mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-23 23:31:03 +00:00
f03656b5c3
Move everything related to syndromes to a new file, which can be shared with linux-user. Backports 1fe27859427bd377a45708310947de54c687d9ff
1199 lines
35 KiB
C
1199 lines
35 KiB
C
/*
|
|
* QEMU ARM CPU -- internal functions and types
|
|
*
|
|
* Copyright (c) 2014 Linaro Ltd
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
*
|
|
* This header defines functions, types, etc which need to be shared
|
|
* between different source files within target/arm/ but which are
|
|
* private to it and not required by the rest of QEMU.
|
|
*/
|
|
|
|
#ifndef TARGET_ARM_INTERNALS_H
|
|
#define TARGET_ARM_INTERNALS_H
|
|
|
|
#include "hw/registerfields.h"
|
|
#include "syndrome.h"
|
|
|
|
/* register banks for CPU modes */
|
|
#define BANK_USRSYS 0
|
|
#define BANK_SVC 1
|
|
#define BANK_ABT 2
|
|
#define BANK_UND 3
|
|
#define BANK_IRQ 4
|
|
#define BANK_FIQ 5
|
|
#define BANK_HYP 6
|
|
#define BANK_MON 7
|
|
|
|
static inline bool excp_is_internal(int excp)
|
|
{
|
|
/* Return true if this exception number represents a QEMU-internal
|
|
* exception that will not be passed to the guest.
|
|
*/
|
|
return excp == EXCP_INTERRUPT
|
|
|| excp == EXCP_HLT
|
|
|| excp == EXCP_DEBUG
|
|
|| excp == EXCP_HALTED
|
|
|| excp == EXCP_EXCEPTION_EXIT
|
|
|| excp == EXCP_KERNEL_TRAP
|
|
|| excp == EXCP_SEMIHOST;
|
|
}
|
|
|
|
/* Scale factor for generic timers, ie number of ns per tick.
|
|
* This gives a 62.5MHz timer.
|
|
*/
|
|
#define GTIMER_SCALE 16
|
|
|
|
/* Bit definitions for the v7M CONTROL register */
|
|
FIELD(V7M_CONTROL, NPRIV, 0, 1)
|
|
FIELD(V7M_CONTROL, SPSEL, 1, 1)
|
|
FIELD(V7M_CONTROL, FPCA, 2, 1)
|
|
FIELD(V7M_CONTROL, SFPA, 3, 1)
|
|
|
|
/* Bit definitions for v7M exception return payload */
|
|
FIELD(V7M_EXCRET, ES, 0, 1)
|
|
FIELD(V7M_EXCRET, RES0, 1, 1)
|
|
FIELD(V7M_EXCRET, SPSEL, 2, 1)
|
|
FIELD(V7M_EXCRET, MODE, 3, 1)
|
|
FIELD(V7M_EXCRET, FTYPE, 4, 1)
|
|
FIELD(V7M_EXCRET, DCRS, 5, 1)
|
|
FIELD(V7M_EXCRET, S, 6, 1)
|
|
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
|
|
|
|
/* Minimum value which is a magic number for exception return */
|
|
#define EXC_RETURN_MIN_MAGIC 0xff000000
|
|
/* Minimum number which is a magic number for function or exception return
|
|
* when using v8M security extension
|
|
*/
|
|
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
|
|
|
|
/* We use a few fake FSR values for internal purposes in M profile.
|
|
* M profile cores don't have A/R format FSRs, but currently our
|
|
* get_phys_addr() code assumes A/R profile and reports failures via
|
|
* an A/R format FSR value. We then translate that into the proper
|
|
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
|
|
* Mostly the FSR values we use for this are those defined for v7PMSA,
|
|
* since we share some of that codepath. A few kinds of fault are
|
|
* only for M profile and have no A/R equivalent, though, so we have
|
|
* to pick a value from the reserved range (which we never otherwise
|
|
* generate) to use for these.
|
|
* These values will never be visible to the guest.
|
|
*/
|
|
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
|
|
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
|
|
|
|
/**
|
|
* raise_exception: Raise the specified exception.
|
|
* Raise a guest exception with the specified value, syndrome register
|
|
* and target exception level. This should be called from helper functions,
|
|
* and never returns because we will longjump back up to the CPU main loop.
|
|
*/
|
|
void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el);
|
|
|
|
/*
|
|
* Similarly, but also use unwinding to restore cpu state.
|
|
*/
|
|
void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el,
|
|
uintptr_t ra);
|
|
|
|
/*
|
|
* For AArch64, map a given EL to an index in the banked_spsr array.
|
|
* Note that this mapping and the AArch32 mapping defined in bank_number()
|
|
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
|
|
* mandated mapping between each other.
|
|
*/
|
|
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
|
|
{
|
|
static const unsigned int map[4] = {
|
|
BANK_USRSYS,
|
|
BANK_SVC, /* EL1. */
|
|
BANK_HYP, /* EL2. */
|
|
BANK_MON, /* EL3. */
|
|
};
|
|
assert(el >= 1 && el <= 3);
|
|
return map[el];
|
|
}
|
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
static inline int bank_number(int mode)
|
|
{
|
|
switch (mode) {
|
|
default:
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return BANK_USRSYS;
|
|
case ARM_CPU_MODE_SVC:
|
|
return BANK_SVC;
|
|
case ARM_CPU_MODE_ABT:
|
|
return BANK_ABT;
|
|
case ARM_CPU_MODE_UND:
|
|
return BANK_UND;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return BANK_IRQ;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return BANK_FIQ;
|
|
case ARM_CPU_MODE_HYP:
|
|
return BANK_HYP;
|
|
case ARM_CPU_MODE_MON:
|
|
return BANK_MON;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/**
|
|
* r14_bank_number: Map CPU mode onto register bank for r14
|
|
*
|
|
* Given an AArch32 CPU mode, return the index into the saved register
|
|
* banks to use for the R14 (LR) in that mode. This is the same as
|
|
* bank_number(), except for the special case of Hyp mode, where
|
|
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
|
|
* This should be used as the index into env->banked_r14[], and
|
|
* bank_number() used for the index into env->banked_r13[] and
|
|
* env->banked_spsr[].
|
|
*/
|
|
static inline int r14_bank_number(int mode)
|
|
{
|
|
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
|
|
}
|
|
|
|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
|
|
void arm_translate_init(struct uc_struct *uc);
|
|
|
|
enum arm_fprounding {
|
|
FPROUNDING_TIEEVEN,
|
|
FPROUNDING_POSINF,
|
|
FPROUNDING_NEGINF,
|
|
FPROUNDING_ZERO,
|
|
FPROUNDING_TIEAWAY,
|
|
FPROUNDING_ODD
|
|
};
|
|
|
|
int arm_rmode_to_sf(int rmode);
|
|
|
|
static inline void aarch64_save_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->sp_el[el] = env->xregs[31];
|
|
} else {
|
|
env->sp_el[0] = env->xregs[31];
|
|
}
|
|
}
|
|
|
|
static inline void aarch64_restore_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->xregs[31] = env->sp_el[el];
|
|
} else {
|
|
env->xregs[31] = env->sp_el[0];
|
|
}
|
|
}
|
|
|
|
static inline void update_spsel(CPUARMState *env, uint32_t imm)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
/* Update PSTATE SPSel bit; this requires us to update the
|
|
* working stack pointer in xregs[31].
|
|
*/
|
|
if (!((imm ^ env->pstate) & PSTATE_SP)) {
|
|
return;
|
|
}
|
|
aarch64_save_sp(env, cur_el);
|
|
env->pstate = deposit32(env->pstate, 0, 1, imm);
|
|
|
|
/* We rely on illegal updates to SPsel from EL0 to get trapped
|
|
* at translation time.
|
|
*/
|
|
assert(cur_el >= 1 && cur_el <= 3);
|
|
aarch64_restore_sp(env, cur_el);
|
|
}
|
|
|
|
/*
|
|
* arm_pamax
|
|
* @cpu: ARMCPU
|
|
*
|
|
* Returns the implementation defined bit-width of physical addresses.
|
|
* The ARMv8 reference manuals refer to this as PAMax().
|
|
*/
|
|
static inline unsigned int arm_pamax(ARMCPU *cpu)
|
|
{
|
|
static const unsigned int pamax_map[] = {
|
|
32,
|
|
36,
|
|
40,
|
|
42,
|
|
44,
|
|
48,
|
|
};
|
|
unsigned int parange =
|
|
FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
|
|
|
|
/* id_aa64mmfr0 is a read-only register so values outside of the
|
|
* supported mappings can be considered an implementation error. */
|
|
assert(parange < ARRAY_SIZE(pamax_map));
|
|
return pamax_map[parange];
|
|
}
|
|
|
|
/* Return true if extended addresses are enabled.
|
|
* This is always the case if our translation regime is 64 bit,
|
|
* but depends on TTBCR.EAE for 32 bit.
|
|
*/
|
|
static inline bool extended_addresses_enabled(CPUARMState *env)
|
|
{
|
|
TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
|
|
return arm_el_is_aa64(env, 1) ||
|
|
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
|
|
}
|
|
|
|
/* Update a QEMU watchpoint based on the information the guest has set in the
|
|
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
|
|
*/
|
|
void hw_watchpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU watchpoints for every guest watchpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU watchpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_watchpoint_update_all(ARMCPU *cpu);
|
|
/* Update a QEMU breakpoint based on the information the guest has set in the
|
|
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
|
|
*/
|
|
void hw_breakpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU breakpoints for every guest breakpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU breakpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_breakpoint_update_all(ARMCPU *cpu);
|
|
|
|
/* Callback function for checking if a watchpoint should trigger. */
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
|
|
|
|
/* Adjust addresses (in BE32 mode) before testing against watchpoint
|
|
* addresses.
|
|
*/
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
|
|
|
|
/* Callback function for when a watchpoint or breakpoint triggers. */
|
|
void arm_debug_excp_handler(CPUState *cs);
|
|
|
|
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
|
|
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
|
|
{
|
|
return false;
|
|
}
|
|
static inline void arm_handle_psci_call(ARMCPU *cpu)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#else
|
|
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
|
|
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
|
|
/* Actually handle a PSCI call */
|
|
void arm_handle_psci_call(ARMCPU *cpu);
|
|
#endif
|
|
|
|
/**
|
|
* arm_clear_exclusive: clear the exclusive monitor
|
|
* @env: CPU env
|
|
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
|
|
*/
|
|
static inline void arm_clear_exclusive(CPUARMState *env)
|
|
{
|
|
env->exclusive_addr = -1;
|
|
}
|
|
|
|
/**
|
|
* ARMFaultType: type of an ARM MMU fault
|
|
* This corresponds to the v8A pseudocode's Fault enumeration,
|
|
* with extensions for QEMU internal conditions.
|
|
*/
|
|
typedef enum ARMFaultType {
|
|
ARMFault_None,
|
|
ARMFault_AccessFlag,
|
|
ARMFault_Alignment,
|
|
ARMFault_Background,
|
|
ARMFault_Domain,
|
|
ARMFault_Permission,
|
|
ARMFault_Translation,
|
|
ARMFault_AddressSize,
|
|
ARMFault_SyncExternal,
|
|
ARMFault_SyncExternalOnWalk,
|
|
ARMFault_SyncParity,
|
|
ARMFault_SyncParityOnWalk,
|
|
ARMFault_AsyncParity,
|
|
ARMFault_AsyncExternal,
|
|
ARMFault_Debug,
|
|
ARMFault_TLBConflict,
|
|
ARMFault_Lockdown,
|
|
ARMFault_Exclusive,
|
|
ARMFault_ICacheMaint,
|
|
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
|
|
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
|
|
} ARMFaultType;
|
|
|
|
/**
|
|
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
|
|
* @type: Type of fault
|
|
* @level: Table walk level (for translation, access flag and permission faults)
|
|
* @domain: Domain of the fault address (for non-LPAE CPUs only)
|
|
* @s2addr: Address that caused a fault at stage 2
|
|
* @stage2: True if we faulted at stage 2
|
|
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
|
|
* @s1ns: True if we faulted on a non-secure IPA while in secure state
|
|
* @ea: True if we should set the EA (external abort type) bit in syndrome
|
|
*/
|
|
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
|
|
struct ARMMMUFaultInfo {
|
|
ARMFaultType type;
|
|
target_ulong s2addr;
|
|
int level;
|
|
int domain;
|
|
bool stage2;
|
|
bool s1ptw;
|
|
bool s1ns;
|
|
bool ea;
|
|
};
|
|
|
|
/**
|
|
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
|
|
* Compare pseudocode EncodeSDFSC(), though unlike that function
|
|
* we set up a whole FSR-format code including domain field and
|
|
* putting the high bit of the FSC into bit 10.
|
|
*/
|
|
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AccessFlag:
|
|
fsc = fi->level == 1 ? 0x3 : 0x6;
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x1;
|
|
break;
|
|
case ARMFault_Permission:
|
|
fsc = fi->level == 1 ? 0xd : 0xf;
|
|
break;
|
|
case ARMFault_Domain:
|
|
fsc = fi->level == 1 ? 0x9 : 0xb;
|
|
break;
|
|
case ARMFault_Translation:
|
|
fsc = fi->level == 1 ? 0x5 : 0x7;
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x8 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
fsc = fi->level == 1 ? 0xc : 0xe;
|
|
fsc |= (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x409;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
fsc = fi->level == 1 ? 0x40c : 0x40e;
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x408;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x406 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x2;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x400;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x404;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x405;
|
|
break;
|
|
case ARMFault_ICacheMaint:
|
|
fsc = 0x4;
|
|
break;
|
|
case ARMFault_Background:
|
|
fsc = 0x0;
|
|
break;
|
|
case ARMFault_QEMU_NSCExec:
|
|
fsc = M_FAKE_FSR_NSC_EXEC;
|
|
break;
|
|
case ARMFault_QEMU_SFault:
|
|
fsc = M_FAKE_FSR_SFAULT;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* short-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= (fi->domain << 4);
|
|
return fsc;
|
|
}
|
|
|
|
/**
|
|
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
|
|
* Compare pseudocode EncodeLDFSC(), though unlike that function
|
|
* we fill in also the LPAE bit 9 of a DFSR format.
|
|
*/
|
|
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AddressSize:
|
|
fsc = fi->level & 3;
|
|
break;
|
|
case ARMFault_AccessFlag:
|
|
fsc = (fi->level & 3) | (0x2 << 2);
|
|
break;
|
|
case ARMFault_Permission:
|
|
fsc = (fi->level & 3) | (0x3 << 2);
|
|
break;
|
|
case ARMFault_Translation:
|
|
fsc = (fi->level & 3) | (0x1 << 2);
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x10 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x18;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
fsc = (fi->level & 3) | (0x7 << 2);
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x19;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x11 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x21;
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x22;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x30;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x34;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x35;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* long-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= 1 << 9;
|
|
return fsc;
|
|
}
|
|
|
|
static inline bool arm_extabort_type(MemTxResult result)
|
|
{
|
|
/* The EA bit in syndromes and fault status registers is an
|
|
* IMPDEF classification of external aborts. ARM implementations
|
|
* usually use this to indicate AXI bus Decode error (0) or
|
|
* Slave error (1); in QEMU we follow that.
|
|
*/
|
|
return result != MEMTX_DECODE_ERROR;
|
|
}
|
|
|
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr);
|
|
|
|
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
|
|
{
|
|
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
|
|
}
|
|
|
|
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return mmu_idx | ARM_MMU_IDX_M;
|
|
} else {
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
}
|
|
}
|
|
|
|
static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
|
|
{
|
|
/* AArch64 is always a-profile. */
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
}
|
|
|
|
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
|
|
|
|
/*
|
|
* Return the MMU index for a v7M CPU with all relevant information
|
|
* manually specified.
|
|
*/
|
|
ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
|
|
bool secstate, bool priv, bool negpri);
|
|
|
|
/*
|
|
* Return the MMU index for a v7M CPU in the specified security and
|
|
* privilege state.
|
|
*/
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
|
|
bool secstate, bool priv);
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security state */
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
|
|
|
|
/* Return true if the stage 1 translation regime is using LPAE format page
|
|
* tables */
|
|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr);
|
|
|
|
/* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
* exception
|
|
*/
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr);
|
|
|
|
/* Call any registered EL change hooks */
|
|
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
static inline void arm_call_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
|
|
/* Return true if this address translation regime has two ranges. */
|
|
static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_Stage1_SE0:
|
|
case ARMMMUIdx_Stage1_SE1:
|
|
case ARMMMUIdx_Stage1_SE1_PAN:
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
case ARMMMUIdx_SE10_0:
|
|
case ARMMMUIdx_SE10_1:
|
|
case ARMMMUIdx_SE10_1_PAN:
|
|
case ARMMMUIdx_SE20_0:
|
|
case ARMMMUIdx_SE20_2:
|
|
case ARMMMUIdx_SE20_2_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if this address translation regime is secure */
|
|
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_E2:
|
|
case ARMMMUIdx_Stage2:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPriv:
|
|
case ARMMMUIdx_MUser:
|
|
return false;
|
|
case ARMMMUIdx_SE3:
|
|
case ARMMMUIdx_SE10_0:
|
|
case ARMMMUIdx_SE10_1:
|
|
case ARMMMUIdx_SE10_1_PAN:
|
|
case ARMMMUIdx_SE20_0:
|
|
case ARMMMUIdx_SE20_2:
|
|
case ARMMMUIdx_SE20_2_PAN:
|
|
case ARMMMUIdx_Stage1_SE0:
|
|
case ARMMMUIdx_Stage1_SE1:
|
|
case ARMMMUIdx_Stage1_SE1_PAN:
|
|
case ARMMMUIdx_SE2:
|
|
case ARMMMUIdx_Stage2_S:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPriv:
|
|
case ARMMMUIdx_MSUser:
|
|
return true;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_Stage1_SE1_PAN:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
case ARMMMUIdx_SE10_1_PAN:
|
|
case ARMMMUIdx_SE20_2_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return the exception level which controls this address translation regime */
|
|
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_SE20_0:
|
|
case ARMMMUIdx_SE20_2:
|
|
case ARMMMUIdx_SE20_2_PAN:
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
case ARMMMUIdx_Stage2:
|
|
case ARMMMUIdx_Stage2_S:
|
|
case ARMMMUIdx_SE2:
|
|
case ARMMMUIdx_E2:
|
|
return 2;
|
|
case ARMMMUIdx_SE3:
|
|
return 3;
|
|
case ARMMMUIdx_SE10_0:
|
|
case ARMMMUIdx_Stage1_SE0:
|
|
return arm_el_is_aa64(env, 3) ? 1 : 3;
|
|
case ARMMMUIdx_SE10_1:
|
|
case ARMMMUIdx_SE10_1_PAN:
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_Stage1_SE1:
|
|
case ARMMMUIdx_Stage1_SE1_PAN:
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPriv:
|
|
case ARMMMUIdx_MUser:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPriv:
|
|
case ARMMMUIdx_MSUser:
|
|
return 1;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return the TCR controlling this translation regime */
|
|
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_Stage2) {
|
|
return &env->cp15.vtcr_el2;
|
|
}
|
|
if (mmu_idx == ARMMMUIdx_Stage2_S) {
|
|
/*
|
|
* Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
|
|
* those are not currently used by QEMU, so just return VSTCR_EL2.
|
|
*/
|
|
return &env->cp15.vstcr_el2;
|
|
}
|
|
return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
|
|
}
|
|
|
|
/* Return the FSR value for a debug exception (watchpoint, hardware
|
|
* breakpoint or BKPT insn) targeting the specified exception level.
|
|
*/
|
|
static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
|
|
{
|
|
ARMMMUFaultInfo fi = { ARMFault_Debug };
|
|
int target_el = arm_debug_target_el(env);
|
|
bool using_lpae = false;
|
|
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
|
|
using_lpae = true;
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) &&
|
|
(env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
|
|
using_lpae = true;
|
|
}
|
|
}
|
|
|
|
if (using_lpae) {
|
|
return arm_fi_to_lfsc(&fi);
|
|
} else {
|
|
return arm_fi_to_sfsc(&fi);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_num_brps: Return number of implemented breakpoints.
|
|
* Note that the ID register BRPS field is "number of bps - 1",
|
|
* and we return the actual number of breakpoints.
|
|
*/
|
|
static inline int arm_num_brps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_num_wrps: Return number of implemented watchpoints.
|
|
* Note that the ID register WRPS field is "number of wps - 1",
|
|
* and we return the actual number of watchpoints.
|
|
*/
|
|
static inline int arm_num_wrps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_num_ctx_cmps: Return number of implemented context comparators.
|
|
* Note that the ID register CTX_CMPS field is "number of cmps - 1",
|
|
* and we return the actual number of comparators.
|
|
*/
|
|
static inline int arm_num_ctx_cmps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* v7m_using_psp: Return true if using process stack pointer
|
|
* Return true if the CPU is currently using the process stack
|
|
* pointer, or false if it is using the main stack pointer.
|
|
*/
|
|
static inline bool v7m_using_psp(CPUARMState *env)
|
|
{
|
|
/* Handler mode always uses the main stack; for thread mode
|
|
* the CONTROL.SPSEL bit determines the answer.
|
|
* Note that in v7M it is not possible to be in Handler mode with
|
|
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
|
|
*/
|
|
return !arm_v7m_is_handler_mode(env) &&
|
|
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
|
|
}
|
|
|
|
/**
|
|
* v7m_sp_limit: Return SP limit for current CPU state
|
|
* Return the SP limit value for the current CPU security state
|
|
* and stack pointer.
|
|
*/
|
|
static inline uint32_t v7m_sp_limit(CPUARMState *env)
|
|
{
|
|
if (v7m_using_psp(env)) {
|
|
return env->v7m.psplim[env->v7m.secure];
|
|
} else {
|
|
return env->v7m.msplim[env->v7m.secure];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* v7m_cpacr_pass:
|
|
* Return true if the v7M CPACR permits access to the FPU for the specified
|
|
* security state and privilege level.
|
|
*/
|
|
static inline bool v7m_cpacr_pass(CPUARMState *env,
|
|
bool is_secure, bool is_priv)
|
|
{
|
|
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
|
|
case 0:
|
|
case 2: /* UNPREDICTABLE: we treat like 0 */
|
|
return false;
|
|
case 1:
|
|
return is_priv;
|
|
case 3:
|
|
return true;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aarch32_mode_name(): Return name of the AArch32 CPU mode
|
|
* @psr: Program Status Register indicating CPU mode
|
|
*
|
|
* Returns, for debug logging purposes, a printable representation
|
|
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
|
|
* the low bits of the specified PSR.
|
|
*/
|
|
static inline const char *aarch32_mode_name(uint32_t psr)
|
|
{
|
|
static const char cpu_mode_names[16][4] = {
|
|
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
|
|
"???", "???", "hyp", "und", "???", "???", "???", "sys"
|
|
};
|
|
|
|
return cpu_mode_names[psr & 0xf];
|
|
}
|
|
|
|
/**
|
|
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
|
|
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
|
|
* Must be called with the iothread lock held.
|
|
*/
|
|
void arm_cpu_update_virq(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
|
|
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
|
|
* Must be called with the iothread lock held.
|
|
*/
|
|
void arm_cpu_update_vfiq(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_mmu_idx_el:
|
|
* @env: The cpu environment
|
|
* @el: The EL to use.
|
|
*
|
|
* Return the full ARMMMUIdx for the translation regime for EL.
|
|
*/
|
|
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
|
|
|
|
/**
|
|
* arm_mmu_idx:
|
|
* @env: The cpu environment
|
|
*
|
|
* Return the full ARMMMUIdx for the current translation regime.
|
|
*/
|
|
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
|
|
|
|
/**
|
|
* arm_stage1_mmu_idx:
|
|
* @env: The cpu environment
|
|
*
|
|
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
|
|
*/
|
|
#ifdef CONFIG_USER_ONLY
|
|
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
|
|
{
|
|
return ARMMMUIdx_Stage1_E0;
|
|
}
|
|
#else
|
|
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
|
|
#endif
|
|
|
|
/**
|
|
* arm_mmu_idx_is_stage1_of_2:
|
|
* @mmu_idx: The ARMMMUIdx to test
|
|
*
|
|
* Return true if @mmu_idx is a NOTLB mmu_idx that is the
|
|
* first stage of a two stage regime.
|
|
*/
|
|
static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_Stage1_SE0:
|
|
case ARMMMUIdx_Stage1_SE1:
|
|
case ARMMMUIdx_Stage1_SE1_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
|
|
const ARMISARegisters *id)
|
|
{
|
|
uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
|
|
|
|
if ((features >> ARM_FEATURE_V4T) & 1) {
|
|
valid |= CPSR_T;
|
|
}
|
|
if ((features >> ARM_FEATURE_V5) & 1) {
|
|
valid |= CPSR_Q; /* V5TE in reality*/
|
|
}
|
|
if ((features >> ARM_FEATURE_V6) & 1) {
|
|
valid |= CPSR_E | CPSR_GE;
|
|
}
|
|
if ((features >> ARM_FEATURE_THUMB2) & 1) {
|
|
valid |= CPSR_IT;
|
|
}
|
|
if (isar_feature_aa32_jazelle(id)) {
|
|
valid |= CPSR_J;
|
|
}
|
|
if (isar_feature_aa32_pan(id)) {
|
|
valid |= CPSR_PAN;
|
|
}
|
|
if (isar_feature_aa32_dit(id)) {
|
|
valid |= CPSR_DIT;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
|
|
{
|
|
uint32_t valid;
|
|
|
|
valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
|
|
if (isar_feature_aa64_bti(id)) {
|
|
valid |= PSTATE_BTYPE;
|
|
}
|
|
if (isar_feature_aa64_pan(id)) {
|
|
valid |= PSTATE_PAN;
|
|
}
|
|
if (isar_feature_aa64_uao(id)) {
|
|
valid |= PSTATE_UAO;
|
|
}
|
|
if (isar_feature_aa64_dit(id)) {
|
|
valid |= PSTATE_DIT;
|
|
}
|
|
if (isar_feature_aa64_mte(id)) {
|
|
valid |= PSTATE_TCO;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
/*
|
|
* Parameters of a given virtual address, as extracted from the
|
|
* translation control register (TCR) for a given regime.
|
|
*/
|
|
typedef struct ARMVAParameters {
|
|
unsigned tsz : 8;
|
|
unsigned select : 1;
|
|
bool tbi : 1;
|
|
bool epd : 1;
|
|
bool hpd : 1;
|
|
bool using16k : 1;
|
|
bool using64k : 1;
|
|
} ARMVAParameters;
|
|
|
|
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
|
|
ARMMMUIdx mmu_idx, bool data);
|
|
|
|
static inline int exception_target_el(CPUARMState *env)
|
|
{
|
|
int target_el = MAX(1, arm_current_el(env));
|
|
|
|
/*
|
|
* No such thing as secure EL1 if EL3 is aarch32,
|
|
* so update the target EL to EL3 in this case.
|
|
*/
|
|
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
|
|
target_el = 3;
|
|
}
|
|
|
|
return target_el;
|
|
}
|
|
|
|
/* Determine if allocation tags are available. */
|
|
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
|
|
uint64_t sctlr)
|
|
{
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return false;
|
|
}
|
|
if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return false;
|
|
}
|
|
}
|
|
sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
|
|
return sctlr != 0;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
/* Security attributes for an address, as returned by v8m_security_lookup. */
|
|
typedef struct V8M_SAttributes {
|
|
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
|
|
bool ns;
|
|
bool nsc;
|
|
uint8_t sregion;
|
|
bool srvalid;
|
|
uint8_t iregion;
|
|
bool irvalid;
|
|
} V8M_SAttributes;
|
|
|
|
void v8m_security_lookup(CPUARMState *env, uint32_t address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
V8M_SAttributes *sattrs);
|
|
|
|
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *txattrs,
|
|
int *prot, bool *is_subpage,
|
|
ARMMMUFaultInfo *fi, uint32_t *mregion);
|
|
|
|
/* Cacheability and shareability attributes for a memory access */
|
|
typedef struct ARMCacheAttrs {
|
|
unsigned int attrs:8; /* as in the MAIR register encoding */
|
|
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
|
|
} ARMCacheAttrs;
|
|
|
|
bool get_phys_addr(CPUARMState *env, target_ulong address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
|
|
target_ulong *page_size,
|
|
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
|
|
__attribute__((nonnull));
|
|
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
/*
|
|
* The log2 of the words in the tag block, for GMID_EL1.BS.
|
|
* The is the maximum, 256 bytes, which manipulates 64-bits of tags.
|
|
*/
|
|
#define GMID_EL1_BS 6
|
|
|
|
/* We associate one allocation tag per 16 bytes, the minimum. */
|
|
#define LOG2_TAG_GRANULE 4
|
|
#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
|
|
|
|
/*
|
|
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
|
|
* the same simd_desc() encoding due to restrictions on size.
|
|
* Use these instead.
|
|
*/
|
|
FIELD(PREDDESC, OPRSZ, 0, 6)
|
|
FIELD(PREDDESC, ESZ, 6, 2)
|
|
FIELD(PREDDESC, DATA, 8, 24)
|
|
|
|
/*
|
|
* The SVE simd_data field, for memory ops, contains either
|
|
* rd (5 bits) or a shift count (2 bits).
|
|
*/
|
|
#define SVE_MTEDESC_SHIFT 5
|
|
|
|
/* Bits within a descriptor passed to the helper_mte_check* functions. */
|
|
FIELD(MTEDESC, MIDX, 0, 4)
|
|
FIELD(MTEDESC, TBI, 4, 2)
|
|
FIELD(MTEDESC, TCMA, 6, 2)
|
|
FIELD(MTEDESC, WRITE, 8, 1)
|
|
FIELD(MTEDESC, ESIZE, 9, 5)
|
|
FIELD(MTEDESC, TSIZE, 14, 10) /* mte_checkN only */
|
|
|
|
bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
|
|
uint64_t mte_check1_(CPUARMState *env, uint32_t desc,
|
|
uint64_t ptr, uintptr_t ra);
|
|
uint64_t mte_checkN_(CPUARMState *env, uint32_t desc,
|
|
uint64_t ptr, uintptr_t ra);
|
|
|
|
|
|
static inline int allocation_tag_from_addr(uint64_t ptr)
|
|
{
|
|
return extract64(ptr, 56, 4);
|
|
}
|
|
|
|
static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
|
|
{
|
|
return deposit64(ptr, 56, 4, rtag);
|
|
}
|
|
|
|
/* Return true if tbi bits mean that the access is checked. */
|
|
static inline bool tbi_check(uint32_t desc, int bit55)
|
|
{
|
|
return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
|
|
}
|
|
|
|
/* Return true if tcma bits mean that the access is unchecked. */
|
|
static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
|
|
{
|
|
/*
|
|
* We had extracted bit55 and ptr_tag for other reasons, so fold
|
|
* (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
|
|
*/
|
|
bool match = ((ptr_tag + bit55) & 0xf) == 0;
|
|
bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
|
|
return tcma && match;
|
|
}
|
|
|
|
/*
|
|
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
|
|
* for the tag to be present in the FAR_ELx register. But for user-only
|
|
* mode, we do not have a TLB with which to implement this, so we must
|
|
* remove the top byte.
|
|
*/
|
|
static inline uint64_t useronly_clean_ptr(uint64_t ptr)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* TBI0 is known to be enabled, while TBI1 is disabled. */
|
|
ptr &= sextract64(ptr, 0, 56);
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
int64_t clean_ptr = sextract64(ptr, 0, 56);
|
|
if (tbi_check(desc, clean_ptr < 0)) {
|
|
ptr = clean_ptr;
|
|
}
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
#endif
|