mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-11 13:05:36 +00:00
target/arm: Move cpu_get_tb_cpu_state out of line
Backports commit a9e013112f03bf1644a549a769be599a3ceb6155 from qemu
This commit is contained in:
parent
404fa33c4b
commit
7dfbe4e104
|
@ -2577,71 +2577,6 @@ static inline bool bswap_code(bool sctlr_b)
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Return the exception level to which FP-disabled exceptions should
|
|
||||||
* be taken, or 0 if FP is enabled.
|
|
||||||
*/
|
|
||||||
static inline int fp_exception_el(CPUARMState *env)
|
|
||||||
{
|
|
||||||
int fpen;
|
|
||||||
int cur_el = arm_current_el(env);
|
|
||||||
|
|
||||||
/* CPACR and the CPTR registers don't exist before v6, so FP is
|
|
||||||
* always accessible
|
|
||||||
*/
|
|
||||||
if (!arm_feature(env, ARM_FEATURE_V6)) {
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
|
|
||||||
* 0, 2 : trap EL0 and EL1/PL1 accesses
|
|
||||||
* 1 : trap only EL0 accesses
|
|
||||||
* 3 : trap no accesses
|
|
||||||
*/
|
|
||||||
fpen = extract32(env->cp15.cpacr_el1, 20, 2);
|
|
||||||
switch (fpen) {
|
|
||||||
case 0:
|
|
||||||
case 2:
|
|
||||||
if (cur_el == 0 || cur_el == 1) {
|
|
||||||
/* Trap to PL1, which might be EL1 or EL3 */
|
|
||||||
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
if (cur_el == 3 && !is_a64(env)) {
|
|
||||||
/* Secure PL1 running at EL3 */
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
if (cur_el == 0) {
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* For the CPTR registers we don't need to guard with an ARM_FEATURE
|
|
||||||
* check because zero bits in the registers mean "don't trap".
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* CPTR_EL2 : present in v7VE or v8 */
|
|
||||||
if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
|
|
||||||
&& !arm_is_secure_below_el3(env)) {
|
|
||||||
/* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
|
|
||||||
return 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* CPTR_EL3 : present in v8 */
|
|
||||||
if (extract32(env->cp15.cptr_el[3], 10, 1)) {
|
|
||||||
/* Trap all FP ops to EL3 */
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
static inline bool arm_sctlr_b(CPUARMState *env)
|
static inline bool arm_sctlr_b(CPUARMState *env)
|
||||||
{
|
{
|
||||||
return
|
return
|
||||||
|
@ -2724,94 +2659,8 @@ static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
|
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
|
||||||
target_ulong *cs_base, uint32_t *flags)
|
target_ulong *cs_base, uint32_t *flags);
|
||||||
{
|
|
||||||
ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
|
|
||||||
|
|
||||||
if (is_a64(env)) {
|
|
||||||
*pc = env->pc;
|
|
||||||
*flags = ARM_TBFLAG_AARCH64_STATE_MASK;
|
|
||||||
/* Get control bits for tagged addresses */
|
|
||||||
*flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
|
|
||||||
*flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
|
|
||||||
} else {
|
|
||||||
*pc = env->regs[15];
|
|
||||||
*flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
|
|
||||||
| (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
|
|
||||||
| (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
|
|
||||||
| (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
|
|
||||||
| (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
|
|
||||||
if (!(access_secure_reg(env))) {
|
|
||||||
*flags |= ARM_TBFLAG_NS_MASK;
|
|
||||||
}
|
|
||||||
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
|
|
||||||
|| arm_el_is_aa64(env, 1)) {
|
|
||||||
*flags |= ARM_TBFLAG_VFPEN_MASK;
|
|
||||||
}
|
|
||||||
*flags |= (extract32(env->cp15.c15_cpar, 0, 2)
|
|
||||||
<< ARM_TBFLAG_XSCALE_CPAR_SHIFT);
|
|
||||||
}
|
|
||||||
|
|
||||||
*flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
|
|
||||||
|
|
||||||
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
|
|
||||||
* states defined in the ARM ARM for software singlestep:
|
|
||||||
* SS_ACTIVE PSTATE.SS State
|
|
||||||
* 0 x Inactive (the TB flag for SS is always 0)
|
|
||||||
* 1 0 Active-pending
|
|
||||||
* 1 1 Active-not-pending
|
|
||||||
*/
|
|
||||||
if (arm_singlestep_active(env)) {
|
|
||||||
*flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
|
|
||||||
if (is_a64(env)) {
|
|
||||||
if (env->pstate & PSTATE_SS) {
|
|
||||||
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (env->uncached_cpsr & PSTATE_SS) {
|
|
||||||
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (arm_cpu_data_is_big_endian(env)) {
|
|
||||||
*flags |= ARM_TBFLAG_BE_DATA_MASK;
|
|
||||||
}
|
|
||||||
*flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
|
|
||||||
|
|
||||||
if (arm_v7m_is_handler_mode(env)) {
|
|
||||||
*flags |= ARM_TBFLAG_HANDLER_MASK;
|
|
||||||
}
|
|
||||||
|
|
||||||
*cs_base = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* aa32_vfp_dreg:
|
|
||||||
* Return a pointer to the Dn register within env in 32-bit mode.
|
|
||||||
*/
|
|
||||||
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
|
|
||||||
{
|
|
||||||
return &env->vfp.regs[regno];
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* aa32_vfp_qreg:
|
|
||||||
* Return a pointer to the Qn register within env in 32-bit mode.
|
|
||||||
*/
|
|
||||||
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
|
|
||||||
{
|
|
||||||
return &env->vfp.regs[2 * regno];
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* aa64_vfp_qreg:
|
|
||||||
* Return a pointer to the Qn register within env in 64-bit mode.
|
|
||||||
*/
|
|
||||||
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
|
|
||||||
{
|
|
||||||
return &env->vfp.regs[2 * regno];
|
|
||||||
}
|
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
QEMU_PSCI_CONDUIT_DISABLED = 0,
|
QEMU_PSCI_CONDUIT_DISABLED = 0,
|
||||||
|
@ -2860,4 +2709,31 @@ static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
|
||||||
return cpu->el_change_hook_opaque;
|
return cpu->el_change_hook_opaque;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* aa32_vfp_dreg:
|
||||||
|
* Return a pointer to the Dn register within env in 32-bit mode.
|
||||||
|
*/
|
||||||
|
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
|
||||||
|
{
|
||||||
|
return &env->vfp.regs[regno];
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* aa32_vfp_qreg:
|
||||||
|
* Return a pointer to the Qn register within env in 32-bit mode.
|
||||||
|
*/
|
||||||
|
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
|
||||||
|
{
|
||||||
|
return &env->vfp.regs[2 * regno];
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* aa64_vfp_qreg:
|
||||||
|
* Return a pointer to the Qn register within env in 64-bit mode.
|
||||||
|
*/
|
||||||
|
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
|
||||||
|
{
|
||||||
|
return &env->vfp.regs[2 * regno];
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -10827,3 +10827,129 @@ uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
|
||||||
/* Linux crc32c converts the output to one's complement. */
|
/* Linux crc32c converts the output to one's complement. */
|
||||||
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Return the exception level to which FP-disabled exceptions should
|
||||||
|
* be taken, or 0 if FP is enabled.
|
||||||
|
*/
|
||||||
|
static inline int fp_exception_el(CPUARMState *env)
|
||||||
|
{
|
||||||
|
int fpen;
|
||||||
|
int cur_el = arm_current_el(env);
|
||||||
|
|
||||||
|
/* CPACR and the CPTR registers don't exist before v6, so FP is
|
||||||
|
* always accessible
|
||||||
|
*/
|
||||||
|
if (!arm_feature(env, ARM_FEATURE_V6)) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
|
||||||
|
* 0, 2 : trap EL0 and EL1/PL1 accesses
|
||||||
|
* 1 : trap only EL0 accesses
|
||||||
|
* 3 : trap no accesses
|
||||||
|
*/
|
||||||
|
fpen = extract32(env->cp15.cpacr_el1, 20, 2);
|
||||||
|
switch (fpen) {
|
||||||
|
case 0:
|
||||||
|
case 2:
|
||||||
|
if (cur_el == 0 || cur_el == 1) {
|
||||||
|
/* Trap to PL1, which might be EL1 or EL3 */
|
||||||
|
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
if (cur_el == 3 && !is_a64(env)) {
|
||||||
|
/* Secure PL1 running at EL3 */
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
if (cur_el == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* For the CPTR registers we don't need to guard with an ARM_FEATURE
|
||||||
|
* check because zero bits in the registers mean "don't trap".
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* CPTR_EL2 : present in v7VE or v8 */
|
||||||
|
if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
|
||||||
|
&& !arm_is_secure_below_el3(env)) {
|
||||||
|
/* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* CPTR_EL3 : present in v8 */
|
||||||
|
if (extract32(env->cp15.cptr_el[3], 10, 1)) {
|
||||||
|
/* Trap all FP ops to EL3 */
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
|
||||||
|
target_ulong *cs_base, uint32_t *flags)
|
||||||
|
{
|
||||||
|
ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
|
||||||
|
if (is_a64(env)) {
|
||||||
|
*pc = env->pc;
|
||||||
|
*flags = ARM_TBFLAG_AARCH64_STATE_MASK;
|
||||||
|
/* Get control bits for tagged addresses */
|
||||||
|
*flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
|
||||||
|
*flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
|
||||||
|
} else {
|
||||||
|
*pc = env->regs[15];
|
||||||
|
*flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
|
||||||
|
| (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
|
||||||
|
| (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
|
||||||
|
| (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
|
||||||
|
| (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
|
||||||
|
if (!(access_secure_reg(env))) {
|
||||||
|
*flags |= ARM_TBFLAG_NS_MASK;
|
||||||
|
}
|
||||||
|
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
|
||||||
|
|| arm_el_is_aa64(env, 1)) {
|
||||||
|
*flags |= ARM_TBFLAG_VFPEN_MASK;
|
||||||
|
}
|
||||||
|
*flags |= (extract32(env->cp15.c15_cpar, 0, 2)
|
||||||
|
<< ARM_TBFLAG_XSCALE_CPAR_SHIFT);
|
||||||
|
}
|
||||||
|
|
||||||
|
*flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
|
||||||
|
|
||||||
|
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
|
||||||
|
* states defined in the ARM ARM for software singlestep:
|
||||||
|
* SS_ACTIVE PSTATE.SS State
|
||||||
|
* 0 x Inactive (the TB flag for SS is always 0)
|
||||||
|
* 1 0 Active-pending
|
||||||
|
* 1 1 Active-not-pending
|
||||||
|
*/
|
||||||
|
if (arm_singlestep_active(env)) {
|
||||||
|
*flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
|
||||||
|
if (is_a64(env)) {
|
||||||
|
if (env->pstate & PSTATE_SS) {
|
||||||
|
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (env->uncached_cpsr & PSTATE_SS) {
|
||||||
|
*flags |= ARM_TBFLAG_PSTATE_SS_MASK;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (arm_cpu_data_is_big_endian(env)) {
|
||||||
|
*flags |= ARM_TBFLAG_BE_DATA_MASK;
|
||||||
|
}
|
||||||
|
*flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
|
||||||
|
|
||||||
|
if (arm_v7m_is_handler_mode(env)) {
|
||||||
|
*flags |= ARM_TBFLAG_HANDLER_MASK;
|
||||||
|
}
|
||||||
|
|
||||||
|
*cs_base = 0;
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in a new issue