unicorn/samples/sample_x86.c
ζeh Matt c206e37963 Timeout error (#1173)
* Implement timeout state and new error for such case

* Adjust test_i386_loop sample

* Adjust test_i386_loop test

Backports commit 3a3bc0c22de5453335dfb597a95dbda07c9f47a2 from unicorn
2020-01-14 09:42:57 -05:00

1073 lines
34 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh & Dang Hoang Vu, 2015 */
/* Sample code to demonstrate how to emulate X86 code */
#include <unicorn/unicorn.h>
#include <string.h>
// code to be emulated
#define X86_CODE32 "\x41\x4a\x66\x0f\xef\xc1" // INC ecx; DEC edx; PXOR xmm0, xmm1
#define X86_CODE32_JUMP "\xeb\x02\x90\x90\x90\x90\x90\x90" // jmp 4; nop; nop; nop; nop; nop; nop
// #define X86_CODE32_SELF "\xeb\x1c\x5a\x89\xd6\x8b\x02\x66\x3d\xca\x7d\x75\x06\x66\x05\x03\x03\x89\x02\xfe\xc2\x3d\x41\x41\x41\x41\x75\xe9\xff\xe6\xe8\xdf\xff\xff\xff\x31\xd2\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xca\x7d\x41\x41\x41\x41"
//#define X86_CODE32 "\x51\x51\x51\x51" // PUSH ecx;
#define X86_CODE32_LOOP "\x41\x4a\xeb\xfe" // INC ecx; DEC edx; JMP self-loop
#define X86_CODE32_MEM_WRITE "\x89\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov [0xaaaaaaaa], ecx; INC ecx; DEC edx
#define X86_CODE32_MEM_READ "\x8B\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx
#define X86_CODE32_JMP_INVALID "\xe9\xe9\xee\xee\xee\x41\x4a" // JMP outside; INC ecx; DEC edx
#define X86_CODE32_INOUT "\x41\xE4\x3F\x4a\xE6\x46\x43" // INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx
#define X86_CODE32_INC "\x40" // INC eax
//#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A \x49\x0F\xC9 \x90 \x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9" // <== still crash
//#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9"
#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59"
#define X86_CODE16 "\x00\x00" // add byte ptr [bx + si], al
#define X86_CODE64_SYSCALL "\x0f\x05" // SYSCALL
// memory address where emulation starts
#define ADDRESS 0x1000000
// callback for tracing basic blocks
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}
// callback for tracing instruction
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
int eflags;
printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags);
printf(">>> --- EFLAGS is 0x%x\n", eflags);
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
}
// callback for tracing instruction
static void hook_code64(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
uint64_t rip;
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
printf(">>> RIP is 0x%"PRIx64 "\n", rip);
// Uncomment below code to stop the emulation using uc_emu_stop()
// if (address == 0x1000009)
// uc_emu_stop(uc);
}
// callback for tracing memory access (READ or WRITE)
static bool hook_mem_invalid(uc_engine *uc, uc_mem_type type,
uint64_t address, int size, int64_t value, void *user_data)
{
switch(type) {
default:
// return false to indicate we want to stop emulation
return false;
case UC_MEM_WRITE_UNMAPPED:
printf(">>> Missing memory is being WRITE at 0x%"PRIx64 ", data size = %u, data value = 0x%"PRIx64 "\n",
address, size, value);
// map this memory in with 2MB in size
uc_mem_map(uc, 0xaaaa0000, 2 * 1024*1024, UC_PROT_ALL);
// return true to indicate we want to continue
return true;
}
}
static void hook_mem64(uc_engine *uc, uc_mem_type type,
uint64_t address, int size, int64_t value, void *user_data)
{
switch(type) {
default: break;
case UC_MEM_READ:
printf(">>> Memory is being READ at 0x%"PRIx64 ", data size = %u\n",
address, size);
break;
case UC_MEM_WRITE:
printf(">>> Memory is being WRITE at 0x%"PRIx64 ", data size = %u, data value = 0x%"PRIx64 "\n",
address, size, value);
break;
}
}
// callback for IN instruction (X86).
// this returns the data read from the port
static uint32_t hook_in(uc_engine *uc, uint32_t port, int size, void *user_data)
{
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
printf("--- reading from port 0x%x, size: %u, address: 0x%x\n", port, size, eip);
switch(size) {
default:
return 0; // should never reach this
case 1:
// read 1 byte to AL
return 0xf1;
case 2:
// read 2 byte to AX
return 0xf2;
break;
case 4:
// read 4 byte to EAX
return 0xf4;
}
}
// callback for OUT instruction (X86).
static void hook_out(uc_engine *uc, uint32_t port, int size, uint32_t value, void *user_data)
{
uint32_t tmp = 0;
uint32_t eip;
uc_reg_read(uc, UC_X86_REG_EIP, &eip);
printf("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x\n", port, size, value, eip);
// confirm that value is indeed the value of AL/AX/EAX
switch(size) {
default:
return; // should never reach this
case 1:
uc_reg_read(uc, UC_X86_REG_AL, &tmp);
break;
case 2:
uc_reg_read(uc, UC_X86_REG_AX, &tmp);
break;
case 4:
uc_reg_read(uc, UC_X86_REG_EAX, &tmp);
break;
}
printf("--- register value = 0x%x\n", tmp);
}
// callback for SYSCALL instruction (X86).
static void hook_syscall(uc_engine *uc, void *user_data)
{
uint64_t rax;
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
if (rax == 0x100) {
rax = 0x200;
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
} else
printf("ERROR: was not expecting rax=0x%"PRIx64 " in syscall\n", rax);
}
static void test_i386(void)
{
uc_engine *uc;
uc_err err;
uint32_t tmp;
uc_hook trace1, trace2;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
// XMM0 and XMM1 registers, low qword then high qword
uint64_t r_xmm0[2] = {0x08090a0b0c0d0e0f, 0x0001020304050607};
uint64_t r_xmm1[2] = {0x8090a0b0c0d0e0f0, 0x0010203040506070};
printf("Emulate i386 code\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
uc_reg_write(uc, UC_X86_REG_XMM0, &r_xmm0);
uc_reg_write(uc, UC_X86_REG_XMM1, &r_xmm1);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
uc_reg_read(uc, UC_X86_REG_XMM0, &r_xmm0);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
printf(">>> XMM0 = 0x%.16"PRIx64"%.16"PRIx64"\n", r_xmm0[1], r_xmm0[0]);
// read from memory
if (!uc_mem_read(uc, ADDRESS, &tmp, sizeof(tmp)))
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", ADDRESS, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", ADDRESS);
uc_close(uc);
}
static void test_i386_map_ptr(void)
{
uc_engine *uc;
uc_err err;
uint32_t tmp;
uc_hook trace1, trace2;
void *mem;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code - use uc_mem_map_ptr()\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// malloc 2MB memory for this emulation
mem = calloc(1, 2 * 1024 * 1024);
if (mem == NULL) {
printf("Failed to malloc()\n");
return;
}
uc_mem_map_ptr(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL, mem);
// write machine code to be emulated to memory
if (!memcpy(mem, X86_CODE32, sizeof(X86_CODE32) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
// read from memory
if (!uc_mem_read(uc, ADDRESS, &tmp, sizeof(tmp)))
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", ADDRESS, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", ADDRESS);
uc_close(uc);
}
static void test_i386_jump(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
printf("===================================\n");
printf("Emulate i386 code with jump\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_JUMP,
sizeof(X86_CODE32_JUMP) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// tracing 1 basic block with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, ADDRESS, ADDRESS);
// tracing 1 instruction at ADDRESS
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, ADDRESS, ADDRESS);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JUMP) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
printf(">>> Emulation done. Below is the CPU context\n");
uc_close(uc);
}
// emulate code that loop forever
static void test_i386_loop(void)
{
uc_engine *uc;
uc_err err;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code that loop forever\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_LOOP, sizeof(X86_CODE32_LOOP) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// emulate machine code in 2 seconds, so we can quit even
// if the code loops
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_LOOP) - 1, 2 * UC_SECOND_SCALE, 0);
if (err != UC_ERR_TIMEOUT) {
printf("Failed on uc_emu_start() with error returned %u: %s, expected UC_ERR_TIMEOUT\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
}
// emulate code that read invalid memory
static void test_i386_invalid_mem_read(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code that read from invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_READ, sizeof(X86_CODE32_MEM_READ) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_READ) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
}
// emulate code that write invalid memory
static void test_i386_invalid_mem_write(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2, trace3;
uint32_t tmp;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code that write to invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_WRITE, sizeof(X86_CODE32_MEM_WRITE) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instruction by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// intercept invalid memory events
uc_hook_add(uc, &trace3, UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, hook_mem_invalid, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_WRITE) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
// read from memory
if (!uc_mem_read(uc, 0xaaaaaaaa, &tmp, sizeof(tmp)))
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xaaaaaaaa, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xaaaaaaaa);
if (!uc_mem_read(uc, 0xffffffaa, &tmp, sizeof(tmp)))
printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xffffffaa, tmp);
else
printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xffffffaa);
uc_close(uc);
}
// emulate code that jump to invalid memory
static void test_i386_jump_invalid(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2;
int r_ecx = 0x1234; // ECX register
int r_edx = 0x7890; // EDX register
printf("===================================\n");
printf("Emulate i386 code that jumps to invalid memory\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_JMP_INVALID, sizeof(X86_CODE32_JMP_INVALID) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_write(uc, UC_X86_REG_EDX, &r_edx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instructions by having @begin > @end
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JMP_INVALID) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
uc_reg_read(uc, UC_X86_REG_EDX, &r_edx);
printf(">>> ECX = 0x%x\n", r_ecx);
printf(">>> EDX = 0x%x\n", r_edx);
uc_close(uc);
}
static void test_i386_inout(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
int r_eax = 0x1234; // EAX register
int r_ecx = 0x6789; // ECX register
printf("===================================\n");
printf("Emulate i386 code with IN/OUT instructions\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_INOUT, sizeof(X86_CODE32_INOUT) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instructions
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, 1, 0);
// uc IN instruction
uc_hook_add(uc, &trace3, UC_HOOK_INSN, hook_in, NULL, 1, 0, UC_X86_INS_IN);
// uc OUT instruction
uc_hook_add(uc, &trace4, UC_HOOK_INSN, hook_out, NULL, 1, 0, UC_X86_INS_OUT);
// emulate machine code in infinite time
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INOUT) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx);
printf(">>> EAX = 0x%x\n", r_eax);
printf(">>> ECX = 0x%x\n", r_ecx);
uc_close(uc);
}
// emulate code and save/restore the CPU context
static void test_i386_context_save(void)
{
uc_engine *uc;
uc_context *context;
uc_err err;
int r_eax = 0x1; // EAX register
printf("===================================\n");
printf("Save/restore CPU context in opaque blob\n");
// initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 8KB memory for this emulation
uc_mem_map(uc, ADDRESS, 8 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE32_INC, sizeof(X86_CODE32_INC) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &r_eax);
// emulate machine code in infinite time
printf(">>> Running emulation for the first time\n");
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INC) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
// allocate and save the CPU context
printf(">>> Saving CPU context\n");
err = uc_context_alloc(uc, &context);
if (err) {
printf("Failed on uc_context_alloc() with error returned: %u\n", err);
return;
}
err = uc_context_save(uc, context);
if (err) {
printf("Failed on uc_context_save() with error returned: %u\n", err);
return;
}
// emulate machine code again
printf(">>> Running emulation for the second time\n");
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INC) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
// restore CPU context
err = uc_context_restore(uc, context);
if (err) {
printf("Failed on uc_context_restore() with error returned: %u\n", err);
return;
}
// now print out some registers
printf(">>> CPU context restored. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_EAX, &r_eax);
printf(">>> EAX = 0x%x\n", r_eax);
// free the CPU context
err = uc_free(context);
if (err) {
printf("Failed on uc_free() with error returned: %u\n", err);
return;
}
uc_close(uc);
}
#if 0
static void test_i386_invalid_c6c7(void)
{
uc_engine *uc;
uc_err err;
uint8_t codebuf[16] = { 0 };
uint8_t opcodes[] = { 0xc6, 0xc7 };
bool valid_masks[4][8] = {
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, false },
{ true, false, false, false, false, false, false, true },
};
int i, j, k;
printf("===================================\n");
printf("Emulate i386 C6/C7 opcodes\n");
// Initialize emulator in X86-32bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
for (i = 0; i < 2; ++i) {
// set opcode
codebuf[0] = opcodes[i];
for (j = 0; j < 4; ++j) {
for (k = 0; k < 8; ++k) {
// set Mod bits
codebuf[1] = (uint8_t) (j << 6);
// set Reg bits
codebuf[1] |= (uint8_t) (k << 3);
// perform validation
if (uc_mem_write(uc, ADDRESS, codebuf, sizeof(codebuf))) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(codebuf), 0, 0);
if ((err != UC_ERR_INSN_INVALID) ^ valid_masks[j][k]) {
printf("Unexpected uc_emu_start() error returned %u: %s\n",
err, uc_strerror(err));
return;
}
}
}
}
printf(">>> Emulation done.\n");
uc_close(uc);
}
#endif
static void test_x86_64(void)
{
uc_engine *uc;
uc_err err;
uc_hook trace1, trace2, trace3, trace4;
int64_t rax = 0x71f3029efd49d41d;
int64_t rbx = 0xd87b45277f133ddb;
int64_t rcx = 0xab40d1ffd8afc461;
int64_t rdx = 0x919317b4a733f01;
int64_t rsi = 0x4c24e753a17ea358;
int64_t rdi = 0xe509a57d2571ce96;
int64_t r8 = 0xea5b108cc2b9ab1f;
int64_t r9 = 0x19ec097c8eb618c1;
int64_t r10 = 0xec45774f00c5f682;
int64_t r11 = 0xe17e9dbec8c074aa;
int64_t r12 = 0x80f86a8dc0f6d457;
int64_t r13 = 0x48288ca5671c5492;
int64_t r14 = 0x595f72f6e4017f6e;
int64_t r15 = 0x1efd97aea331cccc;
int64_t rsp = ADDRESS + 0x200000;
printf("Emulate x86_64 code\n");
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE64, sizeof(X86_CODE64) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_RSP, &rsp);
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
uc_reg_write(uc, UC_X86_REG_RBX, &rbx);
uc_reg_write(uc, UC_X86_REG_RCX, &rcx);
uc_reg_write(uc, UC_X86_REG_RDX, &rdx);
uc_reg_write(uc, UC_X86_REG_RSI, &rsi);
uc_reg_write(uc, UC_X86_REG_RDI, &rdi);
uc_reg_write(uc, UC_X86_REG_R8, &r8);
uc_reg_write(uc, UC_X86_REG_R9, &r9);
uc_reg_write(uc, UC_X86_REG_R10, &r10);
uc_reg_write(uc, UC_X86_REG_R11, &r11);
uc_reg_write(uc, UC_X86_REG_R12, &r12);
uc_reg_write(uc, UC_X86_REG_R13, &r13);
uc_reg_write(uc, UC_X86_REG_R14, &r14);
uc_reg_write(uc, UC_X86_REG_R15, &r15);
// tracing all basic blocks with customized callback
uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
// tracing all instructions in the range [ADDRESS, ADDRESS+20]
uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code64, NULL, ADDRESS, ADDRESS+20);
// tracing all memory WRITE access (with @begin > @end)
uc_hook_add(uc, &trace3, UC_HOOK_MEM_WRITE, hook_mem64, NULL, 1, 0);
// tracing all memory READ access (with @begin > @end)
uc_hook_add(uc, &trace4, UC_HOOK_MEM_READ, hook_mem64, NULL, 1, 0);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
uc_reg_read(uc, UC_X86_REG_RBX, &rbx);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_reg_read(uc, UC_X86_REG_RDX, &rdx);
uc_reg_read(uc, UC_X86_REG_RSI, &rsi);
uc_reg_read(uc, UC_X86_REG_RDI, &rdi);
uc_reg_read(uc, UC_X86_REG_R8, &r8);
uc_reg_read(uc, UC_X86_REG_R9, &r9);
uc_reg_read(uc, UC_X86_REG_R10, &r10);
uc_reg_read(uc, UC_X86_REG_R11, &r11);
uc_reg_read(uc, UC_X86_REG_R12, &r12);
uc_reg_read(uc, UC_X86_REG_R13, &r13);
uc_reg_read(uc, UC_X86_REG_R14, &r14);
uc_reg_read(uc, UC_X86_REG_R15, &r15);
printf(">>> RAX = 0x%" PRIx64 "\n", rax);
printf(">>> RBX = 0x%" PRIx64 "\n", rbx);
printf(">>> RCX = 0x%" PRIx64 "\n", rcx);
printf(">>> RDX = 0x%" PRIx64 "\n", rdx);
printf(">>> RSI = 0x%" PRIx64 "\n", rsi);
printf(">>> RDI = 0x%" PRIx64 "\n", rdi);
printf(">>> R8 = 0x%" PRIx64 "\n", r8);
printf(">>> R9 = 0x%" PRIx64 "\n", r9);
printf(">>> R10 = 0x%" PRIx64 "\n", r10);
printf(">>> R11 = 0x%" PRIx64 "\n", r11);
printf(">>> R12 = 0x%" PRIx64 "\n", r12);
printf(">>> R13 = 0x%" PRIx64 "\n", r13);
printf(">>> R14 = 0x%" PRIx64 "\n", r14);
printf(">>> R15 = 0x%" PRIx64 "\n", r15);
uc_close(uc);
}
static void test_x86_64_syscall(void)
{
uc_engine *uc;
uc_hook trace1;
uc_err err;
int64_t rax = 0x100;
printf("===================================\n");
printf("Emulate x86_64 code with 'syscall' instruction\n");
// Initialize emulator in X86-64bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 2MB memory for this emulation
uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, ADDRESS, X86_CODE64_SYSCALL, sizeof(X86_CODE64_SYSCALL) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// hook interrupts for syscall
uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, 1, 0, UC_X86_INS_SYSCALL);
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_RAX, &rax);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64_SYSCALL) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
printf(">>> RAX = 0x%" PRIx64 "\n", rax);
uc_close(uc);
}
static void test_x86_16(void)
{
uc_engine *uc;
uc_err err;
uint8_t tmp;
int32_t eax = 7;
int32_t ebx = 5;
int32_t esi = 6;
printf("Emulate x86 16-bit code\n");
// Initialize emulator in X86-16bit mode
err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u\n", err);
return;
}
// map 8KB memory for this emulation
uc_mem_map(uc, 0, 8 * 1024, UC_PROT_ALL);
// write machine code to be emulated to memory
if (uc_mem_write(uc, 0, X86_CODE16, sizeof(X86_CODE16) - 1)) {
printf("Failed to write emulation code to memory, quit!\n");
return;
}
// initialize machine registers
uc_reg_write(uc, UC_X86_REG_EAX, &eax);
uc_reg_write(uc, UC_X86_REG_EBX, &ebx);
uc_reg_write(uc, UC_X86_REG_ESI, &esi);
// emulate machine code in infinite time (last param = 0), or when
// finishing all the code.
err = uc_emu_start(uc, 0, sizeof(X86_CODE16) - 1, 0, 0);
if (err) {
printf("Failed on uc_emu_start() with error returned %u: %s\n",
err, uc_strerror(err));
}
// now print out some registers
printf(">>> Emulation done. Below is the CPU context\n");
// read from memory
if (!uc_mem_read(uc, 11, &tmp, 1))
printf(">>> Read 1 bytes from [0x%x] = 0x%x\n", 11, tmp);
else
printf(">>> Failed to read 1 bytes from [0x%x]\n", 11);
uc_close(uc);
}
int main(int argc, char **argv, char **envp)
{
if (argc == 2) {
if (!strcmp(argv[1], "-16")) {
test_x86_16();
}
else if (!strcmp(argv[1], "-32")) {
test_i386();
test_i386_map_ptr();
test_i386_inout();
test_i386_context_save();
test_i386_jump();
test_i386_loop();
test_i386_invalid_mem_read();
test_i386_invalid_mem_write();
test_i386_jump_invalid();
//test_i386_invalid_c6c7();
}
else if (!strcmp(argv[1], "-64")) {
test_x86_64();
test_x86_64_syscall();
}
else if (!strcmp(argv[1], "-h")) {
printf("Syntax: %s <-16|-32|-64>\n", argv[0]);
}
}
else {
test_x86_16();
test_i386();
test_i386_map_ptr();
test_i386_inout();
test_i386_context_save();
test_i386_jump();
test_i386_loop();
test_i386_invalid_mem_read();
test_i386_invalid_mem_write();
test_i386_jump_invalid();
//test_i386_invalid_c6c7();
test_x86_64();
test_x86_64_syscall();
}
return 0;
}