arm: Add support for M profile CPUs having different MMU index semantics

The M profile CPU's MPU has an awkward corner case which we
would like to implement with a different MMU index.

We can avoid having to bump the number of MMU modes ARM
uses, because some of our existing MMU indexes are only
used by non-M-profile CPUs, so we can borrow one.
To avoid that getting too confusing, clean up the code
to try to keep the two meanings of the index separate.

Instead of ARMMMUIdx enum values being identical to core QEMU
MMU index values, they are now the core index values with some
high bits set. Any particular CPU always uses the same high
bits (so eventually A profile cores and M profile cores will
use different bits). New functions arm_to_core_mmu_idx()
and core_to_arm_mmu_idx() convert between the two.

In general core index values are stored in 'int' types, and
ARM values are stored in ARMMMUIdx types.

Backports commit 8bd5c82030b2cb09d3eef6b444f1620911cc9fc5 from qemu
This commit is contained in:
Peter Maydell 2018-03-02 15:35:47 -05:00 committed by Lioncash
parent 19335c32c9
commit b7bf752d3c
No known key found for this signature in database
GPG key ID: 4E3C3CC1031BA9C7
6 changed files with 199 additions and 154 deletions

View file

@ -2017,6 +2017,16 @@ static inline CPUARMState *cpu_init(struct uc_struct *uc, const char *cpu_model)
* for the accesses done as part of a stage 1 page table walk, rather than * for the accesses done as part of a stage 1 page table walk, rather than
* having to walk the stage 2 page table over and over.) * having to walk the stage 2 page table over and over.)
* *
* The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
* are not quite the same -- different CPU types (most notably M profile
* vs A/R profile) would like to use MMU indexes with different semantics,
* but since we don't ever need to use all of those in a single CPU we
* can avoid setting NB_MMU_MODES to more than 8. The lower bits of
* ARMMMUIdx are the core TLB mmu index, and the higher bits are always
* the same for any particular CPU.
* Variables of type ARMMUIdx are always full values, and the core
* index values are in variables of type 'int'.
*
* Our enumeration includes at the end some entries which are not "true" * Our enumeration includes at the end some entries which are not "true"
* mmu_idx values in that they don't have corresponding TLBs and are only * mmu_idx values in that they don't have corresponding TLBs and are only
* valid for doing slow path page table walks. * valid for doing slow path page table walks.
@ -2025,23 +2035,52 @@ static inline CPUARMState *cpu_init(struct uc_struct *uc, const char *cpu_model)
* of the AT/ATS operations. * of the AT/ATS operations.
* The values used are carefully arranged to make mmu_idx => EL lookup easy. * The values used are carefully arranged to make mmu_idx => EL lookup easy.
*/ */
#define ARM_MMU_IDX_A 0x10 /* A profile (and M profile, for the moment) */
#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
#define ARM_MMU_IDX_TYPE_MASK (~0x7)
#define ARM_MMU_IDX_COREIDX_MASK 0x7
typedef enum ARMMMUIdx { typedef enum ARMMMUIdx {
ARMMMUIdx_S12NSE0 = 0, ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
ARMMMUIdx_S12NSE1 = 1, ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
ARMMMUIdx_S1E2 = 2, ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
ARMMMUIdx_S1E3 = 3, ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
ARMMMUIdx_S1SE0 = 4, ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
ARMMMUIdx_S1SE1 = 5, ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
ARMMMUIdx_S2NS = 6, ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
/* Indexes below here don't have TLBs and are used only for AT system /* Indexes below here don't have TLBs and are used only for AT system
* instructions or for the first stage of an S12 page table walk. * instructions or for the first stage of an S12 page table walk.
*/ */
ARMMMUIdx_S1NSE0 = 7, ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
ARMMMUIdx_S1NSE1 = 8, ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
} ARMMMUIdx; } ARMMMUIdx;
/* Bit macros for the core-mmu-index values for each index,
* for use when calling tlb_flush_by_mmuidx() and friends.
*/
typedef enum ARMMMUIdxBit {
ARMMMUIdxBit_S12NSE0 = 1 << 0,
ARMMMUIdxBit_S12NSE1 = 1 << 1,
ARMMMUIdxBit_S1E2 = 1 << 2,
ARMMMUIdxBit_S1E3 = 1 << 3,
ARMMMUIdxBit_S1SE0 = 1 << 4,
ARMMMUIdxBit_S1SE1 = 1 << 5,
ARMMMUIdxBit_S2NS = 1 << 6,
} ARMMMUIdxBit;
#define MMU_USER_IDX 0 #define MMU_USER_IDX 0
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
{
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
}
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
{
return mmu_idx | ARM_MMU_IDX_A;
}
/* Indexes used when registering address spaces with cpu_address_space_init */ /* Indexes used when registering address spaces with cpu_address_space_init */
typedef enum ARMASIdx { typedef enum ARMASIdx {
ARMASIdx_NS = 0, ARMASIdx_NS = 0,
@ -2051,8 +2090,12 @@ typedef enum ARMASIdx {
/* Return the exception level we're running at if this is our mmu_idx */ /* Return the exception level we're running at if this is our mmu_idx */
static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
{ {
assert(mmu_idx < ARMMMUIdx_S2NS); switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
return mmu_idx & 3; case ARM_MMU_IDX_A:
return mmu_idx & 3;
default:
g_assert_not_reached();
}
} }
/* Determine the current mmu_idx to use for normal loads/stores */ /* Determine the current mmu_idx to use for normal loads/stores */
@ -2061,7 +2104,7 @@ static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
int el = arm_current_el(env); int el = arm_current_el(env);
if (el < 2 && arm_is_secure_below_el3(env)) { if (el < 2 && arm_is_secure_below_el3(env)) {
return ARMMMUIdx_S1SE0 + el; return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
} }
return el; return el;
} }
@ -2440,7 +2483,7 @@ static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *flags) target_ulong *cs_base, uint32_t *flags)
{ {
ARMMMUIdx mmu_idx = cpu_mmu_index(env, false); ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
if (is_a64(env)) { if (is_a64(env)) {
*pc = env->pc; *pc = env->pc;
@ -2466,7 +2509,7 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
<< ARM_TBFLAG_XSCALE_CPAR_SHIFT); << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
} }
*flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT); *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
/* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
* states defined in the ARM ARM for software singlestep: * states defined in the ARM ARM for software singlestep:

View file

@ -477,23 +477,23 @@ static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = ENV_GET_CPU(env); CPUState *cs = ENV_GET_CPU(env);
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0) | ARMMMUIdxBit_S12NSE0 |
(1 << ARMMMUIdx_S2NS)); ARMMMUIdxBit_S2NS);
} }
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value) uint64_t value)
{ {
/* Unicorn: commented out. See issue 642 // Unicorn: if'd out. See issue 642
CPUState *other_cs; #if 0
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE0 |
(1 << ARMMMUIdx_S12NSE0) | ARMMMUIdxBit_S2NS);
(1 << ARMMMUIdx_S2NS)); #endif
}*/
} }
static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -514,13 +514,14 @@ static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 40); pageaddr = sextract64(value << 12, 0, 40);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS)); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
} }
static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value) uint64_t value)
{ {
/* Unicorn: commented out, see issue 642 // Unicorn: if'd out, see issue 642
#if 0
CPUState *other_cs; CPUState *other_cs;
uint64_t pageaddr; uint64_t pageaddr;
@ -530,9 +531,9 @@ static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 40); pageaddr = sextract64(value << 12, 0, 40);
CPU_FOREACH(other_cs) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S2NS)); ARMMMUIdxBit_S2NS);
}*/ #endif
} }
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -540,18 +541,18 @@ static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
CPUState *cs = ENV_GET_CPU(env); CPUState *cs = ENV_GET_CPU(env);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2)); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
} }
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value) uint64_t value)
{ {
/* Unicorn: commented out. See issue 642 // Unicorn: if'd out. See issue 642
CPUState *other_cs; #if 0
CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
tlb_flush_by_mmuidx(other_cs, (1 << ARMMMUIdx_S1E2)); #endif
}*/
} }
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -560,19 +561,20 @@ static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = ENV_GET_CPU(env); CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2)); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
} }
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value) uint64_t value)
{ {
/* Unicorn: commented out. See issue 642. // Unicorn: if'd out. See issue 642.
CPUState *other_cs; #if 0
CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
CPU_FOREACH(other_cs) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S1E2)); ARMMMUIdxBit_S1E2);
}*/ #endif
} }
static const ARMCPRegInfo cp_reginfo[] = { static const ARMCPRegInfo cp_reginfo[] = {
@ -2336,9 +2338,9 @@ static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* Accesses to VTTBR may change the VMID so we must flush the TLB. */ /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
if (raw_read(env, ri) != value) { if (raw_read(env, ri) != value) {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0) | ARMMMUIdxBit_S12NSE0 |
(1 << ARMMMUIdx_S2NS)); ARMMMUIdxBit_S2NS);
raw_write(env, ri, value); raw_write(env, ri, value);
} }
} }
@ -2657,12 +2659,12 @@ static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
if (arm_is_secure_below_el3(env)) { if (arm_is_secure_below_el3(env)) {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE0)); ARMMMUIdxBit_S1SE0);
} else { } else {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0)); ARMMMUIdxBit_S12NSE0);
} }
} }
@ -2672,18 +2674,16 @@ static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
bool sec = arm_is_secure_below_el3(env); bool sec = arm_is_secure_below_el3(env);
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { if (sec) {
if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE0);
(1 << ARMMMUIdx_S1SE0)); } else {
} else { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE0);
(1 << ARMMMUIdx_S12NSE0));
}
} }
#endif #endif
} }
@ -2701,18 +2701,18 @@ static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
if (arm_is_secure_below_el3(env)) { if (arm_is_secure_below_el3(env)) {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE0)); ARMMMUIdxBit_S1SE0);
} else { } else {
if (arm_feature(env, ARM_FEATURE_EL2)) { if (arm_feature(env, ARM_FEATURE_EL2)) {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0) | ARMMMUIdxBit_S12NSE0 |
(1 << ARMMMUIdx_S2NS)); ARMMMUIdxBit_S2NS);
} else { } else {
tlb_flush_by_mmuidx(cs, tlb_flush_by_mmuidx(cs,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0)); ARMMMUIdxBit_S12NSE0);
} }
} }
} }
@ -2723,7 +2723,7 @@ static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
ARMCPU *cpu = arm_env_get_cpu(env); ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2)); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
} }
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2732,7 +2732,7 @@ static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
ARMCPU *cpu = arm_env_get_cpu(env); ARMCPU *cpu = arm_env_get_cpu(env);
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3)); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
} }
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2746,23 +2746,21 @@ static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
#if 0 #if 0
bool sec = arm_is_secure_below_el3(env); bool sec = arm_is_secure_below_el3(env);
bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { if (sec) {
if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE0);
(1 << ARMMMUIdx_S1SE0)); } else if (has_el2) {
} else if (has_el2) { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE0 |
(1 << ARMMMUIdx_S12NSE0) | ARMMMUIdxBit_S2NS);
(1 << ARMMMUIdx_S2NS)); } else {
} else { tlb_flush_by_mmuidx_all_cpus_synced(cs,
tlb_flush_by_mmuidx(other_cs, ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE0);
(1 << ARMMMUIdx_S12NSE0));
}
} }
#endif #endif
} }
@ -2772,11 +2770,9 @@ static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
tlb_flush_by_mmuidx(other_cs, (1 << ARMMMUIdx_S1E2));
}
#endif #endif
} }
@ -2785,11 +2781,9 @@ static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
CPU_FOREACH(other_cs) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
tlb_flush_by_mmuidx(other_cs, (1 << ARMMMUIdx_S1E3));
}
#endif #endif
} }
@ -2807,12 +2801,12 @@ static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
if (arm_is_secure_below_el3(env)) { if (arm_is_secure_below_el3(env)) {
tlb_flush_page_by_mmuidx(cs, pageaddr, tlb_flush_page_by_mmuidx(cs, pageaddr,
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE0)); ARMMMUIdxBit_S1SE0);
} else { } else {
tlb_flush_page_by_mmuidx(cs, pageaddr, tlb_flush_page_by_mmuidx(cs, pageaddr,
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE0)); ARMMMUIdxBit_S12NSE0);
} }
} }
@ -2827,7 +2821,7 @@ static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
uint64_t pageaddr = sextract64(value << 12, 0, 56); uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2)); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
} }
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2841,7 +2835,7 @@ static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
uint64_t pageaddr = sextract64(value << 12, 0, 56); uint64_t pageaddr = sextract64(value << 12, 0, 56);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3)); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
} }
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2850,19 +2844,17 @@ static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
bool sec = arm_is_secure_below_el3(env); bool sec = arm_is_secure_below_el3(env);
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env)
uint64_t pageaddr = sextract64(value << 12, 0, 56); uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) { if (sec) {
if (sec) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdxBit_S1SE1 |
(1 << ARMMMUIdx_S1SE1) | ARMMMUIdxBit_S1SE0);
(1 << ARMMMUIdx_S1SE0)); } else {
} else { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdxBit_S12NSE1 |
(1 << ARMMMUIdx_S12NSE1) | ARMMMUIdxBit_S12NSE0);
(1 << ARMMMUIdx_S12NSE0));
}
} }
#endif #endif
} }
@ -2872,12 +2864,11 @@ static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56); uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S1E2)); ARMMMUIdxBit_S1E2);
}
#endif #endif
} }
@ -2886,12 +2877,11 @@ static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr = sextract64(value << 12, 0, 56); uint64_t pageaddr = sextract64(value << 12, 0, 56);
CPU_FOREACH(other_cs) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S1E3)); ARMMMUIdxBit_S1E3);
}
#endif #endif
} }
@ -2914,7 +2904,7 @@ static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 48); pageaddr = sextract64(value << 12, 0, 48);
tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS)); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
} }
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2922,7 +2912,7 @@ static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
{ {
// UNICORN: TODO: issue #642 // UNICORN: TODO: issue #642
#if 0 #if 0
CPUState *other_cs; CPUState *cs = ENV_GET_CPU(env);
uint64_t pageaddr; uint64_t pageaddr;
if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
@ -2931,9 +2921,8 @@ static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
pageaddr = sextract64(value << 12, 0, 48); pageaddr = sextract64(value << 12, 0, 48);
CPU_FOREACH(other_cs) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S2NS)); ARMMMUIdxBit_S2NS);
}
#endif #endif
} }
@ -6211,6 +6200,17 @@ static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
} }
/* Convert a possible stage1+2 MMU index into the appropriate
* stage 1 MMU index
*/
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
}
return mmu_idx;
}
/* Returns TBI0 value for current regime el */ /* Returns TBI0 value for current regime el */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{ {
@ -6218,11 +6218,9 @@ uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
uint32_t el; uint32_t el;
/* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
* a stage 1+2 mmu index into the appropriate stage 1 mmu index. * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
*/ */
if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { mmu_idx = stage_1_mmu_idx(mmu_idx);
mmu_idx += ARMMMUIdx_S1NSE0;
}
tcr = regime_tcr(env, mmu_idx); tcr = regime_tcr(env, mmu_idx);
el = regime_el(env, mmu_idx); el = regime_el(env, mmu_idx);
@ -6241,11 +6239,9 @@ uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
uint32_t el; uint32_t el;
/* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
* a stage 1+2 mmu index into the appropriate stage 1 mmu index. * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
*/ */
if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { mmu_idx = stage_1_mmu_idx(mmu_idx);
mmu_idx += ARMMMUIdx_S1NSE0;
}
tcr = regime_tcr(env, mmu_idx); tcr = regime_tcr(env, mmu_idx);
el = regime_el(env, mmu_idx); el = regime_el(env, mmu_idx);
@ -6291,9 +6287,7 @@ static inline bool regime_using_lpae_format(CPUARMState *env,
* on whether the long or short descriptor format is in use. */ * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{ {
if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { mmu_idx = stage_1_mmu_idx(mmu_idx);
mmu_idx += ARMMMUIdx_S1NSE0;
}
return regime_using_lpae_format(env, mmu_idx); return regime_using_lpae_format(env, mmu_idx);
} }
@ -7548,7 +7542,7 @@ static bool get_phys_addr(CPUARMState *env, target_ulong address,
int ret; int ret;
ret = get_phys_addr(env, address, access_type, ret = get_phys_addr(env, address, access_type,
mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, stage_1_mmu_idx(mmu_idx), &ipa, attrs,
prot, page_size, fsr, fi); prot, page_size, fsr, fi);
/* If S1 fails or S2 is disabled, return early. */ /* If S1 fails or S2 is disabled, return early. */
@ -7569,7 +7563,7 @@ static bool get_phys_addr(CPUARMState *env, target_ulong address,
/* /*
* For non-EL2 CPUs a stage1+stage2 translation is just stage 1. * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
*/ */
mmu_idx += ARMMMUIdx_S1NSE0; mmu_idx = stage_1_mmu_idx(mmu_idx);
} }
} }
@ -7644,9 +7638,9 @@ bool arm_tlb_fill(CPUState *cs, vaddr address,
int ret; int ret;
MemTxAttrs attrs = {0}; MemTxAttrs attrs = {0};
ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, ret = get_phys_addr(env, address, access_type,
core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
&attrs, &prot, &page_size, fsr, fi); &attrs, &prot, &page_size, fsr, fi);
if (!ret) { if (!ret) {
/* Map a single [sub]page. */ /* Map a single [sub]page. */
phys_addr &= TARGET_PAGE_MASK; phys_addr &= TARGET_PAGE_MASK;
@ -7670,8 +7664,9 @@ hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
bool ret; bool ret;
uint32_t fsr; uint32_t fsr;
ARMMMUFaultInfo fi = {0}; ARMMMUFaultInfo fi = {0};
ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
attrs, &prot, &page_size, &fsr, &fi); attrs, &prot, &page_size, &fsr, &fi);
if (ret) { if (ret) {

View file

@ -193,6 +193,7 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
int target_el; int target_el;
bool same_el; bool same_el;
uint32_t syn; uint32_t syn;
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
if (retaddr) { if (retaddr) {
/* now we have a real cpu fault */ /* now we have a real cpu fault */
@ -207,7 +208,7 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
/* the DFSR for an alignment fault depends on whether we're using /* the DFSR for an alignment fault depends on whether we're using
* the LPAE long descriptor format, or the short descriptor format * the LPAE long descriptor format, or the short descriptor format
*/ */
if (arm_s1_regime_using_lpae_format(env, mmu_idx)) { if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
env->exception.fsr = (1 << 9) | 0x21; env->exception.fsr = (1 << 9) | 0x21;
} else { } else {
env->exception.fsr = 0x1; env->exception.fsr = 0x1;

View file

@ -114,21 +114,27 @@ void a64_translate_init(struct uc_struct *uc)
#endif #endif
} }
static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s) static inline int get_a64_user_mem_index(DisasContext *s)
{ {
/* Return the mmu_idx to use for A64 "unprivileged load/store" insns: /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
* if EL1, access as if EL0; otherwise access at current EL * if EL1, access as if EL0; otherwise access at current EL
*/ */
ARMMMUIdx useridx;
switch (s->mmu_idx) { switch (s->mmu_idx) {
case ARMMMUIdx_S12NSE1: case ARMMMUIdx_S12NSE1:
return ARMMMUIdx_S12NSE0; useridx = ARMMMUIdx_S12NSE0;
break;
case ARMMMUIdx_S1SE1: case ARMMMUIdx_S1SE1:
return ARMMMUIdx_S1SE0; useridx = ARMMMUIdx_S1SE0;
break;
case ARMMMUIdx_S2NS: case ARMMMUIdx_S2NS:
g_assert_not_reached(); g_assert_not_reached();
default: default:
return s->mmu_idx; useridx = s->mmu_idx;
break;
} }
return arm_to_core_mmu_idx(useridx);
} }
#if 0 #if 0
@ -11440,7 +11446,7 @@ void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE; dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
dc->condexec_mask = 0; dc->condexec_mask = 0;
dc->condexec_cond = 0; dc->condexec_cond = 0;
dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags); dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(tb->flags));
dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags); dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags);
dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags); dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);

View file

@ -131,9 +131,9 @@ static void disas_set_da_iss(DisasContext *s, TCGMemOp memop, ISSInfo issinfo)
disas_set_insn_syndrome(s, syn); disas_set_insn_syndrome(s, syn);
} }
static inline ARMMMUIdx get_a32_user_mem_index(DisasContext *s) static inline int get_a32_user_mem_index(DisasContext *s)
{ {
/* Return the mmu_idx to use for A32/T32 "unprivileged load/store" /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store"
* insns: * insns:
* if PL2, UNPREDICTABLE (we choose to implement as if PL0) * if PL2, UNPREDICTABLE (we choose to implement as if PL0)
* otherwise, access as if at PL0. * otherwise, access as if at PL0.
@ -142,11 +142,11 @@ static inline ARMMMUIdx get_a32_user_mem_index(DisasContext *s)
case ARMMMUIdx_S1E2: /* this one is UNPREDICTABLE */ case ARMMMUIdx_S1E2: /* this one is UNPREDICTABLE */
case ARMMMUIdx_S12NSE0: case ARMMMUIdx_S12NSE0:
case ARMMMUIdx_S12NSE1: case ARMMMUIdx_S12NSE1:
return ARMMMUIdx_S12NSE0; return arm_to_core_mmu_idx(ARMMMUIdx_S12NSE0);
case ARMMMUIdx_S1E3: case ARMMMUIdx_S1E3:
case ARMMMUIdx_S1SE0: case ARMMMUIdx_S1SE0:
case ARMMMUIdx_S1SE1: case ARMMMUIdx_S1SE1:
return ARMMMUIdx_S1SE0; return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0);
case ARMMMUIdx_S2NS: case ARMMMUIdx_S2NS:
default: default:
g_assert_not_reached(); g_assert_not_reached();
@ -12011,7 +12011,7 @@ void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb)
dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE; dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1; dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1;
dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4; dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4;
dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags); dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(tb->flags));
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0); dc->user = (dc->current_el == 0);

View file

@ -85,7 +85,7 @@ static inline int arm_dc_feature(DisasContext *dc, int feature)
static inline int get_mem_index(DisasContext *s) static inline int get_mem_index(DisasContext *s)
{ {
return s->mmu_idx; return arm_to_core_mmu_idx(s->mmu_idx);
} }
/* Function used to determine the target exception EL when otherwise not known /* Function used to determine the target exception EL when otherwise not known