unicorn/uc.c
2015-08-28 23:51:56 -07:00

906 lines
24 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996)
#endif
#if defined(UNICORN_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <time.h> // nanosleep
#include <string.h>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#include "uc_priv.h"
#include "hook.h"
// target specific headers
#include "qemu/target-m68k/unicorn.h"
#include "qemu/target-i386/unicorn.h"
#include "qemu/target-arm/unicorn.h"
#include "qemu/target-mips/unicorn.h"
#include "qemu/target-sparc/unicorn.h"
#include "qemu/include/hw/boards.h"
UNICORN_EXPORT
unsigned int uc_version(unsigned int *major, unsigned int *minor)
{
if (major != NULL && minor != NULL) {
*major = UC_API_MAJOR;
*minor = UC_API_MINOR;
}
return (UC_API_MAJOR << 8) + UC_API_MINOR;
}
UNICORN_EXPORT
uc_err uc_errno(uch handle)
{
struct uc_struct *uc;
if (!handle)
return UC_ERR_UCH;
uc = (struct uc_struct *)(uintptr_t)handle;
return uc->errnum;
}
UNICORN_EXPORT
const char *uc_strerror(uc_err code)
{
switch(code) {
default:
return "Unknown error code";
case UC_ERR_OK:
return "OK (UC_ERR_OK)";
case UC_ERR_OOM:
return "Out of memory (UC_ERR_OOM)";
case UC_ERR_ARCH:
return "Invalid/unsupported architecture(UC_ERR_ARCH)";
case UC_ERR_HANDLE:
return "Invalid handle (UC_ERR_HANDLE)";
case UC_ERR_UCH:
return "Invalid uch (UC_ERR_UCH)";
case UC_ERR_MODE:
return "Invalid mode (UC_ERR_MODE)";
case UC_ERR_VERSION:
return "Different API version between core & binding (UC_ERR_VERSION)";
case UC_ERR_MEM_READ:
return "Invalid memory read (UC_ERR_MEM_READ)";
case UC_ERR_MEM_WRITE:
return "Invalid memory write (UC_ERR_MEM_WRITE)";
case UC_ERR_CODE_INVALID:
return "Invalid code address (UC_ERR_CODE_INVALID)";
case UC_ERR_INSN_INVALID:
return "Invalid instruction (UC_ERR_INSN_INVALID)";
case UC_ERR_HOOK:
return "Invalid hook type (UC_ERR_HOOK)";
case UC_ERR_MAP:
return "Invalid memory mapping (UC_ERR_MAP)";
case UC_ERR_MEM_WRITE_NW:
return "Write to non-writable (UC_ERR_MEM_WRITE_NW)";
case UC_ERR_MEM_READ_NR:
return "Read from non-readable (UC_ERR_MEM_READ_NR)";
}
}
UNICORN_EXPORT
bool uc_arch_supported(uc_arch arch)
{
switch (arch) {
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM: return true;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64: return true;
#endif
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K: return true;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS: return true;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC: return true;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC: return true;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86: return true;
#endif
/* Invalid or disabled arch */
default: return false;
}
}
UNICORN_EXPORT
uc_err uc_open(uc_arch arch, uc_mode mode, uch *handle)
{
struct uc_struct *uc;
if (arch < UC_ARCH_MAX) {
uc = calloc(1, sizeof(*uc));
if (!uc) {
// memory insufficient
return UC_ERR_OOM;
}
uc->errnum = UC_ERR_OK;
uc->arch = arch;
uc->mode = mode;
// uc->cpus = QTAILQ_HEAD_INITIALIZER(uc->cpus);
uc->cpus.tqh_first = NULL;
uc->cpus.tqh_last = &(uc->cpus.tqh_first);
// uc->ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
uc->ram_list.blocks.tqh_first = NULL;
uc->ram_list.blocks.tqh_last = &(uc->ram_list.blocks.tqh_first);
uc->x86_global_cpu_lock = SPIN_LOCK_UNLOCKED;
uc->memory_listeners.tqh_first = NULL;
uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first;
uc->address_spaces.tqh_first = NULL;
uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first;
switch(arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
uc->init_arch = m68k_uc_init;
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
uc->init_arch = x86_uc_init;
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
uc->init_arch = arm_uc_init;
// verify mode
if (mode != UC_MODE_ARM && mode != UC_MODE_THUMB) {
*handle = 0;
free(uc);
return UC_ERR_MODE;
}
if (mode == UC_MODE_THUMB)
uc->thumb = 1;
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
uc->init_arch = arm64_uc_init;
break;
#endif
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
case UC_ARCH_MIPS:
if (mode & UC_MODE_BIG_ENDIAN) {
#ifdef UNICORN_HAS_MIPS
if (mode & UC_MODE_MIPS32)
uc->init_arch = mips_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64_uc_init;
#endif
} else { // little endian
#ifdef UNICORN_HAS_MIPSEL
if (mode & UC_MODE_MIPS32)
uc->init_arch = mipsel_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64EL
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64el_uc_init;
#endif
}
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
if (mode & UC_MODE_64)
uc->init_arch = sparc64_uc_init;
else
uc->init_arch = sparc_uc_init;
break;
#endif
}
if (uc->init_arch == NULL) {
*handle = 0;
return UC_ERR_ARCH;
}
machine_initialize(uc);
*handle = (uintptr_t)uc;
if (uc->reg_reset)
uc->reg_reset(*handle);
uc->hook_size = HOOK_SIZE;
uc->hook_callbacks = calloc(1, sizeof(uc->hook_callbacks[0]) * HOOK_SIZE);
return UC_ERR_OK;
} else {
*handle = 0;
return UC_ERR_ARCH;
}
}
UNICORN_EXPORT
uc_err uc_close(uch *handle)
{
struct uc_struct *uc;
// invalid handle ?
if (*handle == 0)
return UC_ERR_UCH;
uc = (struct uc_struct *)(*handle);
if (uc->release)
uc->release(uc->tcg_ctx);
#ifndef _WIN32
free(uc->l1_map);
#endif
if (uc->bounce.buffer) {
free(uc->bounce.buffer);
}
g_free(uc->tcg_ctx);
free((void*) uc->system_memory->name);
g_free(uc->system_memory);
g_hash_table_destroy(uc->type_table);
int i;
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
free(uc->ram_list.dirty_memory[i]);
}
// TODO: remove uc->root (created with object_new())
uc->root->free(uc->root);
free(uc->hook_callbacks);
free(uc->mapped_blocks);
// finally, free uc itself.
memset(uc, 0, sizeof(*uc));
free(uc);
// invalidate this handle by ZERO out its value.
// this is to make sure it is unusable after uc_close()
*handle = 0;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_read(uch handle, int regid, void *value)
{
struct uc_struct *uc;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
uc = (struct uc_struct *)handle;
if (uc->reg_read)
uc->reg_read(handle, regid, value);
else
return -1; // FIXME: need a proper uc_err
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_write(uch handle, int regid, const void *value)
{
struct uc_struct *uc;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
uc = (struct uc_struct *)handle;
if (uc->reg_write)
uc->reg_write(handle, regid, value);
else
return -1; // FIXME: need a proper uc_err
return UC_ERR_OK;
}
// check if a memory area is mapped
// this is complicated because an area can overlap adjacent blocks
static bool check_mem_area(struct uc_struct *uc, uint64_t address, size_t size)
{
size_t count = 0, len;
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = MIN(size - count, mr->end - address);
count += len;
address += len;
} else // this address is not mapped in yet
break;
}
return (count == size);
}
UNICORN_EXPORT
uc_err uc_mem_read(uch handle, uint64_t address, uint8_t *bytes, size_t size)
{
struct uc_struct *uc = (struct uc_struct *)(uintptr_t)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (!check_mem_area(uc, address, size))
return UC_ERR_MEM_READ;
size_t count = 0, len;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = MIN(size - count, mr->end - address);
if (uc->read_mem(&uc->as, address, bytes, len) == false)
break;
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_MEM_READ;
}
UNICORN_EXPORT
uc_err uc_mem_write(uch handle, uint64_t address, const uint8_t *bytes, size_t size)
{
struct uc_struct *uc = (struct uc_struct *)(uintptr_t)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (!check_mem_area(uc, address, size))
return UC_ERR_MEM_WRITE;
size_t count = 0, len;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
uint32_t operms = mr->perms;
if (!(operms & UC_PROT_WRITE)) // write protected
// but this is not the program accessing memory, so temporarily mark writable
uc->readonly_mem(mr, false);
len = MIN(size - count, mr->end - address);
if (uc->write_mem(&uc->as, address, bytes, len) == false)
break;
if (!(operms & UC_PROT_WRITE)) // write protected
// now write protect it again
uc->readonly_mem(mr, true);
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_MEM_WRITE;
}
#define TIMEOUT_STEP 2 // microseconds
static void *_timeout_fn(void *arg)
{
struct uc_struct *uc = (struct uc_struct *)arg;
int64_t current_time = get_clock();
do {
usleep(TIMEOUT_STEP);
// perhaps emulation is even done before timeout?
if (uc->emulation_done)
break;
} while(get_clock() - current_time < uc->timeout);
// timeout before emulation is done?
if (!uc->emulation_done) {
// force emulation to stop
uc_emu_stop((uch)uc);
}
return NULL;
}
static void enable_emu_timer(uch handle, uint64_t timeout)
{
struct uc_struct *uc = (struct uc_struct *)handle;
uc->timeout = timeout;
qemu_thread_create(&uc->timer, "timeout", _timeout_fn,
uc, QEMU_THREAD_JOINABLE);
}
UNICORN_EXPORT
uc_err uc_emu_start(uch handle, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
{
struct uc_struct* uc = (struct uc_struct *)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
// reset the counter
uc->emu_counter = 0;
uc->stop_request = false;
uc->invalid_error = UC_ERR_OK;
uc->block_full = false;
uc->emulation_done = false;
switch(uc->arch) {
default:
break;
case UC_ARCH_M68K:
uc_reg_write(handle, UC_M68K_REG_PC, &begin);
break;
case UC_ARCH_X86:
switch(uc->mode) {
default:
break;
case UC_MODE_16:
uc_reg_write(handle, UC_X86_REG_IP, &begin);
break;
case UC_MODE_32:
uc_reg_write(handle, UC_X86_REG_EIP, &begin);
break;
case UC_MODE_64:
uc_reg_write(handle, UC_X86_REG_RIP, &begin);
break;
}
break;
case UC_ARCH_ARM:
switch(uc->mode) {
default:
break;
case UC_MODE_THUMB:
case UC_MODE_ARM:
uc_reg_write(handle, UC_ARM_REG_R15, &begin);
break;
}
break;
case UC_ARCH_ARM64:
uc_reg_write(handle, UC_ARM64_REG_PC, &begin);
break;
case UC_ARCH_MIPS:
// TODO: MIPS32/MIPS64/BIGENDIAN etc
uc_reg_write(handle, UC_MIPS_REG_PC, &begin);
break;
case UC_ARCH_SPARC:
// TODO: Sparc/Sparc64
uc_reg_write(handle, UC_SPARC_REG_PC, &begin);
break;
}
uc->emu_count = count;
if (count > 0) {
uc->hook_insn = true;
}
uc->addr_end = until;
uc->vm_start(uc);
if (timeout)
enable_emu_timer(handle, timeout * 1000); // microseconds -> nanoseconds
uc->pause_all_vcpus(uc);
// emulation is done
uc->emulation_done = true;
return uc->invalid_error;
}
UNICORN_EXPORT
uc_err uc_emu_stop(uch handle)
{
struct uc_struct* uc = (struct uc_struct *)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (uc->emulation_done)
return UC_ERR_OK;
uc->stop_request = true;
// exit the current TB
cpu_exit(uc->current_cpu);
return UC_ERR_OK;
}
static int _hook_code(uch handle, int type, uint64_t begin, uint64_t end,
void *callback, void *user_data, uch *h2)
{
int i;
i = hook_add(handle, type, begin, end, callback, user_data);
if (i == 0)
return UC_ERR_OOM; // FIXME
*h2 = i;
return UC_ERR_OK;
}
static uc_err _hook_mem_access(uch handle, uc_mem_type type,
uint64_t begin, uint64_t end,
void *callback, void *user_data, uch *h2)
{
int i;
i = hook_add(handle, type, begin, end, callback, user_data);
if (i == 0)
return UC_ERR_OOM; // FIXME
*h2 = i;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_map(uch handle, uint64_t address, size_t size, uint32_t perms)
{
MemoryRegion **regions;
struct uc_struct* uc = (struct uc_struct *)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (size == 0)
// invalid memory mapping
return UC_ERR_MAP;
// address must be aligned to 4KB
if ((address & (4*1024 - 1)) != 0)
return UC_ERR_MAP;
// size must be multiple of 4KB
if ((size & (4*1024 - 1)) != 0)
return UC_ERR_MAP;
// check for only valid permissions
if ((perms & ~(UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC)) != 0)
return UC_ERR_MAP;
if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow
regions = (MemoryRegion**)realloc(uc->mapped_blocks, sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR));
if (regions == NULL) {
return UC_ERR_OOM;
}
uc->mapped_blocks = regions;
}
uc->mapped_blocks[uc->mapped_block_count] = uc->memory_map(uc, address, size, perms);
uc->mapped_block_count++;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_protect(uch handle, uint64_t start, size_t block_size, uint32_t perms)
{
uint64_t address;
uint64_t size;
struct uc_struct* uc = (struct uc_struct *)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (block_size == 0)
// invalid memory mapping
return UC_ERR_MAP;
// address must be aligned to 4KB
if ((start & (4*1024 - 1)) != 0)
return UC_ERR_MAP;
// size must be multiple of 4KB
if ((block_size & (4*1024 - 1)) != 0)
return UC_ERR_MAP;
// check for only valid permissions
if ((perms & ~(UC_PROT_READ | UC_PROT_WRITE | UC_PROT_EXEC)) != 0)
return UC_ERR_MAP;
//check that users entire requested block is mapped
address = start;
size = block_size;
while (size > 0) {
uint64_t region_size;
MemoryRegion *mr = memory_mapping(uc, address);
if (mr == NULL) {
return UC_ERR_MAP;
}
region_size = int128_get64(mr->size);
if (address > mr->addr) {
//in case start address is not aligned with start of region
region_size -= address - mr->addr;
}
if (size < region_size) {
//entire region is covered
break;
}
size -= region_size;
address += region_size;
}
//Now we know entire region is mapped, so change permissions
address = start;
size = block_size;
while (size > 0) {
MemoryRegion *mr = memory_mapping(uc, address);
uint64_t region_size = int128_get64(mr->size);
if (address > mr->addr) {
//in case start address is not aligned with start of region
region_size -= address - mr->addr;
//TODO Learn how to split regions
//In this case some proper subset of the region is having it's permissions changed
//need to split region and add new portions into uc->mapped_blocks list
//In this case, there is a portion of the region with original perms: mr->addr..start
//and a portion getting new perms: start..start+block_size
//split the block and stay in the loop
}
if (size < int128_get64(mr->size)) {
//TODO Learn how to split regions
//In this case some proper subset of the region is having it's permissions changed
//need to split region and add new portions into uc->mapped_blocks list
//In this case, there is a portion of the region with new perms: start..start+block_size
//and a portion getting new perms: mr->addr+size..mr->addr+mr->size
//split the block and break
break;
}
size -= int128_get64(mr->size);
address += int128_get64(mr->size);
mr->perms = perms;
uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0);
}
return UC_ERR_OK;
}
MemoryRegion *memory_mapping(struct uc_struct* uc, uint64_t address)
{
unsigned int i;
for(i = 0; i < uc->mapped_block_count; i++) {
if (address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end)
return uc->mapped_blocks[i];
}
// not found
return NULL;
}
static uc_err _hook_mem_invalid(struct uc_struct* uc, uc_cb_eventmem_t callback,
void *user_data, uch *evh)
{
size_t i;
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_mem_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_OOM;
}
static uc_err _hook_intr(struct uc_struct* uc, void *callback,
void *user_data, uch *evh)
{
size_t i;
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_intr_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_OOM;
}
static uc_err _hook_insn(struct uc_struct *uc, unsigned int insn_id, void *callback,
void *user_data, uch *evh)
{
size_t i;
switch(uc->arch) {
default: break;
case UC_ARCH_X86:
switch(insn_id) {
default: break;
case UC_X86_INS_OUT:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_out_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_OOM;
case UC_X86_INS_IN:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_in_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_OOM;
case UC_X86_INS_SYSCALL:
case UC_X86_INS_SYSENTER:
// FIXME: only one event handler at the same time
i = hook_find_new(uc);
if (i) {
uc->hook_callbacks[i].callback = callback;
uc->hook_callbacks[i].user_data = user_data;
*evh = i;
uc->hook_syscall_idx = i;
return UC_ERR_OK;
} else
return UC_ERR_OOM;
}
break;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_hook_add(uch handle, uch *h2, uc_hook_t type, void *callback, void *user_data, ...)
{
struct uc_struct* uc = (struct uc_struct *)handle;
va_list valist;
int ret = UC_ERR_OK;
int id;
uint64_t begin, end;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
va_start(valist, user_data);
switch(type) {
default:
ret = UC_ERR_HOOK;
break;
case UC_HOOK_INTR:
ret = _hook_intr(uc, callback, user_data, h2);
break;
case UC_HOOK_INSN:
id = va_arg(valist, int);
ret = _hook_insn(uc, id, callback, user_data, h2);
break;
case UC_HOOK_CODE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_code(handle, UC_HOOK_CODE, begin, end, callback, user_data, h2);
break;
case UC_HOOK_BLOCK:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_code(handle, UC_HOOK_BLOCK, begin, end, callback, user_data, h2);
break;
case UC_HOOK_MEM_INVALID:
ret = _hook_mem_invalid(uc, callback, user_data, h2);
break;
case UC_HOOK_MEM_READ:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(handle, UC_MEM_READ, begin, end, callback, user_data, h2);
break;
case UC_HOOK_MEM_WRITE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(handle, UC_MEM_WRITE, begin, end, callback, user_data, h2);
case UC_HOOK_MEM_READ_WRITE:
begin = va_arg(valist, uint64_t);
end = va_arg(valist, uint64_t);
ret = _hook_mem_access(handle, UC_MEM_READ_WRITE, begin, end, callback, user_data, h2);
break;
}
va_end(valist);
return ret;
}
UNICORN_EXPORT
uc_err uc_hook_del(uch handle, uch *h2)
{
//struct uc_struct* uc = (struct uc_struct *)handle;
if (handle == 0)
// invalid handle
return UC_ERR_UCH;
if (*h2 == 0)
// invalid handle
return UC_ERR_HANDLE;
return hook_del(handle, h2);
}