mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-09 00:35:40 +00:00
fpu/softfloat: Define floatN_default_nan in terms of parts_default_nan
Isolate the target-specific choice to 2 functions instead of 6. The code in float16_default_nan was only correct for ARM, MIPS, and X86. Though float16 support is rare among our targets. The code in float128_default_nan was arguably wrong for Sparc. While QEMU supports the Sparc 128-bit insns, no real cpu enables it. The code in floatx80_default_nan tried to be over-general. There are only two targets that support this format: x86 and m68k. Thus there is no point in inventing a value for snan_bit_is_one. Move routines that no longer have ifdefs out of softfloat-specialize.h. Backports commit 0218a16e540ad416683e19dfbd52f75092507b27 from qemu
This commit is contained in:
parent
77bee9e8a5
commit
df3436b518
|
@ -179,94 +179,22 @@ static FloatParts parts_silence_nan(FloatParts a, float_status *status)
|
|||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated half-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float16 float16_default_nan(float_status *status)
|
||||
{
|
||||
#if defined(TARGET_ARM)
|
||||
return const_float16(0x7E00);
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
return const_float16(0x7DFF);
|
||||
} else {
|
||||
#if defined(TARGET_MIPS)
|
||||
return const_float16(0x7E00);
|
||||
#else
|
||||
return const_float16(0xFE00);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_default_nan(float_status *status)
|
||||
{
|
||||
#if defined(TARGET_SPARC) || defined(TARGET_M68K)
|
||||
return const_float32(0x7FFFFFFF);
|
||||
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
|
||||
defined(TARGET_XTENSA) || defined(TARGET_S390X) || \
|
||||
defined(TARGET_TRICORE) || defined(TARGET_RISCV)
|
||||
return const_float32(0x7FC00000);
|
||||
#elif defined(TARGET_HPPA)
|
||||
return const_float32(0x7FA00000);
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
return const_float32(0x7FBFFFFF);
|
||||
} else {
|
||||
#if defined(TARGET_MIPS)
|
||||
return const_float32(0x7FC00000);
|
||||
#else
|
||||
return const_float32(0xFFC00000);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_default_nan(float_status *status)
|
||||
{
|
||||
#if defined(TARGET_SPARC) || defined(TARGET_M68K)
|
||||
return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
|
||||
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
|
||||
defined(TARGET_S390X) || defined(TARGET_RISCV)
|
||||
return const_float64(LIT64(0x7FF8000000000000));
|
||||
#elif defined(TARGET_HPPA)
|
||||
return const_float64(LIT64(0x7FF4000000000000));
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
|
||||
} else {
|
||||
#if defined(TARGET_MIPS)
|
||||
return const_float64(LIT64(0x7FF8000000000000));
|
||||
#else
|
||||
return const_float64(LIT64(0xFFF8000000000000));
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_default_nan(float_status *status)
|
||||
{
|
||||
floatx80 r;
|
||||
|
||||
/* None of the targets that have snan_bit_is_one use floatx80. */
|
||||
assert(!snan_bit_is_one(status));
|
||||
#if defined(TARGET_M68K)
|
||||
r.low = LIT64(0xFFFFFFFFFFFFFFFF);
|
||||
r.high = 0x7FFF;
|
||||
#else
|
||||
if (snan_bit_is_one(status)) {
|
||||
r.low = LIT64(0xBFFFFFFFFFFFFFFF);
|
||||
r.high = 0x7FFF;
|
||||
} else {
|
||||
r.low = LIT64(0xC000000000000000);
|
||||
r.high = 0xFFFF;
|
||||
}
|
||||
/* X86 */
|
||||
r.low = LIT64(0xC000000000000000);
|
||||
r.high = 0xFFFF;
|
||||
#endif
|
||||
return r;
|
||||
}
|
||||
|
@ -285,27 +213,6 @@ floatx80 floatx80_default_nan(float_status *status)
|
|||
const floatx80 floatx80_infinity
|
||||
= make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_default_nan(float_status *status)
|
||||
{
|
||||
float128 r;
|
||||
|
||||
if (snan_bit_is_one(status)) {
|
||||
r.low = LIT64(0xFFFFFFFFFFFFFFFF);
|
||||
r.high = LIT64(0x7FFF7FFFFFFFFFFF);
|
||||
} else {
|
||||
r.low = LIT64(0x0000000000000000);
|
||||
#if defined(TARGET_S390X) || defined(TARGET_PPC) || defined(TARGET_RISCV)
|
||||
r.high = LIT64(0x7FFF800000000000);
|
||||
#else
|
||||
r.high = LIT64(0xFFFF800000000000);
|
||||
#endif
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap
|
||||
|
|
|
@ -2093,6 +2093,47 @@ float64 QEMU_FLATTEN float64_sqrt(float64 a, float_status *status)
|
|||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float16 float16_default_nan(float_status *status)
|
||||
{
|
||||
FloatParts p = parts_default_nan(status);
|
||||
p.frac >>= float16_params.frac_shift;
|
||||
return float16_pack_raw(p);
|
||||
}
|
||||
|
||||
float32 float32_default_nan(float_status *status)
|
||||
{
|
||||
FloatParts p = parts_default_nan(status);
|
||||
p.frac >>= float32_params.frac_shift;
|
||||
return float32_pack_raw(p);
|
||||
}
|
||||
|
||||
float64 float64_default_nan(float_status *status)
|
||||
{
|
||||
FloatParts p = parts_default_nan(status);
|
||||
p.frac >>= float64_params.frac_shift;
|
||||
return float64_pack_raw(p);
|
||||
}
|
||||
|
||||
float128 float128_default_nan(float_status *status)
|
||||
{
|
||||
FloatParts p = parts_default_nan(status);
|
||||
float128 r;
|
||||
|
||||
/* Extrapolate from the choices made by parts_default_nan to fill
|
||||
* in the quad-floating format. If the low bit is set, assume we
|
||||
* want to set all non-snan bits.
|
||||
*/
|
||||
r.low = -(p.frac & 1);
|
||||
r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
|
||||
r.high |= LIT64(0x7FFF000000000000);
|
||||
r.high |= (uint64_t)p.sign << 63;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
|
|
Loading…
Reference in a new issue