qemu: Update bitmap.c/.h

Keeps it up to date with Qemu.
This commit is contained in:
Lioncash 2019-04-26 13:05:49 -04:00
parent f0c271ca2f
commit ef9e607e1c
No known key found for this signature in database
GPG key ID: 4E3C3CC1031BA9C7
2 changed files with 388 additions and 11 deletions

View file

@ -12,11 +12,7 @@
#ifndef BITMAP_H
#define BITMAP_H
#include "glib_compat.h"
#include <string.h>
#include <stdlib.h>
#include "qemu/osdep.h"
#include "qemu/bitops.h"
/*
@ -26,10 +22,23 @@
* Note that nbits should be always a compile time evaluable constant.
* Otherwise many inlines will generate horrible code.
*
* bitmap_zero(dst, nbits) *dst = 0UL
* bitmap_fill(dst, nbits) *dst = ~0UL
* bitmap_copy(dst, src, nbits) *dst = *src
* bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
* bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
* bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
* bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
* bitmap_complement(dst, src, nbits) *dst = ~(*src)
* bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
* bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
* bitmap_empty(src, nbits) Are all bits zero in *src?
* bitmap_full(src, nbits) Are all bits set in *src?
* bitmap_set(dst, pos, nbits) Set specified bit area
* bitmap_set_atomic(dst, pos, nbits) Set specified bit area with atomic ops
* bitmap_clear(dst, pos, nbits) Clear specified bit area
* bitmap_test_and_clear_atomic(dst, pos, nbits) Test and clear area
* bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
* bitmap_to_le(dst, src, nbits) Convert bitmap to little endian
* bitmap_from_le(dst, src, nbits) Convert bitmap from little endian
*/
@ -39,13 +48,19 @@
*
* set_bit(bit, addr) *addr |= bit
* clear_bit(bit, addr) *addr &= ~bit
* change_bit(bit, addr) *addr ^= bit
* test_bit(bit, addr) Is bit set in *addr?
* test_and_set_bit(bit, addr) Set bit and return old value
* test_and_clear_bit(bit, addr) Clear bit and return old value
* test_and_change_bit(bit, addr) Change bit and return old value
* find_first_zero_bit(addr, nbits) Position first zero bit in *addr
* find_first_bit(addr, nbits) Position first set bit in *addr
* find_next_zero_bit(addr, nbits, bit) Position next zero bit in *addr >= bit
* find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
*/
#define BITMAP_LAST_WORD_MASK(nbits) \
( \
((nbits) % BITS_PER_LONG) ? \
(1UL<<((nbits) % BITS_PER_LONG))-1 : ~0UL \
)
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
#define DECLARE_BITMAP(name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]
@ -53,6 +68,22 @@
#define small_nbits(nbits) \
((nbits) <= BITS_PER_LONG)
int slow_bitmap_empty(const unsigned long *bitmap, long bits);
int slow_bitmap_full(const unsigned long *bitmap, long bits);
int slow_bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
long bits);
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
int slow_bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits);
long slow_bitmap_count_one(const unsigned long *bitmap, long nbits);
static inline unsigned long *bitmap_try_new(long nbits)
@ -70,8 +101,130 @@ static inline unsigned long *bitmap_new(long nbits)
return ptr;
}
static inline void bitmap_zero(unsigned long *dst, long nbits)
{
if (small_nbits(nbits)) {
*dst = 0UL;
} else {
long len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
memset(dst, 0, len);
}
}
static inline void bitmap_fill(unsigned long *dst, long nbits)
{
size_t nlongs = BITS_TO_LONGS(nbits);
if (!small_nbits(nbits)) {
long len = (nlongs - 1) * sizeof(unsigned long);
memset(dst, 0xff, len);
}
dst[nlongs - 1] = BITMAP_LAST_WORD_MASK(nbits);
}
static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
long nbits)
{
if (small_nbits(nbits)) {
*dst = *src;
} else {
long len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
memcpy(dst, src, len);
}
}
static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
return (*dst = *src1 & *src2) != 0;
}
return slow_bitmap_and(dst, src1, src2, nbits);
}
static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
*dst = *src1 | *src2;
} else {
slow_bitmap_or(dst, src1, src2, nbits);
}
}
static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
*dst = *src1 ^ *src2;
} else {
slow_bitmap_xor(dst, src1, src2, nbits);
}
}
static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
return (*dst = *src1 & ~(*src2)) != 0;
}
return slow_bitmap_andnot(dst, src1, src2, nbits);
}
static inline void bitmap_complement(unsigned long *dst,
const unsigned long *src,
long nbits)
{
if (small_nbits(nbits)) {
*dst = ~(*src) & BITMAP_LAST_WORD_MASK(nbits);
} else {
slow_bitmap_complement(dst, src, nbits);
}
}
static inline int bitmap_equal(const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
return ! ((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
} else {
return slow_bitmap_equal(src1, src2, nbits);
}
}
static inline int bitmap_empty(const unsigned long *src, long nbits)
{
if (small_nbits(nbits)) {
return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
} else {
return slow_bitmap_empty(src, nbits);
}
}
static inline int bitmap_full(const unsigned long *src, long nbits)
{
if (small_nbits(nbits)) {
return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
} else {
return slow_bitmap_full(src, nbits);
}
}
static inline int bitmap_intersects(const unsigned long *src1,
const unsigned long *src2, long nbits)
{
if (small_nbits(nbits)) {
return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
} else {
return slow_bitmap_intersects(src1, src2, nbits);
}
}
static inline long bitmap_count_one(const unsigned long *bitmap, long nbits)
{
if (unlikely(!nbits)) {
return 0;
}
if (small_nbits(nbits)) {
return ctpopl(*bitmap & BITMAP_LAST_WORD_MASK(nbits));
} else {
@ -79,12 +232,30 @@ static inline long bitmap_count_one(const unsigned long *bitmap, long nbits)
}
}
static inline long bitmap_count_one_with_offset(const unsigned long *bitmap,
long offset, long nbits)
{
long aligned_offset = QEMU_ALIGN_DOWN(offset, BITS_PER_LONG);
long redundant_bits = offset - aligned_offset;
long bits_to_count = nbits + redundant_bits;
const unsigned long *bitmap_start = bitmap +
aligned_offset / BITS_PER_LONG;
return bitmap_count_one(bitmap_start, bits_to_count) -
bitmap_count_one(bitmap_start, redundant_bits);
}
void bitmap_set(unsigned long *map, long i, long len);
void bitmap_set_atomic(unsigned long *map, long i, long len);
void bitmap_clear(unsigned long *map, long start, long nr);
bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr);
void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
long nr);
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned long nr,
unsigned long align_mask);
static inline unsigned long *bitmap_zero_extend(unsigned long *old,
long old_nbits, long new_nbits)

View file

@ -14,7 +14,148 @@
#include "qemu/bitmap.h"
#include "qemu/atomic.h"
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
/*
* bitmaps provide an array of bits, implemented using an
* array of unsigned longs. The number of valid bits in a
* given bitmap does _not_ need to be an exact multiple of
* BITS_PER_LONG.
*
* The possible unused bits in the last, partially used word
* of a bitmap are 'don't care'. The implementation makes
* no particular effort to keep them zero. It ensures that
* their value will not affect the results of any operation.
* The bitmap operations that return Boolean (bitmap_empty,
* for example) or scalar (bitmap_weight, for example) results
* carefully filter out these unused bits from impacting their
* results.
*
* These operations actually hold to a slightly stronger rule:
* if you don't input any bitmaps to these ops that have some
* unused bits set, then they won't output any set unused bits
* in output bitmaps.
*
* The byte ordering of bitmaps is more natural on little
* endian architectures.
*/
int slow_bitmap_empty(const unsigned long *bitmap, long bits)
{
long k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k) {
if (bitmap[k]) {
return 0;
}
}
if (bits % BITS_PER_LONG) {
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
return 0;
}
}
return 1;
}
int slow_bitmap_full(const unsigned long *bitmap, long bits)
{
long k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k) {
if (~bitmap[k]) {
return 0;
}
}
if (bits % BITS_PER_LONG) {
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
return 0;
}
}
return 1;
}
int slow_bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k) {
if (bitmap1[k] != bitmap2[k]) {
return 0;
}
}
if (bits % BITS_PER_LONG) {
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
return 0;
}
}
return 1;
}
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
long bits)
{
long k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k) {
dst[k] = ~src[k];
}
if (bits % BITS_PER_LONG) {
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
}
}
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k;
long nr = BITS_TO_LONGS(bits);
unsigned long result = 0;
for (k = 0; k < nr; k++) {
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
}
return result != 0;
}
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k;
long nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++) {
dst[k] = bitmap1[k] | bitmap2[k];
}
}
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k;
long nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++) {
dst[k] = bitmap1[k] ^ bitmap2[k];
}
}
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k;
long nr = BITS_TO_LONGS(bits);
unsigned long result = 0;
for (k = 0; k < nr; k++) {
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
}
return result != 0;
}
void bitmap_set(unsigned long *map, long start, long nr)
{
@ -23,6 +164,8 @@ void bitmap_set(unsigned long *map, long start, long nr)
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
assert(start >= 0 && nr >= 0);
while (nr - bits_to_set >= 0) {
*p |= mask_to_set;
nr -= bits_to_set;
@ -43,6 +186,8 @@ void bitmap_set_atomic(unsigned long *map, long start, long nr)
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
assert(start >= 0 && nr >= 0);
/* First word */
if (nr - bits_to_set > 0) {
atomic_or(p, mask_to_set);
@ -80,6 +225,8 @@ void bitmap_clear(unsigned long *map, long start, long nr)
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
assert(start >= 0 && nr >= 0);
while (nr - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
nr -= bits_to_clear;
@ -102,6 +249,8 @@ bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
unsigned long dirty = 0;
unsigned long old_bits;
assert(start >= 0 && nr >= 0);
/* First word */
if (nr - bits_to_clear > 0) {
old_bits = atomic_fetch_and(p, ~mask_to_clear);
@ -149,6 +298,64 @@ void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
}
}
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
/**
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds is multiples of that
* power of 2. A @align_mask of 0 means no alignment is required.
*/
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned long nr,
unsigned long align_mask)
{
unsigned long index, end, i;
again:
index = find_next_zero_bit(map, size, start);
/* Align allocation */
index = ALIGN_MASK(index, align_mask);
end = index + nr;
if (end > size) {
return end;
}
i = find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
int slow_bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, long bits)
{
long k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k) {
if (bitmap1[k] & bitmap2[k]) {
return 1;
}
}
if (bits % BITS_PER_LONG) {
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
return 1;
}
}
return 0;
}
long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
{
long k, lim = nbits / BITS_PER_LONG, result = 0;
@ -195,4 +402,3 @@ void bitmap_to_le(unsigned long *dst, const unsigned long *src,
{
bitmap_to_from_le(dst, src, nbits);
}