mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-06-04 13:28:25 +00:00
memory: RCU ram_list.dirty_memory[] for safe RAM hotplug
Although accesses to ram_list.dirty_memory[] use atomics so multiple threads can safely dirty the bitmap, the data structure is not fully thread-safe yet. This patch handles the RAM hotplug case where ram_list.dirty_memory[] is grown. ram_list.dirty_memory[] is change from a regular bitmap to an RCU array of pointers to fixed-size bitmap blocks. Threads can continue accessing bitmap blocks while the array is being extended. See the comments in the code for an in-depth explanation of struct DirtyMemoryBlocks. I have tested that live migration with virtio-blk dataplane works. Backports commit 5b82b703b69acc67b78b98a5efc897a3912719eb from qemu
This commit is contained in:
parent
a632d1b96d
commit
e79e0881cd
86
qemu/exec.c
86
qemu/exec.c
|
@ -772,8 +772,9 @@ bool cpu_physical_memory_test_and_clear_dirty(struct uc_struct *uc,
|
||||||
ram_addr_t length,
|
ram_addr_t length,
|
||||||
unsigned client)
|
unsigned client)
|
||||||
{
|
{
|
||||||
|
DirtyMemoryBlocks *blocks;
|
||||||
unsigned long end, page;
|
unsigned long end, page;
|
||||||
bool dirty;
|
bool dirty = false;
|
||||||
|
|
||||||
if (length == 0) {
|
if (length == 0) {
|
||||||
return false;
|
return false;
|
||||||
|
@ -781,8 +782,25 @@ bool cpu_physical_memory_test_and_clear_dirty(struct uc_struct *uc,
|
||||||
|
|
||||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||||
page = start >> TARGET_PAGE_BITS;
|
page = start >> TARGET_PAGE_BITS;
|
||||||
dirty = bitmap_test_and_clear_atomic(uc->ram_list.dirty_memory[client],
|
|
||||||
page, end - page);
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
// Unicorn: atomic_read instead of atomic_rcu_read used
|
||||||
|
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
|
||||||
|
|
||||||
|
while (page < end) {
|
||||||
|
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||||
|
|
||||||
|
dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
|
||||||
|
offset, num);
|
||||||
|
page += num;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
|
|
||||||
if (dirty && tcg_enabled(uc)) {
|
if (dirty && tcg_enabled(uc)) {
|
||||||
tlb_reset_dirty_range_all(uc, start, length);
|
tlb_reset_dirty_range_all(uc, start, length);
|
||||||
|
@ -1109,6 +1127,51 @@ int qemu_ram_resize(struct uc_struct *uc, ram_addr_t base, ram_addr_t newsize, E
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Called with ram_list.mutex held */
|
||||||
|
static void dirty_memory_extend(struct uc_struct *uc,
|
||||||
|
ram_addr_t old_ram_size,
|
||||||
|
ram_addr_t new_ram_size)
|
||||||
|
{
|
||||||
|
ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
|
||||||
|
DIRTY_MEMORY_BLOCK_SIZE);
|
||||||
|
ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
|
||||||
|
DIRTY_MEMORY_BLOCK_SIZE);
|
||||||
|
int i;
|
||||||
|
|
||||||
|
/* Only need to extend if block count increased */
|
||||||
|
if (new_num_blocks <= old_num_blocks) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||||
|
DirtyMemoryBlocks *old_blocks;
|
||||||
|
DirtyMemoryBlocks *new_blocks;
|
||||||
|
int j;
|
||||||
|
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
old_blocks = atomic_read(&uc->ram_list.dirty_memory[i]);
|
||||||
|
new_blocks = g_malloc(sizeof(*new_blocks) +
|
||||||
|
sizeof(new_blocks->blocks[0]) * new_num_blocks);
|
||||||
|
// Unicorn: unicorn-specific variable to make memory handling less painful.
|
||||||
|
new_blocks->num_blocks = new_num_blocks;
|
||||||
|
|
||||||
|
if (old_num_blocks) {
|
||||||
|
memcpy(new_blocks->blocks, old_blocks->blocks,
|
||||||
|
old_num_blocks * sizeof(old_blocks->blocks[0]));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (j = old_num_blocks; j < new_num_blocks; j++) {
|
||||||
|
new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unicorn: atomic_set used instead of atomic_rcu_set
|
||||||
|
atomic_set(&uc->ram_list.dirty_memory[i], new_blocks);
|
||||||
|
|
||||||
|
// Unicorn: g_free used instead of g_free_rcu
|
||||||
|
g_free(old_blocks);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block, Error **errp)
|
static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block, Error **errp)
|
||||||
{
|
{
|
||||||
RAMBlock *block;
|
RAMBlock *block;
|
||||||
|
@ -1131,6 +1194,13 @@ static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block, Error **err
|
||||||
memory_try_enable_merging(new_block->host, new_block->max_length);
|
memory_try_enable_merging(new_block->host, new_block->max_length);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
new_ram_size = MAX(old_ram_size,
|
||||||
|
(new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
|
||||||
|
if (new_ram_size > old_ram_size) {
|
||||||
|
// Unicorn: commented out
|
||||||
|
//migration_bitmap_extend(old_ram_size, new_ram_size);
|
||||||
|
dirty_memory_extend(uc, old_ram_size, new_ram_size);
|
||||||
|
}
|
||||||
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
|
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
|
||||||
* QLIST (which has an RCU-friendly variant) does not have insertion at
|
* QLIST (which has an RCU-friendly variant) does not have insertion at
|
||||||
* tail, so save the last element in last_block.
|
* tail, so save the last element in last_block.
|
||||||
|
@ -1154,16 +1224,6 @@ static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block, Error **err
|
||||||
smp_wmb();
|
smp_wmb();
|
||||||
uc->ram_list.version++;
|
uc->ram_list.version++;
|
||||||
|
|
||||||
new_ram_size = last_ram_offset(uc) >> TARGET_PAGE_BITS;
|
|
||||||
|
|
||||||
if (new_ram_size > old_ram_size) {
|
|
||||||
int i;
|
|
||||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
||||||
uc->ram_list.dirty_memory[i] =
|
|
||||||
bitmap_zero_extend(uc->ram_list.dirty_memory[i],
|
|
||||||
old_ram_size, new_ram_size);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
cpu_physical_memory_set_dirty_range(uc, new_block->offset,
|
cpu_physical_memory_set_dirty_range(uc, new_block->offset,
|
||||||
new_block->used_length,
|
new_block->used_length,
|
||||||
DIRTY_CLIENTS_ALL);
|
DIRTY_CLIENTS_ALL);
|
||||||
|
|
|
@ -74,30 +74,77 @@ static inline bool cpu_physical_memory_get_dirty(struct uc_struct *uc, ram_addr_
|
||||||
ram_addr_t length,
|
ram_addr_t length,
|
||||||
unsigned client)
|
unsigned client)
|
||||||
{
|
{
|
||||||
unsigned long end, page, next;
|
DirtyMemoryBlocks *blocks;
|
||||||
|
unsigned long end, page;
|
||||||
|
bool dirty = false;
|
||||||
|
|
||||||
assert(client < DIRTY_MEMORY_NUM);
|
assert(client < DIRTY_MEMORY_NUM);
|
||||||
|
|
||||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||||
page = start >> TARGET_PAGE_BITS;
|
page = start >> TARGET_PAGE_BITS;
|
||||||
next = find_next_bit(uc->ram_list.dirty_memory[client], end, page);
|
|
||||||
|
|
||||||
return next < end;
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
|
||||||
|
|
||||||
|
while (page < end) {
|
||||||
|
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||||
|
|
||||||
|
if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
|
||||||
|
dirty = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
page += num;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
|
|
||||||
|
return dirty;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline bool cpu_physical_memory_all_dirty(struct uc_struct *uc, ram_addr_t start,
|
static inline bool cpu_physical_memory_all_dirty(struct uc_struct *uc, ram_addr_t start,
|
||||||
ram_addr_t length,
|
ram_addr_t length,
|
||||||
unsigned client)
|
unsigned client)
|
||||||
{
|
{
|
||||||
unsigned long end, page, next;
|
DirtyMemoryBlocks *blocks;
|
||||||
|
unsigned long end, page;
|
||||||
|
bool dirty = true;
|
||||||
|
|
||||||
assert(client < DIRTY_MEMORY_NUM);
|
assert(client < DIRTY_MEMORY_NUM);
|
||||||
|
|
||||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||||
page = start >> TARGET_PAGE_BITS;
|
page = start >> TARGET_PAGE_BITS;
|
||||||
next = find_next_zero_bit(uc->ram_list.dirty_memory[client], end, page);
|
|
||||||
|
|
||||||
return next >= end;
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
|
||||||
|
|
||||||
|
while (page < end) {
|
||||||
|
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||||
|
|
||||||
|
if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
|
||||||
|
dirty = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
page += num;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
|
|
||||||
|
return dirty;
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline bool cpu_physical_memory_get_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
|
static inline bool cpu_physical_memory_get_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
|
||||||
|
@ -126,16 +173,34 @@ static inline bool cpu_physical_memory_range_includes_clean(struct uc_struct *uc
|
||||||
static inline void cpu_physical_memory_set_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
|
static inline void cpu_physical_memory_set_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
|
||||||
unsigned client)
|
unsigned client)
|
||||||
{
|
{
|
||||||
|
unsigned long page, idx, offset;
|
||||||
|
DirtyMemoryBlocks *blocks;
|
||||||
|
|
||||||
assert(client < DIRTY_MEMORY_NUM);
|
assert(client < DIRTY_MEMORY_NUM);
|
||||||
set_bit_atomic(addr >> TARGET_PAGE_BITS, uc->ram_list.dirty_memory[client]);
|
|
||||||
|
page = addr >> TARGET_PAGE_BITS;
|
||||||
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
blocks = atomic_read(&uc->ram_list.dirty_memory[client]);
|
||||||
|
|
||||||
|
set_bit_atomic(offset, blocks->blocks[idx]);
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline void cpu_physical_memory_set_dirty_range(struct uc_struct *uc, ram_addr_t start,
|
static inline void cpu_physical_memory_set_dirty_range(struct uc_struct *uc, ram_addr_t start,
|
||||||
ram_addr_t length,
|
ram_addr_t length,
|
||||||
uint8_t mask)
|
uint8_t mask)
|
||||||
{
|
{
|
||||||
|
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
|
||||||
unsigned long end, page;
|
unsigned long end, page;
|
||||||
unsigned long **d = uc->ram_list.dirty_memory;
|
int i;
|
||||||
|
|
||||||
if (!mask && !xen_enabled()) {
|
if (!mask && !xen_enabled()) {
|
||||||
return;
|
return;
|
||||||
|
@ -143,10 +208,30 @@ static inline void cpu_physical_memory_set_dirty_range(struct uc_struct *uc, ram
|
||||||
|
|
||||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||||
page = start >> TARGET_PAGE_BITS;
|
page = start >> TARGET_PAGE_BITS;
|
||||||
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
|
||||||
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
blocks[i] = atomic_read(&uc->ram_list.dirty_memory[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
while (page < end) {
|
||||||
|
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||||
|
|
||||||
|
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
||||||
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
|
||||||
|
offset, num);
|
||||||
|
}
|
||||||
|
|
||||||
|
page += num;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
}
|
}
|
||||||
|
|
||||||
#if !defined(_WIN32)
|
#if !defined(_WIN32)
|
||||||
|
@ -165,19 +250,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(struct uc_struct *uc,
|
||||||
/* start address is aligned at the start of a word? */
|
/* start address is aligned at the start of a word? */
|
||||||
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
||||||
(hpratio == 1)) {
|
(hpratio == 1)) {
|
||||||
|
unsigned long **blocks[DIRTY_MEMORY_NUM];
|
||||||
|
unsigned long idx;
|
||||||
|
unsigned long offset;
|
||||||
long k;
|
long k;
|
||||||
long nr = BITS_TO_LONGS(pages);
|
long nr = BITS_TO_LONGS(pages);
|
||||||
|
|
||||||
|
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
|
||||||
|
DIRTY_MEMORY_BLOCK_SIZE);
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_lock();
|
||||||
|
|
||||||
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||||
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
||||||
|
blocks[i] = atomic_read(&uc->ram_list.dirty_memory[i])->blocks;
|
||||||
|
}
|
||||||
|
|
||||||
for (k = 0; k < nr; k++) {
|
for (k = 0; k < nr; k++) {
|
||||||
if (bitmap[k]) {
|
if (bitmap[k]) {
|
||||||
unsigned long temp = leul_to_cpu(bitmap[k]);
|
unsigned long temp = leul_to_cpu(bitmap[k]);
|
||||||
unsigned long **d = uc->ram_list.dirty_memory;
|
|
||||||
|
|
||||||
if (tcg_enabled(uc)) {
|
if (tcg_enabled(uc)) {
|
||||||
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
|
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
||||||
|
offset = 0;
|
||||||
|
idx++;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Unicorn: commented out
|
||||||
|
//rcu_read_unlock();
|
||||||
} else {
|
} else {
|
||||||
uint8_t clients = tcg_enabled(uc) ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
uint8_t clients = tcg_enabled(uc) ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
||||||
/*
|
/*
|
||||||
|
|
|
@ -7,11 +7,43 @@
|
||||||
#define DIRTY_MEMORY_CODE 0
|
#define DIRTY_MEMORY_CODE 0
|
||||||
#define DIRTY_MEMORY_NUM 1 /* num of dirty bits */
|
#define DIRTY_MEMORY_NUM 1 /* num of dirty bits */
|
||||||
|
|
||||||
|
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
|
||||||
|
* under RCU. The bitmap for a block can be accessed as follows:
|
||||||
|
*
|
||||||
|
* rcu_read_lock();
|
||||||
|
*
|
||||||
|
* DirtyMemoryBlocks *blocks =
|
||||||
|
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
|
||||||
|
*
|
||||||
|
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||||
|
* unsigned long *block = blocks.blocks[idx];
|
||||||
|
* ...access block bitmap...
|
||||||
|
*
|
||||||
|
* rcu_read_unlock();
|
||||||
|
*
|
||||||
|
* Remember to check for the end of the block when accessing a range of
|
||||||
|
* addresses. Move on to the next block if you reach the end.
|
||||||
|
*
|
||||||
|
* Organization into blocks allows dirty memory to grow (but not shrink) under
|
||||||
|
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
|
||||||
|
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
|
||||||
|
* the same. Other threads can safely access existing blocks while dirty
|
||||||
|
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
|
||||||
|
* anymore it is freed by RCU (but the underlying blocks stay because they are
|
||||||
|
* pointed to from the new DirtyMemoryBlocks).
|
||||||
|
*/
|
||||||
|
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
|
||||||
|
typedef struct {
|
||||||
|
//struct rcu_head rcu;
|
||||||
|
// Unicorn: unicorn-specific variable to make memory handling less painful
|
||||||
|
size_t num_blocks;
|
||||||
|
unsigned long *blocks[];
|
||||||
|
} DirtyMemoryBlocks;
|
||||||
|
|
||||||
typedef struct RAMList {
|
typedef struct RAMList {
|
||||||
/* Protected by the iothread lock. */
|
|
||||||
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
|
|
||||||
RAMBlock *mru_block;
|
RAMBlock *mru_block;
|
||||||
QLIST_HEAD(, RAMBlock) blocks;
|
QLIST_HEAD(, RAMBlock) blocks;
|
||||||
|
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
|
||||||
uint32_t version;
|
uint32_t version;
|
||||||
} RAMList;
|
} RAMList;
|
||||||
|
|
||||||
|
|
|
@ -48,6 +48,21 @@
|
||||||
#define DECLARE_BITMAP(name,bits) \
|
#define DECLARE_BITMAP(name,bits) \
|
||||||
unsigned long name[BITS_TO_LONGS(bits)]
|
unsigned long name[BITS_TO_LONGS(bits)]
|
||||||
|
|
||||||
|
static inline unsigned long *bitmap_try_new(long nbits)
|
||||||
|
{
|
||||||
|
long len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
|
||||||
|
return g_try_malloc0(len);
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline unsigned long *bitmap_new(long nbits)
|
||||||
|
{
|
||||||
|
unsigned long *ptr = bitmap_try_new(nbits);
|
||||||
|
if (ptr == NULL) {
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
return ptr;
|
||||||
|
}
|
||||||
|
|
||||||
void bitmap_set(unsigned long *map, long i, long len);
|
void bitmap_set(unsigned long *map, long i, long len);
|
||||||
void bitmap_set_atomic(unsigned long *map, long i, long len);
|
void bitmap_set_atomic(unsigned long *map, long i, long len);
|
||||||
void bitmap_clear(unsigned long *map, long start, long nr);
|
void bitmap_clear(unsigned long *map, long start, long nr);
|
||||||
|
|
20
uc.c
20
uc.c
|
@ -279,6 +279,22 @@ uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ramlist_free_dirty_memory(struct uc_struct *uc)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
DirtyMemoryBlocks** blocks = uc->ram_list.dirty_memory;
|
||||||
|
|
||||||
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||||
|
DirtyMemoryBlocks* block = uc->ram_list.dirty_memory[i];
|
||||||
|
int j;
|
||||||
|
|
||||||
|
for (j = 0; j < block->num_blocks; j++) {
|
||||||
|
free(block->blocks[j]);
|
||||||
|
}
|
||||||
|
|
||||||
|
free(blocks[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
UNICORN_EXPORT
|
UNICORN_EXPORT
|
||||||
uc_err uc_close(uc_engine *uc)
|
uc_err uc_close(uc_engine *uc)
|
||||||
|
@ -327,9 +343,7 @@ uc_err uc_close(uc_engine *uc)
|
||||||
g_hash_table_foreach(uc->type_table, free_table, uc);
|
g_hash_table_foreach(uc->type_table, free_table, uc);
|
||||||
g_hash_table_destroy(uc->type_table);
|
g_hash_table_destroy(uc->type_table);
|
||||||
|
|
||||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
ramlist_free_dirty_memory(uc);
|
||||||
free(uc->ram_list.dirty_memory[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// free hooks and hook lists
|
// free hooks and hook lists
|
||||||
for (i = 0; i < UC_HOOK_MAX; i++) {
|
for (i = 0; i < UC_HOOK_MAX; i++) {
|
||||||
|
|
Loading…
Reference in a new issue