mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-31 23:15:44 +00:00
c206e37963
* Implement timeout state and new error for such case * Adjust test_i386_loop sample * Adjust test_i386_loop test Backports commit 3a3bc0c22de5453335dfb597a95dbda07c9f47a2 from unicorn
1336 lines
36 KiB
C
1336 lines
36 KiB
C
/* Unicorn Emulator Engine */
|
|
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
|
|
|
|
#if defined(UNICORN_HAS_OSXKERNEL)
|
|
#include <libkern/libkern.h>
|
|
#else
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#endif
|
|
|
|
#include <time.h> // nanosleep
|
|
|
|
#include <string.h>
|
|
|
|
#include "uc_priv.h"
|
|
|
|
// target specific headers
|
|
#include "qemu/target/arm/unicorn.h"
|
|
#include "qemu/target/i386/unicorn.h"
|
|
#include "qemu/target/m68k/unicorn.h"
|
|
#include "qemu/target/mips/unicorn.h"
|
|
#include "qemu/target/riscv/unicorn.h"
|
|
#include "qemu/target/sparc/unicorn.h"
|
|
|
|
#include "qemu/include/hw/boards.h"
|
|
#include "qemu/include/qemu/queue.h"
|
|
|
|
static void free_table(gpointer key, gpointer value, gpointer data)
|
|
{
|
|
TypeInfo *ti = (TypeInfo*) value;
|
|
g_hash_table_destroy(ti->class->properties);
|
|
g_free((void *) ti->class);
|
|
g_free((void *) ti->name);
|
|
g_free((void *) ti->parent);
|
|
g_free((void *) ti);
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
unsigned int uc_version(unsigned int *major, unsigned int *minor)
|
|
{
|
|
if (major != NULL && minor != NULL) {
|
|
*major = UC_API_MAJOR;
|
|
*minor = UC_API_MINOR;
|
|
}
|
|
|
|
return (UC_API_MAJOR << 8) + UC_API_MINOR;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_errno(uc_engine *uc)
|
|
{
|
|
return uc->errnum;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
const char *uc_strerror(uc_err code)
|
|
{
|
|
switch(code) {
|
|
default:
|
|
return "Unknown error code";
|
|
case UC_ERR_OK:
|
|
return "OK (UC_ERR_OK)";
|
|
case UC_ERR_NOMEM:
|
|
return "No memory available or memory not present (UC_ERR_NOMEM)";
|
|
case UC_ERR_ARCH:
|
|
return "Invalid/unsupported architecture (UC_ERR_ARCH)";
|
|
case UC_ERR_HANDLE:
|
|
return "Invalid handle (UC_ERR_HANDLE)";
|
|
case UC_ERR_MODE:
|
|
return "Invalid mode (UC_ERR_MODE)";
|
|
case UC_ERR_VERSION:
|
|
return "Different API version between core & binding (UC_ERR_VERSION)";
|
|
case UC_ERR_READ_UNMAPPED:
|
|
return "Invalid memory read (UC_ERR_READ_UNMAPPED)";
|
|
case UC_ERR_WRITE_UNMAPPED:
|
|
return "Invalid memory write (UC_ERR_WRITE_UNMAPPED)";
|
|
case UC_ERR_FETCH_UNMAPPED:
|
|
return "Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)";
|
|
case UC_ERR_HOOK:
|
|
return "Invalid hook type (UC_ERR_HOOK)";
|
|
case UC_ERR_INSN_INVALID:
|
|
return "Invalid instruction (UC_ERR_INSN_INVALID)";
|
|
case UC_ERR_MAP:
|
|
return "Invalid memory mapping (UC_ERR_MAP)";
|
|
case UC_ERR_WRITE_PROT:
|
|
return "Write to write-protected memory (UC_ERR_WRITE_PROT)";
|
|
case UC_ERR_READ_PROT:
|
|
return "Read from non-readable memory (UC_ERR_READ_PROT)";
|
|
case UC_ERR_FETCH_PROT:
|
|
return "Fetch from non-executable memory (UC_ERR_FETCH_PROT)";
|
|
case UC_ERR_ARG:
|
|
return "Invalid argument (UC_ERR_ARG)";
|
|
case UC_ERR_READ_UNALIGNED:
|
|
return "Read from unaligned memory (UC_ERR_READ_UNALIGNED)";
|
|
case UC_ERR_WRITE_UNALIGNED:
|
|
return "Write to unaligned memory (UC_ERR_WRITE_UNALIGNED)";
|
|
case UC_ERR_FETCH_UNALIGNED:
|
|
return "Fetch from unaligned memory (UC_ERR_FETCH_UNALIGNED)";
|
|
case UC_ERR_RESOURCE:
|
|
return "Insufficient resource (UC_ERR_RESOURCE)";
|
|
case UC_ERR_EXCEPTION:
|
|
return "Unhandled CPU exception (UC_ERR_EXCEPTION)";
|
|
case UC_ERR_TIMEOUT:
|
|
return "Emulation timed out (UC_ERR_TIMEOUT)";
|
|
}
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
bool uc_arch_supported(uc_arch arch)
|
|
{
|
|
switch (arch) {
|
|
#ifdef UNICORN_HAS_ARM
|
|
case UC_ARCH_ARM: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM64
|
|
case UC_ARCH_ARM64: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_M68K
|
|
case UC_ARCH_M68K: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_MIPS
|
|
case UC_ARCH_MIPS: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_PPC
|
|
case UC_ARCH_PPC: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_SPARC
|
|
case UC_ARCH_SPARC: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_RISCV
|
|
case UC_ARCH_RISCV: return true;
|
|
#endif
|
|
#ifdef UNICORN_HAS_X86
|
|
case UC_ARCH_X86: return true;
|
|
#endif
|
|
/* Invalid or disabled arch */
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result)
|
|
{
|
|
struct uc_struct *uc;
|
|
|
|
if (arch < UC_ARCH_MAX) {
|
|
uc = calloc(1, sizeof(*uc));
|
|
if (!uc) {
|
|
// memory insufficient
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
|
|
uc->errnum = UC_ERR_OK;
|
|
uc->arch = arch;
|
|
uc->mode = mode;
|
|
|
|
// uc->ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
|
|
uc->ram_list.blocks.lh_first = NULL;
|
|
|
|
uc->memory_listeners.tqh_first = NULL;
|
|
uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first;
|
|
|
|
uc->address_spaces.tqh_first = NULL;
|
|
uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first;
|
|
|
|
uc->phys_map_node_alloc_hint = 16;
|
|
|
|
switch(arch) {
|
|
default:
|
|
break;
|
|
#ifdef UNICORN_HAS_M68K
|
|
case UC_ARCH_M68K:
|
|
if ((mode & ~UC_MODE_M68K_MASK) ||
|
|
!(mode & UC_MODE_BIG_ENDIAN)) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
uc->init_arch = m68k_uc_init;
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_X86
|
|
case UC_ARCH_X86:
|
|
if ((mode & ~UC_MODE_X86_MASK) ||
|
|
(mode & UC_MODE_BIG_ENDIAN) ||
|
|
!(mode & (UC_MODE_16|UC_MODE_32|UC_MODE_64))) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
uc->init_arch = x86_uc_init;
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM
|
|
case UC_ARCH_ARM:
|
|
if ((mode & ~UC_MODE_ARM_MASK)) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
if (mode & UC_MODE_BIG_ENDIAN) {
|
|
uc->init_arch = armeb_uc_init;
|
|
} else {
|
|
uc->init_arch = arm_uc_init;
|
|
}
|
|
|
|
if (mode & UC_MODE_THUMB)
|
|
uc->thumb = 1;
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM64
|
|
case UC_ARCH_ARM64:
|
|
if (mode & ~UC_MODE_ARM_MASK) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
if (mode & UC_MODE_BIG_ENDIAN) {
|
|
uc->init_arch = arm64eb_uc_init;
|
|
} else {
|
|
uc->init_arch = arm64_uc_init;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
|
|
case UC_ARCH_MIPS:
|
|
if ((mode & ~UC_MODE_MIPS_MASK) ||
|
|
!(mode & (UC_MODE_MIPS32|UC_MODE_MIPS64))) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
if (mode & UC_MODE_BIG_ENDIAN) {
|
|
#ifdef UNICORN_HAS_MIPS
|
|
if (mode & UC_MODE_MIPS32)
|
|
uc->init_arch = mips_uc_init;
|
|
#endif
|
|
#ifdef UNICORN_HAS_MIPS64
|
|
if (mode & UC_MODE_MIPS64)
|
|
uc->init_arch = mips64_uc_init;
|
|
#endif
|
|
} else { // little endian
|
|
#ifdef UNICORN_HAS_MIPSEL
|
|
if (mode & UC_MODE_MIPS32)
|
|
uc->init_arch = mipsel_uc_init;
|
|
#endif
|
|
#ifdef UNICORN_HAS_MIPS64EL
|
|
if (mode & UC_MODE_MIPS64)
|
|
uc->init_arch = mips64el_uc_init;
|
|
#endif
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef UNICORN_HAS_RISCV
|
|
case UC_ARCH_RISCV:
|
|
if (mode & ~UC_MODE_RISCV_MASK) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
if (mode & UC_MODE_RISCV64) {
|
|
#ifdef UNICORN_HAS_RISCV64
|
|
uc->init_arch = riscv64_uc_init;
|
|
#endif
|
|
} else {
|
|
#ifdef UNICORN_HAS_RISCV32
|
|
uc->init_arch = riscv32_uc_init;
|
|
#endif
|
|
}
|
|
break;
|
|
#endif /* UNICORN_HAS_RISCV */
|
|
|
|
#ifdef UNICORN_HAS_SPARC
|
|
case UC_ARCH_SPARC:
|
|
if ((mode & ~UC_MODE_SPARC_MASK) ||
|
|
!(mode & UC_MODE_BIG_ENDIAN) ||
|
|
!(mode & (UC_MODE_SPARC32|UC_MODE_SPARC64))) {
|
|
free(uc);
|
|
return UC_ERR_MODE;
|
|
}
|
|
if (mode & UC_MODE_SPARC64)
|
|
uc->init_arch = sparc64_uc_init;
|
|
else
|
|
uc->init_arch = sparc_uc_init;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (uc->init_arch == NULL) {
|
|
return UC_ERR_ARCH;
|
|
}
|
|
|
|
if (machine_initialize(uc)) {
|
|
return UC_ERR_RESOURCE;
|
|
}
|
|
|
|
*result = uc;
|
|
|
|
if (uc->reg_reset)
|
|
uc->reg_reset(uc);
|
|
|
|
return UC_ERR_OK;
|
|
} else {
|
|
return UC_ERR_ARCH;
|
|
}
|
|
}
|
|
|
|
static void free_hooks(uc_engine *uc)
|
|
{
|
|
struct list_item *cur;
|
|
struct hook *hook;
|
|
int i;
|
|
|
|
// free hooks and hook lists
|
|
for (i = 0; i < UC_HOOK_MAX; i++) {
|
|
cur = uc->hook[i].head;
|
|
// hook can be in more than one list
|
|
// so we refcount to know when to free
|
|
while (cur) {
|
|
hook = (struct hook *)cur->data;
|
|
if (--hook->refs == 0) {
|
|
free(hook);
|
|
}
|
|
cur = cur->next;
|
|
}
|
|
list_clear(&uc->hook[i]);
|
|
}
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_close(uc_engine *uc)
|
|
{
|
|
// Cleanup internally.
|
|
if (uc->release)
|
|
uc->release(uc->tcg_ctx);
|
|
g_free(uc->tcg_ctx);
|
|
|
|
// Cleanup CPU.
|
|
g_free(uc->cpu->cpu_ases);
|
|
g_free(uc->cpu->thread);
|
|
|
|
// Cleanup all objects.
|
|
OBJECT(uc->machine_state->accelerator)->ref = 1;
|
|
OBJECT(uc->machine_state)->ref = 1;
|
|
OBJECT(uc->owner)->ref = 1;
|
|
OBJECT(uc->root)->ref = 1;
|
|
|
|
object_unref(uc, OBJECT(uc->machine_state->accelerator));
|
|
object_unref(uc, OBJECT(uc->machine_state));
|
|
object_unref(uc, OBJECT(uc->cpu));
|
|
object_unref(uc, OBJECT(&uc->io_mem_notdirty));
|
|
object_unref(uc, OBJECT(&uc->io_mem_unassigned));
|
|
object_unref(uc, OBJECT(&uc->io_mem_rom));
|
|
object_unref(uc, OBJECT(uc->root));
|
|
|
|
// System memory.
|
|
g_free(uc->system_memory);
|
|
|
|
// Thread relateds.
|
|
if (uc->qemu_thread_data)
|
|
g_free(uc->qemu_thread_data);
|
|
|
|
// Other auxilaries.
|
|
free(uc->l1_map);
|
|
|
|
if (uc->bounce.buffer) {
|
|
free(uc->bounce.buffer);
|
|
}
|
|
|
|
g_hash_table_foreach(uc->type_table, free_table, uc);
|
|
g_hash_table_destroy(uc->type_table);
|
|
|
|
free_hooks(uc);
|
|
free(uc->mapped_blocks);
|
|
|
|
// finally, free uc itself.
|
|
memset(uc, 0, sizeof(*uc));
|
|
free(uc);
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_reg_read_batch(uc_engine *uc, int *ids, void **vals, int count)
|
|
{
|
|
if (uc->reg_read)
|
|
uc->reg_read(uc, (unsigned int *)ids, vals, count);
|
|
else
|
|
return -1; // FIXME: need a proper uc_err
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_reg_write_batch(uc_engine *uc, int *ids, void *const *vals, int count)
|
|
{
|
|
int ret = UC_ERR_OK;
|
|
|
|
if (uc->reg_write) {
|
|
ret = uc->reg_write(uc, (unsigned int *)ids, vals, count);
|
|
} else {
|
|
return UC_ERR_EXCEPTION; // FIXME: need a proper uc_err
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_reg_read(uc_engine *uc, int regid, void *value)
|
|
{
|
|
return uc_reg_read_batch(uc, ®id, &value, 1);
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_reg_write(uc_engine *uc, int regid, const void *value)
|
|
{
|
|
return uc_reg_write_batch(uc, ®id, (void *const *)&value, 1);
|
|
}
|
|
|
|
// check if a memory area is mapped
|
|
// this is complicated because an area can overlap adjacent blocks
|
|
static bool check_mem_area(uc_engine *uc, uint64_t address, size_t size)
|
|
{
|
|
size_t count = 0, len;
|
|
|
|
while(count < size) {
|
|
MemoryRegion *mr = memory_mapping(uc, address);
|
|
if (mr) {
|
|
len = (size_t)MIN(size - count, mr->end - address);
|
|
count += len;
|
|
address += len;
|
|
} else // this address is not mapped in yet
|
|
break;
|
|
}
|
|
|
|
return (count == size);
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_read(uc_engine *uc, uint64_t address, void *_bytes, size_t size)
|
|
{
|
|
size_t count = 0, len;
|
|
uint8_t *bytes = _bytes;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
if (!check_mem_area(uc, address, size))
|
|
return UC_ERR_READ_UNMAPPED;
|
|
|
|
// memory area can overlap adjacent memory blocks
|
|
while(count < size) {
|
|
MemoryRegion *mr = memory_mapping(uc, address);
|
|
if (mr) {
|
|
len = (size_t)MIN(size - count, mr->end - address);
|
|
if (uc->read_mem(uc->cpu->as, address, bytes, len) == false)
|
|
break;
|
|
count += len;
|
|
address += len;
|
|
bytes += len;
|
|
} else // this address is not mapped in yet
|
|
break;
|
|
}
|
|
|
|
if (count == size)
|
|
return UC_ERR_OK;
|
|
else
|
|
return UC_ERR_READ_UNMAPPED;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_write(uc_engine *uc, uint64_t address, const void *_bytes, size_t size)
|
|
{
|
|
size_t count = 0, len;
|
|
const uint8_t *bytes = _bytes;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
if (!check_mem_area(uc, address, size))
|
|
return UC_ERR_WRITE_UNMAPPED;
|
|
|
|
// memory area can overlap adjacent memory blocks
|
|
while(count < size) {
|
|
MemoryRegion *mr = memory_mapping(uc, address);
|
|
if (mr) {
|
|
uint32_t operms = mr->perms;
|
|
if (!(operms & UC_PROT_WRITE)) // write protected
|
|
// but this is not the program accessing memory, so temporarily mark writable
|
|
uc->readonly_mem(mr, false);
|
|
|
|
len = (size_t)MIN(size - count, mr->end - address);
|
|
if (uc->write_mem(uc->cpu->as, address, bytes, len) == false)
|
|
break;
|
|
|
|
if (!(operms & UC_PROT_WRITE)) // write protected
|
|
// now write protect it again
|
|
uc->readonly_mem(mr, true);
|
|
|
|
count += len;
|
|
address += len;
|
|
bytes += len;
|
|
} else // this address is not mapped in yet
|
|
break;
|
|
}
|
|
|
|
if (count == size)
|
|
return UC_ERR_OK;
|
|
else
|
|
return UC_ERR_WRITE_UNMAPPED;
|
|
}
|
|
|
|
#define TIMEOUT_STEP 2 // microseconds
|
|
static void *_timeout_fn(void *arg)
|
|
{
|
|
struct uc_struct *uc = arg;
|
|
int64_t current_time = get_clock();
|
|
|
|
do {
|
|
usleep(TIMEOUT_STEP);
|
|
// perhaps emulation is even done before timeout?
|
|
if (uc->emulation_done)
|
|
break;
|
|
} while((uint64_t)(get_clock() - current_time) < uc->timeout);
|
|
|
|
// timeout before emulation is done?
|
|
if (!uc->emulation_done) {
|
|
uc->timed_out = true;
|
|
// force emulation to stop
|
|
uc_emu_stop(uc);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void enable_emu_timer(uc_engine *uc, uint64_t timeout)
|
|
{
|
|
uc->timeout = timeout;
|
|
qemu_thread_create(uc, &uc->timer, "timeout", _timeout_fn,
|
|
uc, QEMU_THREAD_JOINABLE);
|
|
}
|
|
|
|
static void hook_count_cb(struct uc_struct *uc, uint64_t address, uint32_t size, void *user_data)
|
|
{
|
|
// count this instruction. ah ah ah.
|
|
uc->emu_counter++;
|
|
|
|
if (uc->emu_counter > uc->emu_count)
|
|
uc_emu_stop(uc);
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
|
|
{
|
|
// reset the counter
|
|
uc->emu_counter = 0;
|
|
uc->invalid_error = UC_ERR_OK;
|
|
uc->block_full = false;
|
|
uc->emulation_done = false;
|
|
uc->timed_out = false;
|
|
|
|
switch(uc->arch) {
|
|
default:
|
|
break;
|
|
#ifdef UNICORN_HAS_M68K
|
|
case UC_ARCH_M68K:
|
|
uc_reg_write(uc, UC_M68K_REG_PC, &begin);
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_X86
|
|
case UC_ARCH_X86:
|
|
switch(uc->mode) {
|
|
default:
|
|
break;
|
|
case UC_MODE_16: {
|
|
uint64_t ip;
|
|
uint16_t cs;
|
|
|
|
uc_reg_read(uc, UC_X86_REG_CS, &cs);
|
|
// compensate for later adding up IP & CS
|
|
ip = begin - cs*16;
|
|
uc_reg_write(uc, UC_X86_REG_IP, &ip);
|
|
break;
|
|
}
|
|
case UC_MODE_32:
|
|
uc_reg_write(uc, UC_X86_REG_EIP, &begin);
|
|
break;
|
|
case UC_MODE_64:
|
|
uc_reg_write(uc, UC_X86_REG_RIP, &begin);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM
|
|
case UC_ARCH_ARM:
|
|
uc_reg_write(uc, UC_ARM_REG_R15, &begin);
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM64
|
|
case UC_ARCH_ARM64:
|
|
uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_MIPS
|
|
case UC_ARCH_MIPS:
|
|
// TODO: MIPS32/MIPS64/BIGENDIAN etc
|
|
uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_RISCV
|
|
case UC_ARCH_RISCV:
|
|
uc_reg_write(uc, UC_RISCV_REG_PC, &begin);
|
|
break;
|
|
#endif
|
|
#ifdef UNICORN_HAS_SPARC
|
|
case UC_ARCH_SPARC:
|
|
// TODO: Sparc/Sparc64
|
|
uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
uc->stop_request = false;
|
|
|
|
uc->emu_count = count;
|
|
// remove count hook if counting isn't necessary
|
|
if (count <= 0 && uc->count_hook != 0) {
|
|
uc_hook_del(uc, uc->count_hook);
|
|
uc->count_hook = 0;
|
|
}
|
|
// set up count hook to count instructions.
|
|
if (count > 0 && uc->count_hook == 0) {
|
|
uc_err err;
|
|
// callback to count instructions must be run before everything else,
|
|
// so instead of appending, we must insert the hook at the begin
|
|
// of the hook list
|
|
uc->hook_insert = 1;
|
|
err = uc_hook_add(uc, &uc->count_hook, UC_HOOK_CODE, hook_count_cb, NULL, 1, 0);
|
|
// restore to append mode for uc_hook_add()
|
|
uc->hook_insert = 0;
|
|
if (err != UC_ERR_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
uc->addr_end = until;
|
|
|
|
if (timeout)
|
|
enable_emu_timer(uc, timeout * 1000); // microseconds -> nanoseconds
|
|
|
|
if (uc->vm_start(uc)) {
|
|
return UC_ERR_RESOURCE;
|
|
}
|
|
|
|
// emulation is done
|
|
uc->emulation_done = true;
|
|
|
|
if (timeout) {
|
|
// wait for the timer to finish
|
|
qemu_thread_join(&uc->timer);
|
|
}
|
|
|
|
if (uc->timed_out) {
|
|
return UC_ERR_TIMEOUT;
|
|
}
|
|
|
|
return uc->invalid_error;
|
|
}
|
|
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_emu_stop(uc_engine *uc)
|
|
{
|
|
if (uc->emulation_done)
|
|
return UC_ERR_OK;
|
|
|
|
uc->stop_request = true;
|
|
// TODO: make this atomic somehow?
|
|
if (uc->current_cpu) {
|
|
// exit the current TB
|
|
cpu_exit(uc->current_cpu);
|
|
}
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
// find if a memory range overlaps with existing mapped regions
|
|
static bool memory_overlap(struct uc_struct *uc, uint64_t begin, size_t size)
|
|
{
|
|
unsigned int i;
|
|
uint64_t end = begin + size - 1;
|
|
|
|
for(i = 0; i < uc->mapped_block_count; i++) {
|
|
// begin address falls inside this region?
|
|
if (begin >= uc->mapped_blocks[i]->addr && begin <= uc->mapped_blocks[i]->end - 1)
|
|
return true;
|
|
|
|
// end address falls inside this region?
|
|
if (end >= uc->mapped_blocks[i]->addr && end <= uc->mapped_blocks[i]->end - 1)
|
|
return true;
|
|
|
|
// this region falls totally inside this range?
|
|
if (begin < uc->mapped_blocks[i]->addr && end > uc->mapped_blocks[i]->end - 1)
|
|
return true;
|
|
}
|
|
|
|
// not found
|
|
return false;
|
|
}
|
|
|
|
// common setup/error checking shared between uc_mem_map and uc_mem_map_ptr
|
|
static uc_err mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, MemoryRegion *block)
|
|
{
|
|
MemoryRegion **regions;
|
|
|
|
if (block == NULL)
|
|
return UC_ERR_NOMEM;
|
|
|
|
if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow
|
|
regions = (MemoryRegion**)g_realloc(uc->mapped_blocks,
|
|
sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR));
|
|
if (regions == NULL) {
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
uc->mapped_blocks = regions;
|
|
}
|
|
|
|
uc->mapped_blocks[uc->mapped_block_count] = block;
|
|
uc->mapped_block_count++;
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
static uc_err mem_map_check(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
|
|
{
|
|
if (size == 0)
|
|
// invalid memory mapping
|
|
return UC_ERR_ARG;
|
|
|
|
// address cannot wrapp around
|
|
if (address + size - 1 < address)
|
|
return UC_ERR_ARG;
|
|
|
|
// address must be aligned to uc->target_page_size
|
|
if ((address & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// size must be multiple of uc->target_page_size
|
|
if ((size & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// check for only valid permissions
|
|
if ((perms & ~UC_PROT_ALL) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// this area overlaps existing mapped regions?
|
|
if (memory_overlap(uc, address, size)) {
|
|
return UC_ERR_MAP;
|
|
}
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
|
|
{
|
|
uc_err res;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
res = mem_map_check(uc, address, size, perms);
|
|
if (res)
|
|
return res;
|
|
|
|
return mem_map(uc, address, size, perms, uc->memory_map(uc, address, size, perms));
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_map_ptr(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, void *ptr)
|
|
{
|
|
uc_err res;
|
|
|
|
if (ptr == NULL)
|
|
return UC_ERR_ARG;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
res = mem_map_check(uc, address, size, perms);
|
|
if (res)
|
|
return res;
|
|
|
|
return mem_map(uc, address, size, UC_PROT_ALL, uc->memory_map_ptr(uc, address, size, perms, ptr));
|
|
}
|
|
|
|
// Create a backup copy of the indicated MemoryRegion.
|
|
// Generally used in prepartion for splitting a MemoryRegion.
|
|
static uint8_t *copy_region(struct uc_struct *uc, MemoryRegion *mr)
|
|
{
|
|
uint8_t *block = (uint8_t *)g_malloc0((size_t)int128_get64(mr->size));
|
|
if (block != NULL) {
|
|
uc_err err = uc_mem_read(uc, mr->addr, block, (size_t)int128_get64(mr->size));
|
|
if (err != UC_ERR_OK) {
|
|
free(block);
|
|
block = NULL;
|
|
}
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
Split the given MemoryRegion at the indicated address for the indicated size
|
|
this may result in the create of up to 3 spanning sections. If the delete
|
|
parameter is true, the no new section will be created to replace the indicate
|
|
range. This functions exists to support uc_mem_protect and uc_mem_unmap.
|
|
|
|
This is a static function and callers have already done some preliminary
|
|
parameter validation.
|
|
|
|
The do_delete argument indicates that we are being called to support
|
|
uc_mem_unmap. In this case we save some time by choosing NOT to remap
|
|
the areas that are intended to get unmapped
|
|
*/
|
|
// TODO: investigate whether qemu region manipulation functions already offered
|
|
// this capability
|
|
static bool split_region(struct uc_struct *uc, MemoryRegion *mr, uint64_t address,
|
|
size_t size, bool do_delete)
|
|
{
|
|
uint8_t *backup;
|
|
uint32_t perms;
|
|
uint64_t begin, end, chunk_end;
|
|
size_t l_size, m_size, r_size;
|
|
|
|
chunk_end = address + size;
|
|
|
|
// if this region belongs to area [address, address+size],
|
|
// then there is no work to do.
|
|
if (address <= mr->addr && chunk_end >= mr->end)
|
|
return true;
|
|
|
|
if (size == 0)
|
|
// trivial case
|
|
return true;
|
|
|
|
if (address >= mr->end || chunk_end <= mr->addr)
|
|
// impossible case
|
|
return false;
|
|
|
|
backup = copy_region(uc, mr);
|
|
if (backup == NULL)
|
|
return false;
|
|
|
|
// save the essential information required for the split before mr gets deleted
|
|
perms = mr->perms;
|
|
begin = mr->addr;
|
|
end = mr->end;
|
|
|
|
// unmap this region first, then do split it later
|
|
if (uc_mem_unmap(uc, mr->addr, (size_t)int128_get64(mr->size)) != UC_ERR_OK)
|
|
goto error;
|
|
|
|
/* overlapping cases
|
|
* |------mr------|
|
|
* case 1 |---size--|
|
|
* case 2 |--size--|
|
|
* case 3 |---size--|
|
|
*/
|
|
|
|
// adjust some things
|
|
if (address < begin)
|
|
address = begin;
|
|
if (chunk_end > end)
|
|
chunk_end = end;
|
|
|
|
// compute sub region sizes
|
|
l_size = (size_t)(address - begin);
|
|
r_size = (size_t)(end - chunk_end);
|
|
m_size = (size_t)(chunk_end - address);
|
|
|
|
// If there are error in any of the below operations, things are too far gone
|
|
// at that point to recover. Could try to remap orignal region, but these smaller
|
|
// allocation just failed so no guarantee that we can recover the original
|
|
// allocation at this point
|
|
if (l_size > 0) {
|
|
if (uc_mem_map(uc, begin, l_size, perms) != UC_ERR_OK)
|
|
goto error;
|
|
if (uc_mem_write(uc, begin, backup, l_size) != UC_ERR_OK)
|
|
goto error;
|
|
}
|
|
|
|
if (m_size > 0 && !do_delete) {
|
|
if (uc_mem_map(uc, address, m_size, perms) != UC_ERR_OK)
|
|
goto error;
|
|
if (uc_mem_write(uc, address, backup + l_size, m_size) != UC_ERR_OK)
|
|
goto error;
|
|
}
|
|
|
|
if (r_size > 0) {
|
|
if (uc_mem_map(uc, chunk_end, r_size, perms) != UC_ERR_OK)
|
|
goto error;
|
|
if (uc_mem_write(uc, chunk_end, backup + l_size + m_size, r_size) != UC_ERR_OK)
|
|
goto error;
|
|
}
|
|
|
|
free(backup);
|
|
return true;
|
|
|
|
error:
|
|
free(backup);
|
|
return false;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_protect(struct uc_struct *uc, uint64_t address, size_t size, uint32_t perms)
|
|
{
|
|
MemoryRegion *mr;
|
|
uint64_t addr = address;
|
|
size_t count, len;
|
|
bool remove_exec = false;
|
|
|
|
if (size == 0)
|
|
// trivial case, no change
|
|
return UC_ERR_OK;
|
|
|
|
// address must be aligned to uc->target_page_size
|
|
if ((address & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// size must be multiple of uc->target_page_size
|
|
if ((size & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// check for only valid permissions
|
|
if ((perms & ~UC_PROT_ALL) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
// check that user's entire requested block is mapped
|
|
if (!check_mem_area(uc, address, size))
|
|
return UC_ERR_NOMEM;
|
|
|
|
// Now we know entire region is mapped, so change permissions
|
|
// We may need to split regions if this area spans adjacent regions
|
|
addr = address;
|
|
count = 0;
|
|
while(count < size) {
|
|
mr = memory_mapping(uc, addr);
|
|
len = (size_t)MIN(size - count, mr->end - addr);
|
|
if (!split_region(uc, mr, addr, len, false))
|
|
return UC_ERR_NOMEM;
|
|
|
|
mr = memory_mapping(uc, addr);
|
|
// will this remove EXEC permission?
|
|
if (((mr->perms & UC_PROT_EXEC) != 0) && ((perms & UC_PROT_EXEC) == 0))
|
|
remove_exec = true;
|
|
mr->perms = perms;
|
|
uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0);
|
|
|
|
count += len;
|
|
addr += len;
|
|
}
|
|
|
|
// if EXEC permission is removed, then quit TB and continue at the same place
|
|
if (remove_exec) {
|
|
uc->quit_request = true;
|
|
uc_emu_stop(uc);
|
|
}
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_mem_unmap(struct uc_struct *uc, uint64_t address, size_t size)
|
|
{
|
|
MemoryRegion *mr;
|
|
uint64_t addr;
|
|
size_t count, len;
|
|
|
|
if (size == 0)
|
|
// nothing to unmap
|
|
return UC_ERR_OK;
|
|
|
|
// address must be aligned to uc->target_page_size
|
|
if ((address & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
// size must be multiple of uc->target_page_size
|
|
if ((size & uc->target_page_align) != 0)
|
|
return UC_ERR_ARG;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
// check that user's entire requested block is mapped
|
|
if (!check_mem_area(uc, address, size))
|
|
return UC_ERR_NOMEM;
|
|
|
|
// Now we know entire region is mapped, so do the unmap
|
|
// We may need to split regions if this area spans adjacent regions
|
|
addr = address;
|
|
count = 0;
|
|
while(count < size) {
|
|
mr = memory_mapping(uc, addr);
|
|
len = (size_t)MIN(size - count, mr->end - addr);
|
|
if (!split_region(uc, mr, addr, len, true))
|
|
return UC_ERR_NOMEM;
|
|
|
|
// if we can retrieve the mapping, then no splitting took place
|
|
// so unmap here
|
|
mr = memory_mapping(uc, addr);
|
|
if (mr != NULL)
|
|
uc->memory_unmap(uc, mr);
|
|
count += len;
|
|
addr += len;
|
|
}
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
// find the memory region of this address
|
|
MemoryRegion *memory_mapping(struct uc_struct* uc, uint64_t address)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (uc->mapped_block_count == 0)
|
|
return NULL;
|
|
|
|
if (uc->mem_redirect) {
|
|
address = uc->mem_redirect(address);
|
|
}
|
|
|
|
// try with the cache index first
|
|
i = uc->mapped_block_cache_index;
|
|
|
|
if (i < uc->mapped_block_count && address >= uc->mapped_blocks[i]->addr && address < uc->mapped_blocks[i]->end)
|
|
return uc->mapped_blocks[i];
|
|
|
|
for(i = 0; i < uc->mapped_block_count; i++) {
|
|
if (address >= uc->mapped_blocks[i]->addr && address <= uc->mapped_blocks[i]->end - 1) {
|
|
// cache this index for the next query
|
|
uc->mapped_block_cache_index = i;
|
|
return uc->mapped_blocks[i];
|
|
}
|
|
}
|
|
|
|
// not found
|
|
return NULL;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_hook_add(uc_engine *uc, uc_hook *hh, int type, void *callback,
|
|
void *user_data, uint64_t begin, uint64_t end, ...)
|
|
{
|
|
int ret = UC_ERR_OK;
|
|
int i = 0;
|
|
|
|
struct hook *hook = calloc(1, sizeof(struct hook));
|
|
if (hook == NULL) {
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
|
|
hook->begin = begin;
|
|
hook->end = end;
|
|
hook->type = type;
|
|
hook->callback = callback;
|
|
hook->user_data = user_data;
|
|
hook->refs = 0;
|
|
*hh = (uc_hook)hook;
|
|
|
|
// UC_HOOK_INSN has an extra argument for instruction ID
|
|
if (type & UC_HOOK_INSN) {
|
|
va_list valist;
|
|
|
|
va_start(valist, end);
|
|
hook->insn = va_arg(valist, int);
|
|
va_end(valist);
|
|
|
|
if (uc->insn_hook_validate) {
|
|
if (! uc->insn_hook_validate(hook->insn)) {
|
|
free(hook);
|
|
return UC_ERR_HOOK;
|
|
}
|
|
}
|
|
|
|
if (uc->hook_insert) {
|
|
if (list_insert(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) {
|
|
free(hook);
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
} else {
|
|
if (list_append(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) {
|
|
free(hook);
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
}
|
|
|
|
hook->refs++;
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
while ((type >> i) > 0) {
|
|
if ((type >> i) & 1) {
|
|
// TODO: invalid hook error?
|
|
if (i < UC_HOOK_MAX) {
|
|
if (uc->hook_insert) {
|
|
if (list_insert(&uc->hook[i], hook) == NULL) {
|
|
if (hook->refs == 0) {
|
|
free(hook);
|
|
}
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
} else {
|
|
if (list_append(&uc->hook[i], hook) == NULL) {
|
|
if (hook->refs == 0) {
|
|
free(hook);
|
|
}
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
}
|
|
hook->refs++;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
|
|
// we didn't use the hook
|
|
// TODO: return an error?
|
|
if (hook->refs == 0) {
|
|
free(hook);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_hook_del(uc_engine *uc, uc_hook hh)
|
|
{
|
|
int i;
|
|
struct hook *hook = (struct hook *)hh;
|
|
// we can't dereference hook->type if hook is invalid
|
|
// so for now we need to iterate over all possible types to remove the hook
|
|
// which is less efficient
|
|
// an optimization would be to align the hook pointer
|
|
// and store the type mask in the hook pointer.
|
|
for (i = 0; i < UC_HOOK_MAX; i++) {
|
|
if (list_remove(&uc->hook[i], (void *)hook)) {
|
|
if (--hook->refs == 0) {
|
|
free(hook);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
// TCG helper
|
|
void helper_uc_tracecode(int32_t size, uc_hook_type type, void *handle, int64_t address);
|
|
void helper_uc_tracecode(int32_t size, uc_hook_type type, void *handle, int64_t address)
|
|
{
|
|
struct uc_struct *uc = handle;
|
|
struct list_item *cur = uc->hook[type].head;
|
|
struct hook *hook;
|
|
|
|
// sync PC in CPUArchState with address
|
|
if (uc->set_pc) {
|
|
uc->set_pc(uc, address);
|
|
}
|
|
|
|
while (cur != NULL && !uc->stop_request) {
|
|
hook = (struct hook *)cur->data;
|
|
if (HOOK_BOUND_CHECK(hook, (uint64_t)address)) {
|
|
((uc_cb_hookcode_t)hook->callback)(uc, address, size, hook->user_data);
|
|
}
|
|
cur = cur->next;
|
|
}
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uint32_t uc_mem_regions(uc_engine *uc, uc_mem_region **regions, uint32_t *count)
|
|
{
|
|
uint32_t i;
|
|
uc_mem_region *r = NULL;
|
|
|
|
*count = uc->mapped_block_count;
|
|
|
|
if (*count) {
|
|
r = g_malloc0(*count * sizeof(uc_mem_region));
|
|
if (r == NULL) {
|
|
// out of memory
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < *count; i++) {
|
|
r[i].begin = uc->mapped_blocks[i]->addr;
|
|
r[i].end = uc->mapped_blocks[i]->end - 1;
|
|
r[i].perms = uc->mapped_blocks[i]->perms;
|
|
}
|
|
|
|
*regions = r;
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_query(uc_engine *uc, uc_query_type type, size_t *result)
|
|
{
|
|
if (type == UC_QUERY_PAGE_SIZE) {
|
|
*result = uc->target_page_size;
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
if (type == UC_QUERY_ARCH) {
|
|
*result = uc->arch;
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
switch(uc->arch) {
|
|
#ifdef UNICORN_HAS_ARM
|
|
case UC_ARCH_ARM:
|
|
return uc->query(uc, type, result);
|
|
#endif
|
|
default:
|
|
return UC_ERR_ARG;
|
|
}
|
|
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
static size_t cpu_context_size(uc_arch arch, uc_mode mode)
|
|
{
|
|
// each of these constants is defined by offsetof(CPUXYZState, tlb_table)
|
|
// tbl_table is the first entry in the CPU_COMMON macro, so it marks the end
|
|
// of the interesting CPU registers
|
|
switch (arch) {
|
|
#ifdef UNICORN_HAS_M68K
|
|
case UC_ARCH_M68K: return M68K_REGS_STORAGE_SIZE;
|
|
#endif
|
|
#ifdef UNICORN_HAS_X86
|
|
case UC_ARCH_X86: return X86_REGS_STORAGE_SIZE;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM
|
|
case UC_ARCH_ARM: return mode & UC_MODE_BIG_ENDIAN ? ARM_REGS_STORAGE_SIZE_armeb : ARM_REGS_STORAGE_SIZE_arm;
|
|
#endif
|
|
#ifdef UNICORN_HAS_ARM64
|
|
case UC_ARCH_ARM64: return mode & UC_MODE_BIG_ENDIAN ? ARM64_REGS_STORAGE_SIZE_aarch64eb : ARM64_REGS_STORAGE_SIZE_aarch64;
|
|
#endif
|
|
#ifdef UNICORN_HAS_MIPS
|
|
case UC_ARCH_MIPS:
|
|
if (mode & UC_MODE_MIPS64) {
|
|
if (mode & UC_MODE_BIG_ENDIAN) {
|
|
return MIPS64_REGS_STORAGE_SIZE_mips64;
|
|
} else {
|
|
return MIPS64_REGS_STORAGE_SIZE_mips64el;
|
|
}
|
|
} else {
|
|
if (mode & UC_MODE_BIG_ENDIAN) {
|
|
return MIPS_REGS_STORAGE_SIZE_mips;
|
|
} else {
|
|
return MIPS_REGS_STORAGE_SIZE_mipsel;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef UNICORN_HAS_RISCV
|
|
case UC_ARCH_RISCV:
|
|
if (mode & UC_MODE_RISCV64) {
|
|
return RISCV64_REGS_STORAGE_SIZE_riscv64;
|
|
}
|
|
return RISCV32_REGS_STORAGE_SIZE_riscv32;
|
|
#endif
|
|
#ifdef UNICORN_HAS_SPARC
|
|
case UC_ARCH_SPARC: return mode & UC_MODE_SPARC64 ? SPARC64_REGS_STORAGE_SIZE : SPARC_REGS_STORAGE_SIZE;
|
|
#endif
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_context_alloc(uc_engine *uc, uc_context **context)
|
|
{
|
|
struct uc_context **_context = context;
|
|
size_t size = cpu_context_size(uc->arch, uc->mode);
|
|
|
|
*_context = malloc(size + sizeof(uc_context));
|
|
if (*_context) {
|
|
(*_context)->size = size;
|
|
return UC_ERR_OK;
|
|
} else {
|
|
return UC_ERR_NOMEM;
|
|
}
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_free(void *mem)
|
|
{
|
|
g_free(mem);
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
size_t uc_context_size(uc_engine *uc)
|
|
{
|
|
return cpu_context_size(uc->arch, uc->mode);
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_context_save(uc_engine *uc, uc_context *context)
|
|
{
|
|
struct uc_context *_context = context;
|
|
memcpy(_context->data, uc->cpu->env_ptr, _context->size);
|
|
return UC_ERR_OK;
|
|
}
|
|
|
|
UNICORN_EXPORT
|
|
uc_err uc_context_restore(uc_engine *uc, uc_context *context)
|
|
{
|
|
struct uc_context *_context = context;
|
|
memcpy(uc->cpu->env_ptr, _context->data, _context->size);
|
|
return UC_ERR_OK;
|
|
}
|