mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-25 17:31:04 +00:00
94b0876f15
For contiguous predicated memory operations, we want to minimize the number of tlb lookups performed. We have open-coded this for sve_ld1_r, but for correctness with MTE we will need this for all of the memory operations. Create a structure that holds the bounds of active elements, and metadata for two pages. Add routines to find those active elements, lookup the pages, and run watchpoints for those pages. Temporarily mark the functions unused to avoid Werror. Backports commit b4cd95d2f4c7197b844f51b29871d888063ea3e7 from qemu
462 lines
16 KiB
C
462 lines
16 KiB
C
/*
|
|
* internal execution defines for qemu
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef EXEC_ALL_H
|
|
#define EXEC_ALL_H
|
|
|
|
#include "qemu-common.h"
|
|
#include "exec/tb-context.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
/* allow to see translation results - the slowdown should be negligible, so we leave it */
|
|
#define DEBUG_DISAS
|
|
|
|
/* Page tracking code uses ram addresses in system mode, and virtual
|
|
addresses in userspace mode. Define tb_page_addr_t to be an appropriate
|
|
type. */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
typedef abi_ulong tb_page_addr_t;
|
|
#define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
|
|
#else
|
|
typedef ram_addr_t tb_page_addr_t;
|
|
#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
|
|
#endif
|
|
|
|
#include "qemu/log.h"
|
|
|
|
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
|
|
void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
|
|
target_ulong *data);
|
|
|
|
/**
|
|
* cpu_restore_state:
|
|
* @cpu: the vCPU state is to be restore to
|
|
* @searched_pc: the host PC the fault occurred at
|
|
* @will_exit: true if the TB executed will be interrupted after some
|
|
* cpu adjustments. Required for maintaining the correct
|
|
* icount valus
|
|
* @return: true if state was restored, false otherwise
|
|
*
|
|
* Attempt to restore the state for a fault occurring in translated
|
|
* code. If the searched_pc is not in translated code no state is
|
|
* restored and the function returns false.
|
|
*/
|
|
bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
|
|
|
|
void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
|
|
|
|
void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
|
|
TranslationBlock *tb_gen_code(CPUState *cpu,
|
|
target_ulong pc, target_ulong cs_base,
|
|
uint32_t flags,
|
|
int cflags);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_list_lock(void);
|
|
void cpu_list_unlock(void);
|
|
#else
|
|
static inline void cpu_list_unlock(void)
|
|
{
|
|
}
|
|
static inline void cpu_list_lock(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void cpu_exec_init(CPUState *env, Error **errp, void *opaque);
|
|
|
|
void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
|
|
void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
|
|
void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/**
|
|
* cpu_address_space_init:
|
|
* @cpu: CPU to add this address space to
|
|
* @asidx: integer index of this address space
|
|
* @prefix: prefix to be used as name of address space
|
|
* @mr: the root memory region of address space
|
|
*
|
|
* Add the specified address space to the CPU's cpu_ases list.
|
|
* The address space added with @asidx 0 is the one used for the
|
|
* convenience pointer cpu->as.
|
|
* The target-specific code which registers ASes is responsible
|
|
* for defining what semantics address space 0, 1, 2, etc have.
|
|
*
|
|
* Before the first call to this function, the caller must set
|
|
* cpu->num_ases to the total number of address spaces it needs
|
|
* to support.
|
|
*
|
|
* Note that with KVM only one address space is supported.
|
|
*/
|
|
void cpu_address_space_init(CPUState *cpu, int asidx,
|
|
const char *prefix, MemoryRegion *mr);
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
|
|
/* cputlb.c */
|
|
/**
|
|
* tlb_init - initialize a CPU's TLB
|
|
* @cpu: CPU whose TLB should be initialized
|
|
*/
|
|
void tlb_init(CPUState *cpu);
|
|
/**
|
|
* tlb_flush_page:
|
|
* @cpu: CPU whose TLB should be flushed
|
|
* @addr: virtual address of page to be flushed
|
|
*
|
|
* Flush one page from the TLB of the specified CPU, for all
|
|
* MMU indexes.
|
|
*/
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr);
|
|
/**
|
|
* tlb_flush:
|
|
* @cpu: CPU whose TLB should be flushed
|
|
*
|
|
* Flush the entire TLB for the specified CPU. Most CPU architectures
|
|
* allow the implementation to drop entries from the TLB at any time
|
|
* so this is generally safe. If more selective flushing is required
|
|
* use one of the other functions for efficiency.
|
|
*/
|
|
void tlb_flush(CPUState *cpu);
|
|
/**
|
|
* tlb_flush_page_by_mmuidx:
|
|
* @cpu: CPU whose TLB should be flushed
|
|
* @addr: virtual address of page to be flushed
|
|
* @idxmap: bitmap of MMU indexes to flush
|
|
*
|
|
* Flush one page from the TLB of the specified CPU, for the specified
|
|
* MMU indexes.
|
|
*/
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
|
|
uint16_t idxmap);
|
|
/**
|
|
* tlb_flush_by_mmuidx:
|
|
* @cpu: CPU whose TLB should be flushed
|
|
* @idxmap: bitmap of MMU indexes to flush
|
|
*
|
|
* Flush all entries from the TLB of the specified CPU, for the specified
|
|
* MMU indexes.
|
|
*/
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
|
|
/**
|
|
* tlb_set_page_with_attrs:
|
|
* @cpu: CPU to add this TLB entry for
|
|
* @vaddr: virtual address of page to add entry for
|
|
* @paddr: physical address of the page
|
|
* @attrs: memory transaction attributes
|
|
* @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
|
|
* @mmu_idx: MMU index to insert TLB entry for
|
|
* @size: size of the page in bytes
|
|
*
|
|
* Add an entry to this CPU's TLB (a mapping from virtual address
|
|
* @vaddr to physical address @paddr) with the specified memory
|
|
* transaction attributes. This is generally called by the target CPU
|
|
* specific code after it has been called through the tlb_fill()
|
|
* entry point and performed a successful page table walk to find
|
|
* the physical address and attributes for the virtual address
|
|
* which provoked the TLB miss.
|
|
*
|
|
* At most one entry for a given virtual address is permitted. Only a
|
|
* single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
|
|
* used by tlb_flush_page.
|
|
*/
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs,
|
|
int prot, int mmu_idx, target_ulong size);
|
|
/* tlb_set_page:
|
|
*
|
|
* This function is equivalent to calling tlb_set_page_with_attrs()
|
|
* with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
|
|
* as a convenience for CPUs which don't use memory transaction attributes.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size);
|
|
|
|
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
|
|
#else
|
|
static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
}
|
|
|
|
static inline void tlb_flush(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
|
|
target_ulong addr, uint16_t idxmap)
|
|
{
|
|
}
|
|
|
|
static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
}
|
|
static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
|
|
{
|
|
}
|
|
#endif
|
|
/**
|
|
* probe_access:
|
|
* @env: CPUArchState
|
|
* @addr: guest virtual address to look up
|
|
* @size: size of the access
|
|
* @access_type: read, write or execute permission
|
|
* @mmu_idx: MMU index to use for lookup
|
|
* @retaddr: return address for unwinding
|
|
*
|
|
* Look up the guest virtual address @addr. Raise an exception if the
|
|
* page does not satisfy @access_type. Raise an exception if the
|
|
* access (@addr, @size) hits a watchpoint. For writes, mark a clean
|
|
* page as dirty.
|
|
*
|
|
* Finally, return the host address for a page that is backed by RAM,
|
|
* or NULL if the page requires I/O.
|
|
*/
|
|
void *probe_access(CPUArchState *env, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
|
|
|
|
static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
}
|
|
|
|
static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
|
|
}
|
|
|
|
/**
|
|
* probe_access_flags:
|
|
* @env: CPUArchState
|
|
* @addr: guest virtual address to look up
|
|
* @access_type: read, write or execute permission
|
|
* @mmu_idx: MMU index to use for lookup
|
|
* @nonfault: suppress the fault
|
|
* @phost: return value for host address
|
|
* @retaddr: return address for unwinding
|
|
*
|
|
* Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
|
|
* the page, and storing the host address for RAM in @phost.
|
|
*
|
|
* If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
|
|
* Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
|
|
* Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
|
|
* For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
|
|
*/
|
|
int probe_access_flags(CPUArchState *env, target_ulong addr,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool nonfault, void **phost, uintptr_t retaddr);
|
|
|
|
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
|
|
|
|
/* Estimated block size for TB allocation. */
|
|
/* ??? The following is based on a 2015 survey of x86_64 host output.
|
|
Better would seem to be some sort of dynamically sized TB array,
|
|
adapting to the block sizes actually being produced. */
|
|
#if defined(CONFIG_SOFTMMU)
|
|
#define CODE_GEN_AVG_BLOCK_SIZE 400
|
|
#else
|
|
#define CODE_GEN_AVG_BLOCK_SIZE 150
|
|
#endif
|
|
|
|
/*
|
|
* Translation Cache-related fields of a TB.
|
|
*/
|
|
struct tb_tc {
|
|
void *ptr; /* pointer to the translated code */
|
|
uint8_t *search; /* pointer to search data */
|
|
};
|
|
|
|
struct TranslationBlock {
|
|
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
|
|
target_ulong cs_base; /* CS base for this block */
|
|
uint32_t flags; /* flags defining in which context the code was generated */
|
|
uint16_t size; /* size of target code for this block (1 <=
|
|
size <= TARGET_PAGE_SIZE) */
|
|
uint16_t icount;
|
|
uint32_t cflags; /* compile flags */
|
|
#define CF_COUNT_MASK 0x00007fff
|
|
#define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
|
|
#define CF_NOCACHE 0x00010000 /* To be freed after execution */
|
|
#define CF_USE_ICOUNT 0x00020000
|
|
#define CF_INVALID 0x00040000 /* TB is stale. Setters need tb_lock */
|
|
#define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
|
|
/* cflags' mask for hashing/comparison */
|
|
#define CF_HASH_MASK \
|
|
(CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
|
|
|
|
struct tb_tc tc;
|
|
/* next matching tb for physical address. */
|
|
struct TranslationBlock *phys_hash_next;
|
|
/* original tb when cflags has CF_NOCACHE */
|
|
struct TranslationBlock *orig_tb;
|
|
/* first and second physical page containing code. The lower bit
|
|
of the pointer tells the index in page_next[] */
|
|
struct TranslationBlock *page_next[2];
|
|
tb_page_addr_t page_addr[2];
|
|
|
|
/* The following data are used to directly call another TB from
|
|
* the code of this one. This can be done either by emitting direct or
|
|
* indirect native jump instructions. These jumps are reset so that the TB
|
|
* just continues its execution. The TB can be linked to another one by
|
|
* setting one of the jump targets (or patching the jump instruction). Only
|
|
* two of such jumps are supported.
|
|
*/
|
|
uint16_t jmp_reset_offset[2]; /* offset of original jump target */
|
|
#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
|
|
uintptr_t jmp_target_arg[2]; /* target address or offset */
|
|
|
|
/* Each TB has an associated circular list of TBs jumping to this one.
|
|
* jmp_list_first points to the first TB jumping to this one.
|
|
* jmp_list_next is used to point to the next TB in a list.
|
|
* Since each TB can have two jumps, it can participate in two lists.
|
|
* jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
|
|
* TranslationBlock structure, but the two least significant bits of
|
|
* them are used to encode which data field of the pointed TB should
|
|
* be used to traverse the list further from that TB:
|
|
* 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
|
|
* In other words, 0/1 tells which jump is used in the pointed TB,
|
|
* and 2 means that this is a pointer back to the target TB of this list.
|
|
*/
|
|
uintptr_t jmp_list_next[2];
|
|
uintptr_t jmp_list_first;
|
|
};
|
|
|
|
/* Hide the atomic_read to make code a little easier on the eyes */
|
|
static inline uint32_t tb_cflags(const TranslationBlock *tb)
|
|
{
|
|
return atomic_read(&tb->cflags);
|
|
}
|
|
|
|
/* current cflags for hashing/comparison */
|
|
static inline uint32_t curr_cflags(struct uc_struct *uc)
|
|
{
|
|
return uc->parallel_cpus ? CF_PARALLEL : 0;
|
|
}
|
|
|
|
void tb_free(struct uc_struct *uc, TranslationBlock *tb);
|
|
void tb_flush(CPUState *cpu);
|
|
void tb_phys_invalidate(struct uc_struct *uc,
|
|
TranslationBlock *tb, tb_page_addr_t page_addr);
|
|
TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
|
|
target_ulong cs_base, uint32_t flags,
|
|
uint32_t cf_mask);
|
|
|
|
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
|
|
|
|
/* GETPC is the true target of the return instruction that we'll execute. */
|
|
#if defined(CONFIG_TCG_INTERPRETER)
|
|
extern uintptr_t tci_tb_ptr;
|
|
# define GETPC() tci_tb_ptr
|
|
#elif defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
# define GETPC() (uintptr_t)_ReturnAddress()
|
|
#else
|
|
# define GETPC() \
|
|
((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
|
|
#endif
|
|
|
|
/* The true return address will often point to a host insn that is part of
|
|
the next translated guest insn. Adjust the address backward to point to
|
|
the middle of the call insn. Subtracting one would do the job except for
|
|
several compressed mode architectures (arm, mips) which set the low bit
|
|
to indicate the compressed mode; subtracting two works around that. It
|
|
is also the case that there are no host isas that contain a call insn
|
|
smaller than 4 bytes, so we don't worry about special-casing this. */
|
|
#if defined(CONFIG_TCG_INTERPRETER)
|
|
# define GETPC_ADJ 0
|
|
#else
|
|
# define GETPC_ADJ 2
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align));
|
|
|
|
/**
|
|
* iotlb_to_section:
|
|
* @cpu: CPU performing the access
|
|
* @index: TCG CPU IOTLB entry
|
|
*
|
|
* Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
|
|
* it refers to. @index will have been initially created and returned
|
|
* by memory_region_section_get_iotlb().
|
|
*/
|
|
struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
|
|
hwaddr index, MemTxAttrs attrs);
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void mmap_lock(void);
|
|
void mmap_unlock(void);
|
|
bool have_mmap_lock(void);
|
|
|
|
static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
|
{
|
|
return addr;
|
|
}
|
|
#else
|
|
static inline void mmap_lock(void) {}
|
|
static inline void mmap_unlock(void) {}
|
|
|
|
/* cputlb.c */
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
|
|
|
|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
|
|
void tlb_set_dirty(CPUState *env, target_ulong vaddr);
|
|
|
|
/* exec.c */
|
|
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
|
|
|
|
MemoryRegionSection *
|
|
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen,
|
|
MemTxAttrs attrs, int *prot);
|
|
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
hwaddr paddr, hwaddr xlat,
|
|
int prot,
|
|
target_ulong *address);
|
|
bool memory_region_is_unassigned(struct uc_struct* uc, MemoryRegion *mr);
|
|
|
|
#endif
|
|
|
|
/**
|
|
* cpu_can_do_io:
|
|
* @cpu: The CPU for which to check IO.
|
|
*
|
|
* Deterministic execution requires that IO only be performed on the last
|
|
* instruction of a TB so that interrupts take effect immediately.
|
|
*
|
|
* Returns: %true if memory-mapped IO is safe, %false otherwise.
|
|
*/
|
|
static inline bool cpu_can_do_io(CPUState *cpu)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
// Unicorn: Prototype place here
|
|
void page_size_init(struct uc_struct *uc);
|
|
|
|
#endif
|