_REG_INVALID,
UC_M68K_REG_ENDING)
with prefix="UC_M68K_REG_"
deriving (Show, Eq) #}
instance Reg Register

View file

@ -0,0 +1,61 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.Mips
Description : Definitions for the MIPS architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the MIPS architecture.
-}
module Unicorn.CPU.Mips (
Register(..),
) where
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/mips.h>
-- | MIPS registers.
{# enum UC_MIPS_REG as Register
{underscoreToCase,
UC_MIPS_REG_0 as Reg0,
UC_MIPS_REG_1 as Reg1,
UC_MIPS_REG_2 as Reg2,
UC_MIPS_REG_3 as Reg3,
UC_MIPS_REG_4 as Reg4,
UC_MIPS_REG_5 as Reg5,
UC_MIPS_REG_6 as Reg6,
UC_MIPS_REG_7 as Reg7,
UC_MIPS_REG_8 as Reg8,
UC_MIPS_REG_9 as Reg9,
UC_MIPS_REG_10 as Reg10,
UC_MIPS_REG_11 as Reg11,
UC_MIPS_REG_12 as Reg12,
UC_MIPS_REG_13 as Reg13,
UC_MIPS_REG_14 as Reg14,
UC_MIPS_REG_15 as Reg15,
UC_MIPS_REG_16 as Reg16,
UC_MIPS_REG_17 as Reg17,
UC_MIPS_REG_18 as Reg18,
UC_MIPS_REG_19 as Reg19,
UC_MIPS_REG_20 as Reg20,
UC_MIPS_REG_21 as Reg21,
UC_MIPS_REG_22 as Reg22,
UC_MIPS_REG_23 as Reg23,
UC_MIPS_REG_24 as Reg24,
UC_MIPS_REG_25 as Reg25,
UC_MIPS_REG_26 as Reg26,
UC_MIPS_REG_27 as Reg27,
UC_MIPS_REG_28 as Reg28,
UC_MIPS_REG_29 as Reg29,
UC_MIPS_REG_30 as Reg30,
UC_MIPS_REG_31 as Reg31}
omit (UC_MIPS_REG_INVALID,
UC_MIPS_REG_ENDING)
with prefix="UC_MIPS_REG_"
deriving (Show, Eq) #}
instance Reg Register

View file

@ -0,0 +1,29 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.Sparc
Description : Definitions for the SPARC architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the SPARC architecture.
-}
module Unicorn.CPU.Sparc (
Register(..),
) where
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/sparc.h>
-- | SPARC registers.
{# enum uc_sparc_reg as Register
{underscoreToCase}
omit (UC_SPARC_REG_INVALID,
UC_SPARC_REG_ENDING)
with prefix="UC_SPARC_REG_"
deriving (Show, Eq) #}
instance Reg Register

View file

@ -0,0 +1,65 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.CPU.X86
Description : Definitions for the X86 architecture.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Definitions for the X86 architecture.
-}
module Unicorn.CPU.X86 (
Mmr(..),
Register(..),
Instruction(..),
) where
import Control.Applicative
import Data.Word
import Foreign
import Unicorn.Internal.Core (Reg)
{# context lib="unicorn" #}
#include <unicorn/x86.h>
-- | Memory-managemen Register for instructions IDTR, GDTR, LDTR, TR.
-- Borrow from SegmentCache in qemu/target-i386/cpu.h
data Mmr = Mmr {
selector :: Word16, -- ^ Not used by GDTR and IDTR
base :: Word64, -- ^ Handle 32 or 64 bit CPUs
limit :: Word32,
flags :: Word32 -- ^ Not used by GDTR and IDTR
}
instance Storable Mmr where
sizeOf _ = {# sizeof uc_x86_mmr #}
alignment _ = {# alignof uc_x86_mmr #}
peek p = Mmr <$> liftA fromIntegral ({# get uc_x86_mmr->selector #} p)
<*> liftA fromIntegral ({# get uc_x86_mmr->base #} p)
<*> liftA fromIntegral ({# get uc_x86_mmr->limit #} p)
<*> liftA fromIntegral ({# get uc_x86_mmr->flags #} p)
poke p mmr = do
{# set uc_x86_mmr.selector #} p (fromIntegral $ selector mmr)
{# set uc_x86_mmr.base #} p (fromIntegral $ base mmr)
{# set uc_x86_mmr.limit #} p (fromIntegral $ limit mmr)
{# set uc_x86_mmr.flags #} p (fromIntegral $ flags mmr)
-- | X86 registers.
{# enum uc_x86_reg as Register
{underscoreToCase}
omit (UC_X86_REG_INVALID,
UC_X86_REG_ENDING)
with prefix="UC_X86_REG_"
deriving (Show, Eq) #}
instance Reg Register
-- | X86 instructions.
{# enum uc_x86_insn as Instruction
{underscoreToCase}
omit (UC_X86_INS_INVALID,
UC_X86_INS_ENDING)
with prefix="UC_X86_INS_"
deriving (Show, Eq) #}

View file

@ -0,0 +1,224 @@
{-|
Module : Unicorn.Hook
Description : Unicorn hooks.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Insert hook points into the Unicorn emulator engine.
-}
module Unicorn.Hook (
-- * Hook types
Hook,
MemoryHookType(..),
MemoryEventHookType(..),
MemoryAccess(..),
-- * Hook callbacks
CodeHook,
InterruptHook,
BlockHook,
InHook,
OutHook,
SyscallHook,
MemoryHook,
MemoryReadHook,
MemoryWriteHook,
MemoryEventHook,
-- * Hook callback management
codeHookAdd,
interruptHookAdd,
blockHookAdd,
inHookAdd,
outHookAdd,
syscallHookAdd,
memoryHookAdd,
memoryEventHookAdd,
hookDel,
) where
import Control.Monad
import Control.Monad.Trans.Class
import Control.Monad.Trans.Either (hoistEither, left, right)
import Foreign
import Unicorn.Internal.Core
import Unicorn.Internal.Hook
import Unicorn.Internal.Util
import qualified Unicorn.CPU.X86 as X86
-------------------------------------------------------------------------------
-- Hook callback management (registration and deletion)
-------------------------------------------------------------------------------
-- | Register a callback for a code hook event.
codeHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> CodeHook a -- ^ Code hook callback
-> a -- ^ User-defined data. This will be passed to
-- the callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error'
-- on failure
codeHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalCodeHook callback
getResult $ ucHookAdd uc HookCode funPtr userDataPtr begin end
hoistEither result
-- | Register a callback for an interrupt hook event.
interruptHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> InterruptHook a -- ^ Interrupt callback
-> a -- ^ User-defined data. This will be passed
-- to the callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or 'Error'
-- on failure
interruptHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalInterruptHook callback
getResult $ ucHookAdd uc HookIntr funPtr userDataPtr begin end
hoistEither result
-- | Register a callback for a block hook event.
blockHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> BlockHook a -- ^ Block callback
-> a -- ^ User-defined data. This will be passed to
-- the callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error'
-- on failure
blockHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalBlockHook callback
getResult $ ucHookAdd uc HookBlock funPtr userDataPtr begin end
hoistEither result
-- | Register a callback for an IN instruction hook event (X86).
inHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> InHook a -- ^ IN instruction callback
-> a -- ^ User-defined data. This will be passed to the
-- callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error' on
-- failure
inHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalInHook callback
getResult $ ucInsnHookAdd uc HookInsn funPtr userDataPtr begin end
X86.In
hoistEither result
-- | Register a callback for an OUT instruction hook event (X86).
outHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> OutHook a -- ^ OUT instruction callback
-> a -- ^ User-defined data. This will be passed to the
-- callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error' on
-- failure
outHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalOutHook callback
getResult $ ucInsnHookAdd uc HookInsn funPtr userDataPtr begin end
X86.Out
hoistEither result
-- | Register a callback for a SYSCALL instruction hook event (X86).
syscallHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> SyscallHook a -- ^ SYSCALL instruction callback
-> a -- ^ User-defined data. This will be passed to
-- the callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error'
-- on failure
syscallHookAdd uc callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalSyscallHook callback
getResult $ ucInsnHookAdd uc HookInsn funPtr userDataPtr begin end
X86.Syscall
hoistEither result
-- | Register a callback for a valid memory access event.
memoryHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> MemoryHookType -- ^ A valid memory access (e.g. read, write,
-- etc.) to trigger the callback on
-> MemoryHook a -- ^ Memory access callback
-> a -- ^ User-defined data. This will be passed to
-- the callback function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or an 'Error'
-- on failure
memoryHookAdd uc memHookType callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalMemoryHook callback
getResult $ ucHookAdd uc memHookType funPtr userDataPtr begin end
hoistEither result
-- | Register a callback for an invalid memory access event.
memoryEventHookAdd :: Storable a
=> Engine -- ^ 'Unicorn' engine handle
-> MemoryEventHookType -- ^ An invalid memory access (e.g.
-- read, write, etc.) to trigger
-- the callback on
-> MemoryEventHook a -- ^ Invalid memory access callback
-> a -- ^ User-defined data. This will
-- be passed to the callback
-- function
-> Word64 -- ^ Start address
-> Word64 -- ^ End address
-> Emulator Hook -- ^ The hook handle on success, or
-- an 'Error' on failure
memoryEventHookAdd uc memEventHookType callback userData begin end = do
result <- lift . alloca $ \userDataPtr -> do
poke userDataPtr userData
funPtr <- marshalMemoryEventHook callback
getResult $ ucHookAdd uc memEventHookType funPtr userDataPtr begin end
hoistEither result
-- | Unregister (remove) a hook callback.
hookDel :: Engine -- ^ 'Unicorn' engine handle
-> Hook -- ^ 'Hook' handle
-> Emulator () -- ^ 'ErrOk' on success, or other value on failure
hookDel uc hook = do
err <- lift $ ucHookDel uc hook
if err == ErrOk then
right ()
else
left err
-------------------------------------------------------------------------------
-- Helper functions
-------------------------------------------------------------------------------
-- Takes the tuple returned by `ucHookAdd`, an IO (Error, Hook), and
-- returns either a `Right Hook` if no error occurred or a `Left Error` if an
-- error occurred
getResult :: IO (Error, Hook) -> IO (Either Error Hook)
getResult =
liftM (uncurry checkResult)
where checkResult err hook =
if err == ErrOk then
Right hook
else
Left err

View file

@ -0,0 +1,52 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.Internal.Core
Description : Core Unicorn components.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Defines core Unicorn components.
This module should not be directly imported; it is only exposed because of the
way cabal handles ordering of chs files.
-}
module Unicorn.Internal.Core where
import Control.Monad
import Control.Monad.Trans.Either (EitherT)
import Foreign
{# context lib="unicorn" #}
#include <unicorn/unicorn.h>
#include "unicorn_wrapper.h"
-- | The Unicorn engine.
{# pointer *uc_engine as Engine
foreign finalizer uc_close_wrapper as close
newtype #}
-- | A pointer to a Unicorn engine.
{# pointer *uc_engine as EnginePtr -> Engine #}
-- | Make a new Unicorn engine out of an engine pointer. The returned Unicorn
-- engine will automatically close 'uc_close_wrapper' when it goes out of
-- scope.
mkEngine :: EnginePtr -> IO Engine
mkEngine ptr =
liftM Engine (newForeignPtr close ptr)
-- | Errors encountered by the Unicorn API. These values are returned by
-- 'errno'.
{# enum uc_err as Error
{underscoreToCase}
with prefix = "UC_"
deriving (Show, Eq) #}
-- | The emulator runs in the IO monad and allows for the handling of errors
-- "under the hood".
type Emulator a = EitherT Error IO a
-- | An architecture-dependent register.
class Enum a => Reg a

View file

@ -0,0 +1,415 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-|
Module : Unicorn.Internal.Hook
Description : Unicorn hooks.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Low-level bindings for inserting hook points into the Unicorn emulator engine.
This module should not be directly imported; it is only exposed because of the
way cabal handles ordering of chs files.
-}
module Unicorn.Internal.Hook (
-- * Types
Hook,
HookType(..),
MemoryHookType(..),
MemoryEventHookType(..),
MemoryAccess(..),
-- * Hook callback bindings
CodeHook,
InterruptHook,
BlockHook,
InHook,
OutHook,
SyscallHook,
MemoryHook,
MemoryReadHook,
MemoryWriteHook,
MemoryEventHook,
-- * Hook marshalling
marshalCodeHook,
marshalInterruptHook,
marshalBlockHook,
marshalInHook,
marshalOutHook,
marshalSyscallHook,
marshalMemoryHook,
marshalMemoryReadHook,
marshalMemoryWriteHook,
marshalMemoryEventHook,
-- * Hook registration and deletion bindings
ucHookAdd,
ucInsnHookAdd,
ucHookDel,
) where
import Control.Monad
import Foreign
import Unicorn.Internal.Util
{# context lib="unicorn" #}
{# import Unicorn.Internal.Core #}
{# import Unicorn.CPU.X86 #}
#include <unicorn/unicorn.h>
#include "unicorn_wrapper.h"
-------------------------------------------------------------------------------
-- Types
-------------------------------------------------------------------------------
-- When we pass a Unicorn engine to a hook callback, we do not want this engine
-- object to be freed automatically when the callback returns (which is what
-- would typically occur when using a ForeignPtr), because we want to continue
-- using the Unicorn engine outside the callback. To avoid this,
-- unicorn_wrapper.h provides a dummy "close" function that does nothing. When
-- we go to create a Unicorn engine to pass to a callback, we use a pointer to
-- this dummy close function as the finalizer pointer. When the callback
-- returns, the Unicorn engine remains untouched!
--
-- XX Is there a better way to do this?
foreign import ccall "&uc_close_dummy"
closeDummy :: FunPtr (EnginePtr -> IO ())
mkEngineNC :: EnginePtr -> IO Engine
mkEngineNC ptr =
liftM Engine (newForeignPtr closeDummy ptr)
-- | A Unicorn hook.
type Hook = {# type uc_hook #}
-- Hook types. These are used internally within this module by the callback
-- registration functions and are not exposed to the user.
--
-- Note that the both valid and invalid memory access hooks are omitted from
-- this enum (and are exposed to the user).
{# enum uc_hook_type as HookType
{underscoreToCase}
omit (UC_HOOK_MEM_READ_UNMAPPED,
UC_HOOK_MEM_WRITE_UNMAPPED,
UC_HOOK_MEM_FETCH_UNMAPPED,
UC_HOOK_MEM_READ_PROT,
UC_HOOK_MEM_WRITE_PROT,
UC_HOOK_MEM_FETCH_PROT,
UC_HOOK_MEM_READ,
UC_HOOK_MEM_WRITE,
UC_HOOK_MEM_FETCH)
with prefix="UC_"
deriving (Show, Eq) #}
-- | Memory hook types (for valid memory accesses).
{# enum uc_hook_type as MemoryHookType
{underscoreToCase}
omit (UC_HOOK_INTR,
UC_HOOK_INSN,
UC_HOOK_CODE,
UC_HOOK_BLOCK,
UC_HOOK_MEM_READ_UNMAPPED,
UC_HOOK_MEM_WRITE_UNMAPPED,
UC_HOOK_MEM_FETCH_UNMAPPED,
UC_HOOK_MEM_READ_PROT,
UC_HOOK_MEM_WRITE_PROT,
UC_HOOK_MEM_FETCH_PROT)
with prefix="UC_"
deriving (Show, Eq) #}
-- | Memory event hook types (for invalid memory accesses).
{# enum uc_hook_type as MemoryEventHookType
{underscoreToCase}
omit (UC_HOOK_INTR,
UC_HOOK_INSN,
UC_HOOK_CODE,
UC_HOOK_BLOCK,
UC_HOOK_MEM_READ,
UC_HOOK_MEM_WRITE,
UC_HOOK_MEM_FETCH)
with prefix="UC_"
deriving (Show, Eq) #}
-- | Unify the hook types with a type class
class Enum a => HookTypeC a
instance HookTypeC HookType
instance HookTypeC MemoryHookType
instance HookTypeC MemoryEventHookType
-- | Memory access.
{# enum uc_mem_type as MemoryAccess
{underscoreToCase}
with prefix="UC_"
deriving (Show, Eq) #}
-------------------------------------------------------------------------------
-- Hook callbacks
-------------------------------------------------------------------------------
-- | Callback function for tracing code.
type CodeHook a = Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Addres where the code is being executed
-> Maybe Int -- ^ Size of machine instruction(s) being
-- executed, or 'Nothing' when size is unknown
-> a -- ^ User data passed to tracing APIs
-> IO ()
type CCodeHook = EnginePtr -> Word64 -> Word32 -> Ptr () -> IO ()
foreign import ccall "wrapper"
mkCodeHook :: CCodeHook -> IO {# type uc_cb_hookcode_t #}
marshalCodeHook :: Storable a
=> CodeHook a -> IO {# type uc_cb_hookcode_t #}
marshalCodeHook codeHook =
mkCodeHook $ \ucPtr address size userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
let maybeSize = if size == 0 then Nothing
else Just $ fromIntegral size
codeHook uc address maybeSize userData
-- | Callback function for tracing interrupts.
type InterruptHook a = Engine -- ^ 'Unicorn' engine handle
-> Int -- ^ Interrupt number
-> a -- ^ User data passed to tracing APIs
-> IO ()
type CInterruptHook = EnginePtr -> Word32 -> Ptr () -> IO ()
foreign import ccall "wrapper"
mkInterruptHook :: CInterruptHook -> IO {# type uc_cb_hookintr_t #}
marshalInterruptHook :: Storable a
=> InterruptHook a -> IO {# type uc_cb_hookintr_t #}
marshalInterruptHook interruptHook =
mkInterruptHook $ \ucPtr intNo userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
interruptHook uc (fromIntegral intNo) userData
-- | Callback function for tracing blocks.
type BlockHook a = CodeHook a
marshalBlockHook :: Storable a
=> BlockHook a -> IO {# type uc_cb_hookcode_t #}
marshalBlockHook =
marshalCodeHook
-- | Callback function for tracing IN instructions (X86).
type InHook a = Engine -- ^ 'Unicorn' engine handle
-> Int -- ^ Port number
-> Int -- ^ Data size (1/2/4) to be read from this port
-> a -- ^ User data passed to tracing APIs
-> IO Word32 -- ^ The data read from the port
type CInHook = EnginePtr -> Word32 -> Int32 -> Ptr () -> IO Word32
foreign import ccall "wrapper"
mkInHook :: CInHook -> IO {# type uc_cb_insn_in_t #}
marshalInHook :: Storable a
=> InHook a -> IO {# type uc_cb_insn_in_t #}
marshalInHook inHook =
mkInHook $ \ucPtr port size userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
inHook uc (fromIntegral port) (fromIntegral size) userData
-- | Callback function for tracing OUT instructions (X86).
type OutHook a = Engine -- ^ 'Unicorn' engine handle
-> Int -- ^ Port number
-> Int -- ^ Data size (1/2/4) to be written to this port
-> Int -- ^ Data value to be written to this port
-> a -- ^ User data passed to tracing APIs
-> IO ()
type COutHook = EnginePtr -> Word32 -> Int32 -> Word32 -> Ptr () -> IO ()
foreign import ccall "wrapper"
mkOutHook :: COutHook -> IO {# type uc_cb_insn_out_t #}
marshalOutHook :: Storable a
=> OutHook a -> IO {# type uc_cb_insn_out_t #}
marshalOutHook outHook =
mkOutHook $ \ucPtr port size value userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
outHook uc (fromIntegral port) (fromIntegral size) (fromIntegral value)
userData
-- | Callback function for tracing SYSCALL instructions (X86).
type SyscallHook a = Engine -- ^ 'Unicorn' engine handle
-> a -- ^ User data passed to tracing APIs
-> IO ()
type CSyscallHook = Ptr () -> Ptr () -> IO ()
foreign import ccall "wrapper"
mkSyscallHook :: CSyscallHook -> IO {# type uc_cb_insn_syscall_t #}
marshalSyscallHook :: Storable a
=> SyscallHook a -> IO {# type uc_cb_insn_syscall_t #}
marshalSyscallHook syscallHook =
mkSyscallHook $ \ucPtr userDataPtr -> do
uc <- mkEngineNC $ castPtr ucPtr
userData <- castPtrAndPeek userDataPtr
syscallHook uc userData
-- | Callback function for hooking memory operations.
type MemoryHook a = Engine -- ^ 'Unicorn' engine handle
-> MemoryAccess -- ^ Memory access; read or write
-> Word64 -- ^ Address where the code is being
-- executed
-> Int -- ^ Size of data being read or written
-> Maybe Int -- ^ Value of data being wrriten, or
-- 'Nothing' if read
-> a -- ^ User data passed to tracing APIs
-> IO ()
type CMemoryHook = EnginePtr
-> Int32
-> Word64
-> Int32
-> Int64
-> Ptr ()
-> IO ()
foreign import ccall "wrapper"
mkMemoryHook :: CMemoryHook -> IO {# type uc_cb_hookmem_t #}
marshalMemoryHook :: Storable a
=> MemoryHook a -> IO {# type uc_cb_hookmem_t #}
marshalMemoryHook memoryHook =
mkMemoryHook $ \ucPtr memAccessI address size value userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
let memAccess = toMemAccess memAccessI
maybeValue = case memAccess of
MemRead -> Nothing
MemWrite -> Just $ fromIntegral value
_ -> undefined -- XX Handle this?
memoryHook uc memAccess address (fromIntegral size) maybeValue userData
-- | Callback function for hooking memory reads.
type MemoryReadHook a = Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Address where the code is being executed
-> Int -- ^ Size of data being read
-> a -- ^ User data passed to tracing APIs
-> IO ()
marshalMemoryReadHook :: Storable a
=> MemoryReadHook a -> IO {# type uc_cb_hookmem_t #}
marshalMemoryReadHook memoryReadHook =
mkMemoryHook $ \ucPtr _ address size _ userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
memoryReadHook uc address (fromIntegral size) userData
-- | Callback function for hooking memory writes.
type MemoryWriteHook a = Engine -- ^ 'Unicorn' engine handle
-> Word64 -- ^ Address where the code is being
-- executed
-> Int -- ^ Size of data being written
-> Int -- ^ Value of data being written
-> a -- ^ User data passed to tracing APIs
-> IO ()
marshalMemoryWriteHook :: Storable a
=> MemoryWriteHook a -> IO {# type uc_cb_hookmem_t #}
marshalMemoryWriteHook memoryWriteHook =
mkMemoryHook $ \ucPtr _ address size value userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
memoryWriteHook uc address (fromIntegral size) (fromIntegral value)
userData
-- | Callback function for handling invalid memory access events.
type MemoryEventHook a = Engine -- ^ 'Unicorn' engine handle
-> MemoryAccess -- ^ Memory access; read or write
-> Word64 -- ^ Address where the code is being
-- executed
-> Int -- ^ Size of data being read or written
-> Maybe Int -- ^ Value of data being written, or
-- 'Nothing' if read
-> a -- ^ User data passed to tracing APIs
-> IO Bool -- ^ Return 'True' to continue, or
-- 'False' to stop the program (due to
-- invalid memory)
type CMemoryEventHook = EnginePtr
-> Int32
-> Word64
-> Int32
-> Int64
-> Ptr ()
-> IO Int32
foreign import ccall "wrapper"
mkMemoryEventHook :: CMemoryEventHook -> IO {# type uc_cb_eventmem_t #}
marshalMemoryEventHook :: Storable a
=> MemoryEventHook a -> IO {# type uc_cb_eventmem_t #}
marshalMemoryEventHook eventMemoryHook =
mkMemoryEventHook $ \ucPtr memAccessI address size value userDataPtr -> do
uc <- mkEngineNC ucPtr
userData <- castPtrAndPeek userDataPtr
let memAccess = toMemAccess memAccessI
maybeValue = case memAccess of
MemReadUnmapped -> Nothing
MemReadProt -> Nothing
MemWriteUnmapped -> Just $ fromIntegral value
MemWriteProt -> Just $ fromIntegral value
_ -> undefined -- XX Handle this?
res <- eventMemoryHook uc memAccess address (fromIntegral size)
maybeValue userData
return $ boolToInt res
where boolToInt True = 1
boolToInt False = 0
-------------------------------------------------------------------------------
-- Hook callback registration (and deletion)
-------------------------------------------------------------------------------
{# fun variadic uc_hook_add as ucHookAdd
`(Storable a, HookTypeC h)' =>
{`Engine',
alloca- `Hook' peek*,
enumToNum `h',
castFunPtrToPtr `FunPtr b',
castPtr `Ptr a',
`Word64',
`Word64'}
-> `Error' #}
{# fun variadic uc_hook_add[int] as ucInsnHookAdd
`(Storable a, HookTypeC h)' =>
{`Engine',
alloca- `Hook' peek*,
enumToNum `h',
castFunPtrToPtr `FunPtr b',
castPtr `Ptr a',
`Word64',
`Word64',
enumToNum `Instruction'}
-> `Error' #}
-- | Unregister (remove) a hook callback.
{# fun uc_hook_del as ^
{`Engine',
fromIntegral `Hook'}
-> `Error' #}
-------------------------------------------------------------------------------
-- Helper functions
-------------------------------------------------------------------------------
toMemAccess :: Integral a => a -> MemoryAccess
toMemAccess =
toEnum . fromIntegral

View file

@ -0,0 +1,242 @@
{-# LANGUAGE ForeignFunctionInterface #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-|
Module : Unicorn.Internal.Unicorn
Description : The Unicorn CPU emulator.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
Low-level bindings for the Unicorn CPU emulator framework.
This module should not be directly imported; it is only exposed because of the
way cabal handles ordering of chs files.
-}
module Unicorn.Internal.Unicorn (
-- * Types
Architecture(..),
Mode(..),
MemoryPermission(..),
MemoryRegion(..),
QueryType(..),
-- * Function bindings
ucOpen,
ucQuery,
ucEmuStart,
ucEmuStop,
ucRegWrite,
ucRegRead,
ucMemWrite,
ucMemRead,
ucMemMap,
ucMemUnmap,
ucMemProtect,
ucMemRegions,
ucVersion,
ucErrno,
ucStrerror,
) where
import Foreign
import Foreign.C
import Control.Applicative
import Data.ByteString (ByteString, useAsCStringLen)
import Prelude hiding (until)
import Unicorn.Internal.Util
{# context lib="unicorn" #}
{# import Unicorn.Internal.Core #}
#include <unicorn/unicorn.h>
-------------------------------------------------------------------------------
-- Types
-------------------------------------------------------------------------------
-- | CPU architecture.
{# enum uc_arch as Architecture
{underscoreToCase}
with prefix = "UC_"
deriving (Show, Eq) #}
-- | CPU hardware mode.
{# enum uc_mode as Mode
{underscoreToCase}
with prefix="UC_"
deriving (Show, Eq) #}
-- | Memory permissions.
{# enum uc_prot as MemoryPermission
{underscoreToCase}
with prefix="UC_"
deriving (Show, Eq) #}
-- | Memory region mapped by 'memMap'. Retrieve the list of memory regions with
-- 'memRegions'.
data MemoryRegion = MemoryRegion {
begin :: Word64, -- ^ Begin address of the region (inclusive)
end :: Word64, -- ^ End address of the region (inclusive)
perms :: [MemoryPermission] -- ^ Memory permissions of the region
}
instance Storable MemoryRegion where
sizeOf _ = {# sizeof uc_mem_region #}
alignment _ = {# alignof uc_mem_region #}
peek p = MemoryRegion
<$> liftA fromIntegral ({# get uc_mem_region->begin #} p)
<*> liftA fromIntegral ({# get uc_mem_region->end #} p)
<*> liftA expandMemPerms ({# get uc_mem_region->perms #} p)
poke p mr = do
{# set uc_mem_region.begin #} p (fromIntegral $ begin mr)
{# set uc_mem_region.end #} p (fromIntegral $ end mr)
{# set uc_mem_region.perms #} p (combineEnums $ perms mr)
-- | A pointer to a memory region.
{# pointer *uc_mem_region as MemoryRegionPtr -> MemoryRegion #}
-- | Query types for the 'query' API.
{# enum uc_query_type as QueryType
{underscoreToCase}
with prefix="UC_"
deriving (Show, Eq) #}
-------------------------------------------------------------------------------
-- Emulator control
-------------------------------------------------------------------------------
{# fun uc_open as ^
{`Architecture',
combineEnums `[Mode]',
alloca- `EnginePtr' peek*}
-> `Error' #}
{# fun uc_query as ^
{`Engine',
`QueryType',
alloca- `Int' castPtrAndPeek*}
-> `Error' #}
{# fun uc_emu_start as ^
{`Engine',
`Word64',
`Word64',
`Int',
`Int'}
-> `Error' #}
{# fun uc_emu_stop as ^
{`Engine'}
-> `Error' #}
-------------------------------------------------------------------------------
-- Register operations
-------------------------------------------------------------------------------
{# fun uc_reg_write as ^
`Reg r' =>
{`Engine',
enumToNum `r',
castPtr `Ptr Int64'}
-> `Error' #}
{# fun uc_reg_read as ^
`Reg r' =>
{`Engine',
enumToNum `r',
allocaInt64ToVoid- `Int64' castPtrAndPeek*}
-> `Error' #}
-------------------------------------------------------------------------------
-- Memory operations
-------------------------------------------------------------------------------
{# fun uc_mem_write as ^
{`Engine',
`Word64',
withByteStringLen* `ByteString'&}
-> `Error' #}
{# fun uc_mem_read as ^
{`Engine',
`Word64',
castPtr `Ptr Word8',
`Int'}
-> `Error' #}
{# fun uc_mem_map as ^
{`Engine',
`Word64',
`Int',
combineEnums `[MemoryPermission]'}
-> `Error' #}
{# fun uc_mem_unmap as ^
{`Engine',
`Word64',
`Int'}
-> `Error' #}
{# fun uc_mem_protect as ^
{`Engine',
`Word64',
`Int',
combineEnums `[MemoryPermission]'}
-> `Error' #}
{# fun uc_mem_regions as ^
{`Engine',
alloca- `MemoryRegionPtr' peek*,
alloca- `Int' castPtrAndPeek*}
-> `Error' #}
-------------------------------------------------------------------------------
-- Misc.
-------------------------------------------------------------------------------
{# fun pure unsafe uc_version as ^
{id `Ptr CUInt',
id `Ptr CUInt'}
-> `Int' #}
{# fun unsafe uc_errno as ^
{`Engine'}
-> `Error' #}
{# fun pure unsafe uc_strerror as ^
{`Error'}
-> `String' #}
-------------------------------------------------------------------------------
-- Helper functions
-------------------------------------------------------------------------------
expandMemPerms :: (Integral a, Bits a) => a -> [MemoryPermission]
expandMemPerms perms =
-- Only interested in the 3 least-significant bits
let maskedPerms = fromIntegral $ perms .&. 0x7 in
if maskedPerms == 0x0 then
[ProtNone]
else if maskedPerms == 0x7 then
[ProtAll]
else
checkRWE maskedPerms [ProtRead, ProtWrite, ProtExec]
where
checkRWE perms (prot:prots) =
if perms .&. (fromEnum prot) /= 0 then
prot : checkRWE perms prots
else
checkRWE perms prots
checkRWE _ [] =
[]
allocaInt64ToVoid :: (Ptr () -> IO b) -> IO b
allocaInt64ToVoid f =
alloca $ \(ptr :: Ptr Int64) -> poke ptr 0 >> f (castPtr ptr)
withByteStringLen :: ByteString -> ((Ptr (), CULong) -> IO a) -> IO a
withByteStringLen bs f =
useAsCStringLen bs $ \(ptr, len) -> f (castPtr ptr, fromIntegral len)

View file

@ -0,0 +1,25 @@
{-|
Module : Unicorn.Internal.Util
Description : Utility (aka helper) functions for the Unicorn emulator.
Copyright : (c) Adrian Herrera, 2016
License : GPL-2
-}
module Unicorn.Internal.Util where
import Data.Bits
import Foreign
-- | Combine a list of Enums by performing a bitwise-OR.
combineEnums :: (Enum a, Num b, Bits b) => [a] -> b
combineEnums =
foldr (\p -> (.|.) (enumToNum p)) 0
-- | Cast a pointer and then peek inside it.
castPtrAndPeek :: Storable a => Ptr b -> IO a
castPtrAndPeek =
peek . castPtr
-- | Convert an 'Eum' to a 'Num'.
enumToNum :: (Enum a, Num b) => a -> b
enumToNum =
fromIntegral . fromEnum

View file

@ -0,0 +1,8 @@
#include "unicorn_wrapper.h"
void uc_close_wrapper(uc_engine *uc) {
uc_close(uc);
}
void uc_close_dummy(uc_engine *uc) {
}

View file

@ -0,0 +1,16 @@
#ifndef UNICORN_WRAPPER_H
#define UNICORN_WRAPPER_H
#include <unicorn/unicorn.h>
/*
* Wrap Unicorn's uc_close function and ignore the returned error code.
*/
void uc_close_wrapper(uc_engine *uc);
/*
* Doesn't actually do anything.
*/
void uc_close_dummy(uc_engine *uc);
#endif

View file

@ -0,0 +1,42 @@
-- Initial unicorn.cabal generated by cabal init. For further
-- documentation, see http://haskell.org/cabal/users-guide/
name: unicorn
version: 0.1.0.0
category: FFI, Emulation
synopsis: Unicorn CPU emulator engine
description: Haskell bindings for the Unicorn CPU emulator engine.
homepage: https://github.com/unicorn-engine/unicorn
author: Adrian Herrera
license: GPL
copyright: (c) 2016, Adrian Herrera
category: System
build-type: Simple
stability: experimental
cabal-version: >=1.10
extra-source-files: cbits/, include/
library
exposed-modules: Unicorn.Internal.Core
Unicorn.Internal.Unicorn
Unicorn.CPU.Arm64
Unicorn.CPU.Arm
Unicorn.CPU.M68k
Unicorn.CPU.Mips
Unicorn.CPU.Sparc
Unicorn.CPU.X86
Unicorn.Internal.Hook
Unicorn.Hook
Unicorn
other-modules: Unicorn.Internal.Util
build-depends: base >=4 && <5,
bytestring >= 0.9.1,
transformers <= 0.5,
either >= 4.4
hs-source-dirs: src
c-sources: src/cbits/unicorn_wrapper.c
include-dirs: src/include
build-tools: c2hs
pkgconfig-depends: unicorn
default-language: Haskell2010
ghc-options: -Wall