mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-23 05:45:36 +00:00
0862d9c462
Performance results (single and double precision) for fp-bench: 1. Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz - before: add-single: 135.07 MFlops add-double: 131.60 MFlops sub-single: 130.04 MFlops sub-double: 133.01 MFlops - after: add-single: 443.04 MFlops add-double: 301.95 MFlops sub-single: 411.36 MFlops sub-double: 293.15 MFlops 2. ARM Aarch64 A57 @ 2.4GHz - before: add-single: 44.79 MFlops add-double: 49.20 MFlops sub-single: 44.55 MFlops sub-double: 49.06 MFlops - after: add-single: 93.28 MFlops add-double: 88.27 MFlops sub-single: 91.47 MFlops sub-double: 88.27 MFlops 3. IBM POWER8E @ 2.1 GHz - before: add-single: 72.59 MFlops add-double: 72.27 MFlops sub-single: 75.33 MFlops sub-double: 70.54 MFlops - after: add-single: 112.95 MFlops add-double: 201.11 MFlops sub-single: 116.80 MFlops sub-double: 188.72 MFlops Note that the IBM and ARM machines benefit from having HARDFLOAT_2F{32,64}_USE_FP set to 0. Otherwise their performance can suffer significantly: - IBM Power8: add-single: [1] 54.94 vs [0] 116.37 MFlops add-double: [1] 58.92 vs [0] 201.44 MFlops - Aarch64 A57: add-single: [1] 80.72 vs [0] 93.24 MFlops add-double: [1] 82.10 vs [0] 88.18 MFlops On the Intel machine, having 2F64 set to 1 pays off, but it doesn't for 2F32: - Intel i7-6700K: add-single: [1] 285.79 vs [0] 426.70 MFlops add-double: [1] 302.15 vs [0] 278.82 MFlops Backports commit 1b615d482094e0123d187f0ad3c676ba8eb9d0a3 from qemu |
||
---|---|---|
bindings | ||
docs | ||
include | ||
msvc | ||
qemu | ||
samples | ||
tests | ||
.appveyor.yml | ||
.gitignore | ||
.travis.yml | ||
AUTHORS.TXT | ||
Brewfile | ||
ChangeLog | ||
config.mk | ||
COPYING | ||
COPYING.LGPL2 | ||
COPYING_GLIB | ||
CREDITS.TXT | ||
install-cmocka-linux.sh | ||
list.c | ||
make.sh | ||
Makefile | ||
msvc.bat | ||
pkgconfig.mk | ||
README.md | ||
uc.c | ||
windows_export.bat |
Unicorn Engine
Unicorn is a lightweight, multi-platform, multi-architecture CPU emulator framework based on QEMU.
Unicorn offers some unparalleled features:
- Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC, and X86 (16, 32, 64-bit)
- Clean/simple/lightweight/intuitive architecture-neutral API
- Implemented in pure C language, with bindings for Crystal, Clojure, Visual Basic, Perl, Rust, Ruby, Python, Java, .NET, Go, Delphi/Free Pascal and Haskell.
- Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)
- High performance via Just-In-Time compilation
- Support for fine-grained instrumentation at various levels
- Thread-safety by design
- Distributed under free software license GPLv2
Further information is available at http://www.unicorn-engine.org
License
This project is released under the GPL license.
Compilation & Docs
See docs/COMPILE.md file for how to compile and install Unicorn.
More documentation is available in docs/README.md.
Contact
Contact us via mailing list, email or twitter for any questions.
Contribute
If you want to contribute, please pick up something from our Github issues.
We also maintain a list of more challenged problems in a TODO list.
CREDITS.TXT records important contributors of our project.