mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-25 13:05:38 +00:00
b2f1326437
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu
610 lines
19 KiB
C
610 lines
19 KiB
C
/*
|
|
* AArch64 specific helpers
|
|
*
|
|
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/log.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/bitops.h"
|
|
#include "internals.h"
|
|
#include "qemu/crc32c.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "qemu/int128.h"
|
|
#include "tcg.h"
|
|
|
|
/* C2.4.7 Multiply and divide */
|
|
/* special cases for 0 and LLONG_MIN are mandated by the standard */
|
|
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
|
|
{
|
|
if (den == 0) {
|
|
return 0;
|
|
}
|
|
return num / den;
|
|
}
|
|
|
|
int64_t HELPER(sdiv64)(int64_t num, int64_t den)
|
|
{
|
|
if (den == 0) {
|
|
return 0;
|
|
}
|
|
if (num == LLONG_MIN && den == -1) {
|
|
return LLONG_MIN;
|
|
}
|
|
return num / den;
|
|
}
|
|
|
|
uint64_t HELPER(rbit64)(uint64_t x)
|
|
{
|
|
return revbit64(x);
|
|
}
|
|
|
|
/* Convert a softfloat float_relation_ (as returned by
|
|
* the float*_compare functions) to the correct ARM
|
|
* NZCV flag state.
|
|
*/
|
|
static inline uint32_t float_rel_to_flags(int res)
|
|
{
|
|
uint64_t flags;
|
|
switch (res) {
|
|
case float_relation_equal:
|
|
flags = PSTATE_Z | PSTATE_C;
|
|
break;
|
|
case float_relation_less:
|
|
flags = PSTATE_N;
|
|
break;
|
|
case float_relation_greater:
|
|
flags = PSTATE_C;
|
|
break;
|
|
case float_relation_unordered:
|
|
default:
|
|
flags = PSTATE_C | PSTATE_V;
|
|
break;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
|
|
{
|
|
return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
|
|
}
|
|
|
|
uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
|
|
{
|
|
return float_rel_to_flags(float32_compare(x, y, fp_status));
|
|
}
|
|
|
|
uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
|
|
{
|
|
return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
|
|
}
|
|
|
|
uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
|
|
{
|
|
return float_rel_to_flags(float64_compare(x, y, fp_status));
|
|
}
|
|
|
|
float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
if ((float32_is_zero(a) && float32_is_infinity(b)) ||
|
|
(float32_is_infinity(a) && float32_is_zero(b))) {
|
|
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
|
|
return make_float32((1U << 30) |
|
|
((float32_val(a) ^ float32_val(b)) & (1U << 31)));
|
|
}
|
|
return float32_mul(a, b, fpst);
|
|
}
|
|
|
|
float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
if ((float64_is_zero(a) && float64_is_infinity(b)) ||
|
|
(float64_is_infinity(a) && float64_is_zero(b))) {
|
|
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
|
|
return make_float64((1ULL << 62) |
|
|
((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
|
|
}
|
|
return float64_mul(a, b, fpst);
|
|
}
|
|
|
|
uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
|
|
uint32_t rn, uint32_t numregs)
|
|
{
|
|
/* Helper function for SIMD TBL and TBX. We have to do the table
|
|
* lookup part for the 64 bits worth of indices we're passed in.
|
|
* result is the initial results vector (either zeroes for TBL
|
|
* or some guest values for TBX), rn the register number where
|
|
* the table starts, and numregs the number of registers in the table.
|
|
* We return the results of the lookups.
|
|
*/
|
|
int shift;
|
|
|
|
for (shift = 0; shift < 64; shift += 8) {
|
|
int index = extract64(indices, shift, 8);
|
|
if (index < 16 * numregs) {
|
|
/* Convert index (a byte offset into the virtual table
|
|
* which is a series of 128-bit vectors concatenated)
|
|
* into the correct register element plus a bit offset
|
|
* into that element, bearing in mind that the table
|
|
* can wrap around from V31 to V0.
|
|
*/
|
|
int elt = (rn * 2 + (index >> 3)) % 64;
|
|
int bitidx = (index & 7) * 8;
|
|
uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
|
|
uint64_t val = extract64(q[elt & 1], bitidx, 8);
|
|
|
|
result = deposit64(result, shift, 8, val);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* 64bit/double versions of the neon float compare functions */
|
|
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float64_eq_quiet(a, b, fpst);
|
|
}
|
|
|
|
uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float64_le(b, a, fpst);
|
|
}
|
|
|
|
uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float64_lt(b, a, fpst);
|
|
}
|
|
|
|
/* Reciprocal step and sqrt step. Note that unlike the A32/T32
|
|
* versions, these do a fully fused multiply-add or
|
|
* multiply-add-and-halve.
|
|
*/
|
|
#define float32_two make_float32(0x40000000)
|
|
#define float32_three make_float32(0x40400000)
|
|
#define float32_one_point_five make_float32(0x3fc00000)
|
|
|
|
#define float64_two make_float64(0x4000000000000000ULL)
|
|
#define float64_three make_float64(0x4008000000000000ULL)
|
|
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
|
|
|
|
float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
a = float32_squash_input_denormal(a, fpst);
|
|
b = float32_squash_input_denormal(b, fpst);
|
|
|
|
a = float32_chs(a);
|
|
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero(a))) {
|
|
return float32_two;
|
|
}
|
|
return float32_muladd(a, b, float32_two, 0, fpst);
|
|
}
|
|
|
|
float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
a = float64_squash_input_denormal(a, fpst);
|
|
b = float64_squash_input_denormal(b, fpst);
|
|
|
|
a = float64_chs(a);
|
|
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
|
|
(float64_is_infinity(b) && float64_is_zero(a))) {
|
|
return float64_two;
|
|
}
|
|
return float64_muladd(a, b, float64_two, 0, fpst);
|
|
}
|
|
|
|
float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
a = float32_squash_input_denormal(a, fpst);
|
|
b = float32_squash_input_denormal(b, fpst);
|
|
|
|
a = float32_chs(a);
|
|
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero(a))) {
|
|
return float32_one_point_five;
|
|
}
|
|
return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
|
|
}
|
|
|
|
float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
|
|
a = float64_squash_input_denormal(a, fpst);
|
|
b = float64_squash_input_denormal(b, fpst);
|
|
|
|
a = float64_chs(a);
|
|
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
|
|
(float64_is_infinity(b) && float64_is_zero(a))) {
|
|
return float64_one_point_five;
|
|
}
|
|
return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
|
|
}
|
|
|
|
/* Pairwise long add: add pairs of adjacent elements into
|
|
* double-width elements in the result (eg _s8 is an 8x8->16 op)
|
|
*/
|
|
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
|
|
{
|
|
uint64_t nsignmask = 0x0080008000800080ULL;
|
|
uint64_t wsignmask = 0x8000800080008000ULL;
|
|
uint64_t elementmask = 0x00ff00ff00ff00ffULL;
|
|
uint64_t tmp1, tmp2;
|
|
uint64_t res, signres;
|
|
|
|
/* Extract odd elements, sign extend each to a 16 bit field */
|
|
tmp1 = a & elementmask;
|
|
tmp1 ^= nsignmask;
|
|
tmp1 |= wsignmask;
|
|
tmp1 = (tmp1 - nsignmask) ^ wsignmask;
|
|
/* Ditto for the even elements */
|
|
tmp2 = (a >> 8) & elementmask;
|
|
tmp2 ^= nsignmask;
|
|
tmp2 |= wsignmask;
|
|
tmp2 = (tmp2 - nsignmask) ^ wsignmask;
|
|
|
|
/* calculate the result by summing bits 0..14, 16..22, etc,
|
|
* and then adjusting the sign bits 15, 23, etc manually.
|
|
* This ensures the addition can't overflow the 16 bit field.
|
|
*/
|
|
signres = (tmp1 ^ tmp2) & wsignmask;
|
|
res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
|
|
res ^= signres;
|
|
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_addlp_u8)(uint64_t a)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = a & 0x00ff00ff00ff00ffULL;
|
|
tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
|
|
return tmp;
|
|
}
|
|
|
|
uint64_t HELPER(neon_addlp_s16)(uint64_t a)
|
|
{
|
|
int32_t reslo, reshi;
|
|
|
|
reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
|
|
reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
|
|
|
|
return (uint32_t)reslo | (((uint64_t)reshi) << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_addlp_u16)(uint64_t a)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = a & 0x0000ffff0000ffffULL;
|
|
tmp += (a >> 16) & 0x0000ffff0000ffffULL;
|
|
return tmp;
|
|
}
|
|
|
|
/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
|
|
float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
uint32_t val32, sbit;
|
|
int32_t exp;
|
|
|
|
if (float32_is_any_nan(a)) {
|
|
float32 nan = a;
|
|
if (float32_is_signaling_nan(a, fpst)) {
|
|
float_raise(float_flag_invalid, fpst);
|
|
nan = float32_maybe_silence_nan(a, fpst);
|
|
}
|
|
if (fpst->default_nan_mode) {
|
|
nan = float32_default_nan(fpst);
|
|
}
|
|
return nan;
|
|
}
|
|
|
|
val32 = float32_val(a);
|
|
sbit = 0x80000000ULL & val32;
|
|
exp = extract32(val32, 23, 8);
|
|
|
|
if (exp == 0) {
|
|
return make_float32(sbit | (0xfe << 23));
|
|
} else {
|
|
return make_float32(sbit | (~exp & 0xff) << 23);
|
|
}
|
|
}
|
|
|
|
float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
uint64_t val64, sbit;
|
|
int64_t exp;
|
|
|
|
if (float64_is_any_nan(a)) {
|
|
float64 nan = a;
|
|
if (float64_is_signaling_nan(a, fpst)) {
|
|
float_raise(float_flag_invalid, fpst);
|
|
nan = float64_maybe_silence_nan(a, fpst);
|
|
}
|
|
if (fpst->default_nan_mode) {
|
|
nan = float64_default_nan(fpst);
|
|
}
|
|
return nan;
|
|
}
|
|
|
|
val64 = float64_val(a);
|
|
sbit = 0x8000000000000000ULL & val64;
|
|
exp = extract64(float64_val(a), 52, 11);
|
|
|
|
if (exp == 0) {
|
|
return make_float64(sbit | (0x7feULL << 52));
|
|
} else {
|
|
return make_float64(sbit | (~exp & 0x7ffULL) << 52);
|
|
}
|
|
}
|
|
|
|
float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
|
|
{
|
|
/* Von Neumann rounding is implemented by using round-to-zero
|
|
* and then setting the LSB of the result if Inexact was raised.
|
|
*/
|
|
float32 r;
|
|
float_status *fpst = &env->vfp.fp_status;
|
|
float_status tstat = *fpst;
|
|
int exflags;
|
|
|
|
set_float_rounding_mode(float_round_to_zero, &tstat);
|
|
set_float_exception_flags(0, &tstat);
|
|
r = float64_to_float32(a, &tstat);
|
|
r = float32_maybe_silence_nan(r, fpst);
|
|
exflags = get_float_exception_flags(&tstat);
|
|
if (exflags & float_flag_inexact) {
|
|
r = make_float32(float32_val(r) | 1);
|
|
}
|
|
exflags |= get_float_exception_flags(fpst);
|
|
set_float_exception_flags(exflags, fpst);
|
|
return r;
|
|
}
|
|
|
|
/* 64-bit versions of the CRC helpers. Note that although the operation
|
|
* (and the prototypes of crc32c() and crc32() mean that only the bottom
|
|
* 32 bits of the accumulator and result are used, we pass and return
|
|
* uint64_t for convenience of the generated code. Unlike the 32-bit
|
|
* instruction set versions, val may genuinely have 64 bits of data in it.
|
|
* The upper bytes of val (above the number specified by 'bytes') must have
|
|
* been zeroed out by the caller.
|
|
*/
|
|
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[8];
|
|
|
|
stq_le_p(buf, val);
|
|
|
|
static const uint32_t iso_table[256] = {
|
|
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
|
|
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
|
|
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
|
|
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
|
|
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
|
|
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
|
|
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
|
|
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
|
|
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
|
|
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
|
|
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
|
|
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
|
|
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
|
|
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
|
|
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
|
|
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
|
|
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
|
|
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
|
|
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
|
|
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
|
|
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
|
|
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
|
|
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
|
|
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
|
|
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
|
|
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
|
|
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
|
|
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
|
|
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
|
|
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
|
|
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
|
|
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
|
|
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
|
|
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
|
|
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
|
|
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
|
|
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
|
|
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
|
|
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
|
|
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
|
|
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
|
|
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
|
|
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
|
|
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
|
|
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
|
|
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
|
|
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
|
|
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
|
|
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
|
|
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
|
|
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
|
|
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
|
|
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
|
|
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
|
|
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
|
|
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
|
|
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
|
|
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
|
|
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
|
|
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
|
|
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
|
|
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
|
|
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
|
|
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
|
|
};
|
|
|
|
const uint8_t* data = buf;
|
|
uint32_t crc = (uint32_t)acc;
|
|
|
|
while (bytes-- > 0) {
|
|
crc = (crc >> 8) ^ iso_table[(crc ^ (*data++)) & 0xFF];
|
|
}
|
|
|
|
return crc;
|
|
|
|
/* zlib crc32 converts the accumulator and output to one's complement. */
|
|
// return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[8];
|
|
|
|
stq_le_p(buf, val);
|
|
|
|
/* Linux crc32c converts the output to one's complement. */
|
|
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
/* Returns 0 on success; 1 otherwise. */
|
|
uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
|
|
uint64_t new_lo, uint64_t new_hi)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
Int128 oldv, cmpv, newv;
|
|
bool success;
|
|
|
|
cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
|
|
newv = int128_make128(new_lo, new_hi);
|
|
|
|
if (env->uc->parallel_cpus) {
|
|
#ifndef CONFIG_ATOMIC128
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
|
|
#else
|
|
int mem_idx = cpu_mmu_index(env, false);
|
|
TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
|
|
oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
|
|
success = int128_eq(oldv, cmpv);
|
|
#endif
|
|
} else {
|
|
uint64_t o0, o1;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* ??? Enforce alignment. */
|
|
uint64_t *haddr = g2h(addr);
|
|
o0 = ldq_le_p(haddr + 0);
|
|
o1 = ldq_le_p(haddr + 1);
|
|
oldv = int128_make128(o0, o1);
|
|
|
|
success = int128_eq(oldv, cmpv);
|
|
if (success) {
|
|
stq_le_p(haddr + 0, int128_getlo(newv));
|
|
stq_le_p(haddr + 1, int128_gethi(newv));
|
|
}
|
|
#else
|
|
int mem_idx = cpu_mmu_index(env, false);
|
|
TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
|
|
TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
|
|
|
|
o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
|
|
o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
|
|
oldv = int128_make128(o0, o1);
|
|
|
|
success = int128_eq(oldv, cmpv);
|
|
if (success) {
|
|
helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
|
|
helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return !success;
|
|
}
|
|
|
|
uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
|
|
uint64_t new_lo, uint64_t new_hi)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
Int128 oldv, cmpv, newv;
|
|
bool success;
|
|
|
|
cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
|
|
newv = int128_make128(new_lo, new_hi);
|
|
|
|
if (env->uc->parallel_cpus) {
|
|
#ifndef CONFIG_ATOMIC128
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
|
|
#else
|
|
int mem_idx = cpu_mmu_index(env, false);
|
|
TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
|
|
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
|
|
success = int128_eq(oldv, cmpv);
|
|
#endif
|
|
} else {
|
|
uint64_t o0, o1;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* ??? Enforce alignment. */
|
|
uint64_t *haddr = g2h(addr);
|
|
o1 = ldq_be_p(haddr + 0);
|
|
o0 = ldq_be_p(haddr + 1);
|
|
oldv = int128_make128(o0, o1);
|
|
|
|
success = int128_eq(oldv, cmpv);
|
|
if (success) {
|
|
stq_be_p(haddr + 0, int128_gethi(newv));
|
|
stq_be_p(haddr + 1, int128_getlo(newv));
|
|
}
|
|
#else
|
|
int mem_idx = cpu_mmu_index(env, false);
|
|
TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
|
|
TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
|
|
|
|
o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
|
|
o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
|
|
oldv = int128_make128(o0, o1);
|
|
|
|
success = int128_eq(oldv, cmpv);
|
|
if (success) {
|
|
helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
|
|
helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return !success;
|
|
}
|
|
|