unicorn/qemu/target/arm/translate.h
Peter Maydell 21044a1d11 target/arm: Convert Neon 3-reg-diff VABAL, VABDL to decodetree
Convert the Neon 3-reg-diff insns VABAL and VABDL to decodetree.
Like almost all the remaining insns in this group, these are
a combination of a two-input operation which returns a double width
result and then a possible accumulation of that double width
result into the destination.

Backports commit f5b28401200ec95ba89552df3ecdcdc342f6b90b from qemu
2020-06-16 23:41:20 -04:00

391 lines
16 KiB
C

#ifndef TARGET_ARM_TRANSLATE_H
#define TARGET_ARM_TRANSLATE_H
#include "exec/translator.h"
#include "internals.h"
/* internal defines */
typedef struct DisasContext {
DisasContextBase base;
const ARMISARegisters *isar;
/* The address of the current instruction being translated. */
target_ulong pc_curr;
target_ulong page_start;
uint32_t insn;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
TCGLabel *condlabel;
/* Thumb-2 conditional execution bits. */
int condexec_mask;
int condexec_cond;
int thumb;
int sctlr_b;
MemOp be_data;
#if !defined(CONFIG_USER_ONLY)
int user;
#endif
ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
uint8_t tbii; /* TBI1|TBI0 for insns */
uint8_t tbid; /* TBI1|TBI0 for data */
bool ns; /* Use non-secure CPREG bank on access */
int fp_excp_el; /* FP exception EL or 0 if enabled */
int sve_excp_el; /* SVE exception EL or 0 if enabled */
int sve_len; /* SVE vector length in bytes */
/* Flag indicating that exceptions from secure mode are routed to EL3. */
bool secure_routed_to_el3;
bool vfp_enabled; /* FP enabled via FPSCR.EN */
int vec_len;
int vec_stride;
bool v7m_handler_mode;
bool v8m_secure; /* true if v8M and we're in Secure mode */
bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
bool v7m_lspact; /* FPCCR.LSPACT set */
/* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
* so that top level loop can generate correct syndrome information.
*/
uint32_t svc_imm;
int aarch64;
int current_el;
/* Debug target exception level for single-step exceptions */
int debug_target_el;
GHashTable *cp_regs;
uint64_t features; /* CPU features bits */
/* Because unallocated encodings generate different exception syndrome
* information from traps due to FP being disabled, we can't do a single
* "is fp access disabled" check at a high level in the decode tree.
* To help in catching bugs where the access check was forgotten in some
* code path, we set this flag when the access check is done, and assert
* that it is set at the point where we actually touch the FP regs.
*/
bool fp_access_checked;
/* ARMv8 single-step state (this is distinct from the QEMU gdbstub
* single-step support).
*/
bool ss_active;
bool pstate_ss;
/* True if the insn just emitted was a load-exclusive instruction
* (necessary for syndrome information for single step exceptions),
* ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
*/
bool is_ldex;
/* True if AccType_UNPRIV should be used for LDTR et al */
bool unpriv;
/* True if v8.3-PAuth is active. */
bool pauth_active;
/* Bottom two bits of XScale c15_cpar coprocessor access control reg */
int c15_cpar;
/* True with v8.5-BTI and SCTLR_ELx.BT* set. */
bool bt;
/* True if any CP15 access is trapped by HSTR_EL2 */
bool hstr_active;
/*
* >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
* < 0, set by the current instruction.
*/
int8_t btype;
/* True if this page is guarded. */
bool guarded_page;
/* TCG op of the current insn_start. */
TCGOp *insn_start;
#define TMP_A64_MAX 16
int tmp_a64_count;
TCGv_i64 tmp_a64[TMP_A64_MAX];
// Unicorn: Moved here to avoid global state.
TCGv_i64 V0;
TCGv_i64 V1;
TCGv_i64 M0;
// Unicorn engine
struct uc_struct *uc;
} DisasContext;
typedef struct DisasCompare {
TCGCond cond;
TCGv_i32 value;
bool value_global;
} DisasCompare;
static inline int arm_dc_feature(DisasContext *dc, int feature)
{
return (dc->features & (1ULL << feature)) != 0;
}
static inline int get_mem_index(DisasContext *s)
{
return arm_to_core_mmu_idx(s->mmu_idx);
}
/* Function used to determine the target exception EL when otherwise not known
* or default.
*/
static inline int default_exception_el(DisasContext *s)
{
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
* there is no secure EL1, so we route exceptions to EL3. Otherwise,
* exceptions can only be routed to ELs above 1, so we target the higher of
* 1 or the current EL.
*/
return (s->mmu_idx == ARMMMUIdx_SE10_0 && s->secure_routed_to_el3)
? 3 : MAX(1, s->current_el);
}
static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
{
/* We don't need to save all of the syndrome so we mask and shift
* out unneeded bits to help the sleb128 encoder do a better job.
*/
syn &= ARM_INSN_START_WORD2_MASK;
syn >>= ARM_INSN_START_WORD2_SHIFT;
/* We check and clear insn_start_idx to catch multiple updates. */
assert(s->insn_start != NULL);
tcg_set_insn_start_param(s->insn_start, 2, syn);
s->insn_start = NULL;
}
/* target-specific extra values for is_jmp */
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
#define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */
/* These instructions trap after executing, so the A32/T32 decoder must
* defer them until after the conditional execution state has been updated.
* WFI also needs special handling when single-stepping.
*/
#define DISAS_WFI DISAS_TARGET_2
#define DISAS_SWI DISAS_TARGET_3
/* WFE */
#define DISAS_WFE DISAS_TARGET_4
#define DISAS_HVC DISAS_TARGET_5
#define DISAS_SMC DISAS_TARGET_6
#define DISAS_YIELD DISAS_TARGET_7
/* M profile branch which might be an exception return (and so needs
* custom end-of-TB code)
*/
#define DISAS_BX_EXCRET DISAS_TARGET_8
/* For instructions which want an immediate exit to the main loop,
* as opposed to attempting to use lookup_and_goto_ptr. Unlike
* DISAS_UPDATE this doesn't write the PC on exiting the translation
* loop so you need to ensure something (gen_a64_set_pc_im or runtime
* helper) has done so before we reach return from cpu_tb_exec.
*/
#define DISAS_EXIT DISAS_TARGET_9
#ifdef TARGET_AARCH64
void a64_translate_init(struct uc_struct *uc);
void gen_a64_set_pc_im(DisasContext *s, uint64_t val);
extern const TranslatorOps aarch64_translator_ops;
#else
static inline void a64_translate_init(struct uc_struct *uc)
{
}
static inline void gen_a64_set_pc_im(DisasContext *s, uint64_t val)
{
}
#endif
void arm_test_cc(DisasContext *s, DisasCompare *cmp, int cc);
void arm_free_cc(DisasContext *s, DisasCompare *cmp);
void arm_jump_cc(DisasContext *s, DisasCompare *cmp, TCGLabel *label);
void arm_gen_test_cc(DisasContext *s, int cc, TCGLabel *label);
/* Return state of Alternate Half-precision flag, caller frees result */
static inline TCGv_i32 get_ahp_flag(DisasContext *s)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 ret = tcg_temp_new_i32(tcg_ctx);
tcg_gen_ld_i32(tcg_ctx, ret, tcg_ctx->cpu_env,
offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
tcg_gen_extract_i32(tcg_ctx, ret, ret, 26, 1);
return ret;
}
/* Set bits within PSTATE. */
static inline void set_pstate_bits(DisasContext *s, uint32_t bits)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 p = tcg_temp_new_i32(tcg_ctx);
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
tcg_gen_ori_i32(tcg_ctx, p, p, bits);
tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
tcg_temp_free_i32(tcg_ctx, p);
}
/* Clear bits within PSTATE. */
static inline void clear_pstate_bits(DisasContext *s, uint32_t bits)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 p = tcg_temp_new_i32(tcg_ctx);
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
tcg_gen_andi_i32(tcg_ctx, p, p, ~bits);
tcg_gen_st_i32(tcg_ctx, p, tcg_ctx->cpu_env, offsetof(CPUARMState, pstate));
tcg_temp_free_i32(tcg_ctx, p);
}
/* If the singlestep state is Active-not-pending, advance to Active-pending. */
static inline void gen_ss_advance(DisasContext *s)
{
if (s->ss_active) {
s->pstate_ss = 0;
clear_pstate_bits(s, PSTATE_SS);
}
}
static inline void gen_exception(DisasContext *s, int excp, uint32_t syndrome,
uint32_t target_el)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_excp = tcg_const_i32(tcg_ctx, excp);
TCGv_i32 tcg_syn = tcg_const_i32(tcg_ctx, syndrome);
TCGv_i32 tcg_el = tcg_const_i32(tcg_ctx, target_el);
gen_helper_exception_with_syndrome(tcg_ctx, tcg_ctx->cpu_env, tcg_excp,
tcg_syn, tcg_el);
tcg_temp_free_i32(tcg_ctx, tcg_el);
tcg_temp_free_i32(tcg_ctx, tcg_syn);
tcg_temp_free_i32(tcg_ctx, tcg_excp);
}
/* Generate an architectural singlestep exception */
static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
{
bool same_el = (s->debug_target_el == s->current_el);
/*
* If singlestep is targeting a lower EL than the current one,
* then s->ss_active must be false and we can never get here.
*/
assert(s->debug_target_el >= s->current_el);
gen_exception(s, EXCP_UDEF, syn_swstep(same_el, isv, ex), s->debug_target_el);
}
/*
* Given a VFP floating point constant encoded into an 8 bit immediate in an
* instruction, expand it to the actual constant value of the specified
* size, as per the VFPExpandImm() pseudocode in the Arm ARM.
*/
uint64_t vfp_expand_imm(int size, uint8_t imm8);
/* Vector operations shared between ARM and AArch64. */
void gen_gvec_ceq0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_clt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cgt0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cle0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cge0(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mla(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mls(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cmtst(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sshl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ushl(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_cmtst_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_ushl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_sshl_i32(TCGContext* tcg_ctx, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_ushl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_sshl_i64(TCGContext* tcg_ctx, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_uqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqadd_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqsub_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ssra(TCGContext* tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_usra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_urshr(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srsra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ursra(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sri(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sli(TCGContext *tcg_ctx, unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlah_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlsh_qc(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uabd(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_saba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uaba(TCGContext *s, unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
/*
* Forward to the isar_feature_* tests given a DisasContext pointer.
*/
#define dc_isar_feature(name, ctx) \
({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
/* Note that the gvec expanders operate on offsets + sizes. */
typedef void GVecGen2Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
typedef void GVecGen2iFn(TCGContext *, unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
typedef void GVecGen3Fn(TCGContext *, unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
typedef void GVecGen4Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGContext *t, TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGContext *t, TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGContext *t, TCGv_i64, TCGv_i32);
typedef void NeonGenTwoOpWidenFn(TCGContext *t, TCGv_i64, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoSingleOPFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOPFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOneOpFn(TCGContext *t, TCGv_i64, TCGv_i64);
typedef void CryptoTwoOpFn(TCGContext *, TCGv_ptr, TCGv_ptr);
typedef void CryptoThreeOpIntFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void CryptoThreeOpFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void AtomicThreeOpFn(TCGContext *, TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
#endif /* TARGET_ARM_TRANSLATE_H */