mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-11 05:05:38 +00:00
softfloat: Revert and reimplement remaining parts of b645bb4885 and 5a6932d51d
Revert the parts of commits b645bb4885 and 5a6932d51d which are still in the codebase and under a SoftFloat-2b license. Reimplement support for architectures where the most significant bit in the mantissa is 1 for a signaling NaN rather than a quiet NaN, by adding handling for SNAN_BIT_IS_ONE being set to the functions which test values for NaN-ness. This includes restoring the bugfixes lost in the reversion where some of the float*_is_quiet_nan() functions were returning true for both signaling and quiet NaNs. [This is a mechanical squashing together of two separate "revert" and "reimplement" patches.] Backports commit 332d5849708d11b835e0b36f4e26e8b36bfb3f5a from qemu
This commit is contained in:
parent
5ad42fb01b
commit
eaf3805f36
|
@ -33,10 +33,14 @@ this code that are retained.
|
|||
===============================================================================
|
||||
*/
|
||||
|
||||
/* Does the target distinguish signaling NaNs from non-signaling NaNs
|
||||
* by setting the most significant bit of the mantissa for a signaling NaN?
|
||||
* (The more common choice is to have it be zero for SNaN and one for QNaN.)
|
||||
*/
|
||||
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
|
||||
#define SNAN_BIT_IS_ONE 1
|
||||
#define SNAN_BIT_IS_ONE 1
|
||||
#else
|
||||
#define SNAN_BIT_IS_ONE 0
|
||||
#define SNAN_BIT_IS_ONE 0
|
||||
#endif
|
||||
|
||||
#if defined(TARGET_XTENSA)
|
||||
|
@ -79,7 +83,7 @@ const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
|
|||
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
|
||||
const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
|
||||
#elif SNAN_BIT_IS_ONE
|
||||
const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
|
||||
const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
|
||||
#else
|
||||
const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
|
||||
#endif
|
||||
|
@ -89,7 +93,7 @@ const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
|
|||
*----------------------------------------------------------------------------*/
|
||||
#if SNAN_BIT_IS_ONE
|
||||
#define floatx80_default_nan_high 0x7FFF
|
||||
#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
|
||||
#define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF)
|
||||
#else
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
|
||||
|
@ -103,8 +107,8 @@ const floatx80 floatx80_default_nan
|
|||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#if SNAN_BIT_IS_ONE
|
||||
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
|
||||
#define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF)
|
||||
#else
|
||||
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
|
||||
#define float128_default_nan_low LIT64( 0x0000000000000000 )
|
||||
|
@ -255,9 +259,9 @@ int float32_is_quiet_nan( float32 a_ )
|
|||
{
|
||||
uint32_t a = float32_val(a_);
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
|
||||
#else
|
||||
return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
|
||||
return ((uint32_t)(a << 1) >= 0xff800000);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -270,7 +274,7 @@ int float32_is_signaling_nan( float32 a_ )
|
|||
{
|
||||
uint32_t a = float32_val(a_);
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
|
||||
return ((uint32_t)(a << 1) >= 0xff800000);
|
||||
#else
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
#endif
|
||||
|
@ -663,11 +667,10 @@ int float64_is_quiet_nan( float64 a_ )
|
|||
{
|
||||
uint64_t a = float64_val(a_);
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
return (((a >> 51) & 0xfff) == 0xffe)
|
||||
&& (a & 0x0007ffffffffffffULL);
|
||||
#else
|
||||
return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
|
||||
return ((a << 1) >= 0xfff0000000000000ULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -680,7 +683,7 @@ int float64_is_signaling_nan( float64 a_ )
|
|||
{
|
||||
uint64_t a = float64_val(a_);
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
|
||||
return ((a << 1) >= 0xfff0000000000000ULL);
|
||||
#else
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
|
@ -864,11 +867,10 @@ int floatx80_is_quiet_nan( floatx80 a )
|
|||
#if SNAN_BIT_IS_ONE
|
||||
uint64_t aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (uint64_t) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
aLow = a.low & ~0x4000000000000000ULL;
|
||||
return ((a.high & 0x7fff) == 0x7fff)
|
||||
&& (aLow << 1)
|
||||
&& (a.low == aLow);
|
||||
#else
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
|
||||
|
@ -884,8 +886,8 @@ int floatx80_is_quiet_nan( floatx80 a )
|
|||
int floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
|
||||
return ((a.high & 0x7fff) == 0x7fff)
|
||||
&& ((a.low << 1) >= 0x8000000000000000ULL);
|
||||
#else
|
||||
uint64_t aLow;
|
||||
|
||||
|
@ -1029,13 +1031,12 @@ int float128_is_signaling_nan(float128 a_)
|
|||
int float128_is_quiet_nan( float128 a )
|
||||
{
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
return (((a.high >> 47) & 0xffff) == 0xfffe)
|
||||
&& (a.low || (a.high & 0x00007fffffffffffULL));
|
||||
#else
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
((a.high << 1) >= 0xffff000000000000ULL)
|
||||
&& (a.low || (a.high & 0x0000ffffffffffffULL));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -1048,8 +1049,8 @@ int float128_is_signaling_nan( float128 a )
|
|||
{
|
||||
#if SNAN_BIT_IS_ONE
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
((a.high << 1) >= 0xffff000000000000ULL)
|
||||
&& (a.low || (a.high & 0x0000ffffffffffffULL));
|
||||
#else
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
|
|
Loading…
Reference in a new issue