mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2024-12-25 02:55:39 +00:00
b4bf3c776b
In icount mode, instructions that access io memory spaces in the middle of the translation block invoke TB recompilation. After recompilation, such instructions become last in the TB and are allowed to access io memory spaces. When the code includes instruction like i386 'xchg eax, 0xffffd080' which accesses APIC, QEMU goes into an infinite loop of the recompilation. This instruction includes two memory accesses - one read and one write. After the first access, APIC calls cpu_report_tpr_access, which restores the CPU state to get the current eip. But cpu_restore_state_from_tb resets the cpu->can_do_io flag which makes the second memory access invalid. Therefore the second memory access causes a recompilation of the block. Then these operations repeat again and again. This patch moves resetting cpu->can_do_io flag from cpu_restore_state_from_tb to cpu_loop_exit* functions. It also adds a parameter for cpu_restore_state which controls restoring icount. There is no need to restore icount when we only query CPU state without breaking the TB. Restoring it in such cases leads to the incorrect flow of the virtual time. In most cases new parameter is true (icount should be recalculated). But there are two cases in i386 and openrisc when the CPU state is only queried without the need to break the TB. This patch fixes both of these cases. Backports commit afd46fcad2dceffda35c0586f5723c127b6e09d8 from qemu
762 lines
29 KiB
C
762 lines
29 KiB
C
/*
|
|
* x86 SVM helpers
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/cpu-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
|
|
/* Secure Virtual Machine helpers */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
|
|
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
|
|
{
|
|
}
|
|
|
|
void helper_vmmcall(CPUX86State *env)
|
|
{
|
|
}
|
|
|
|
void helper_vmload(CPUX86State *env, int aflag)
|
|
{
|
|
}
|
|
|
|
void helper_vmsave(CPUX86State *env, int aflag)
|
|
{
|
|
}
|
|
|
|
void helper_stgi(CPUX86State *env)
|
|
{
|
|
}
|
|
|
|
void helper_clgi(CPUX86State *env)
|
|
{
|
|
}
|
|
|
|
void helper_skinit(CPUX86State *env)
|
|
{
|
|
}
|
|
|
|
void helper_invlpga(CPUX86State *env, int aflag)
|
|
{
|
|
}
|
|
|
|
void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1,
|
|
uintptr_t retaddr)
|
|
{
|
|
}
|
|
|
|
void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
|
|
uint64_t param)
|
|
{
|
|
}
|
|
|
|
void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
|
|
uint64_t param, uintptr_t retaddr)
|
|
{
|
|
}
|
|
|
|
void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
|
|
uint32_t next_eip_addend)
|
|
{
|
|
}
|
|
#else
|
|
|
|
static inline void svm_save_seg(CPUX86State *env, hwaddr addr,
|
|
const SegmentCache *sc)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
|
|
x86_stw_phys(cs, addr + offsetof(struct vmcb_seg, selector),
|
|
sc->selector);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb_seg, base),
|
|
sc->base);
|
|
x86_stl_phys(cs, addr + offsetof(struct vmcb_seg, limit),
|
|
sc->limit);
|
|
x86_stw_phys(cs, addr + offsetof(struct vmcb_seg, attrib),
|
|
((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
|
|
}
|
|
|
|
static inline void svm_load_seg(CPUX86State *env, hwaddr addr,
|
|
SegmentCache *sc)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
unsigned int flags;
|
|
|
|
sc->selector = x86_lduw_phys(cs,
|
|
addr + offsetof(struct vmcb_seg, selector));
|
|
sc->base = x86_ldq_phys(cs, addr + offsetof(struct vmcb_seg, base));
|
|
sc->limit = x86_ldl_phys(cs, addr + offsetof(struct vmcb_seg, limit));
|
|
flags = x86_lduw_phys(cs, addr + offsetof(struct vmcb_seg, attrib));
|
|
sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
|
|
}
|
|
|
|
static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr,
|
|
int seg_reg)
|
|
{
|
|
SegmentCache sc1, *sc = &sc1;
|
|
|
|
svm_load_seg(env, addr, sc);
|
|
cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
|
|
sc->base, sc->limit, sc->flags);
|
|
}
|
|
|
|
void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
target_ulong addr;
|
|
uint32_t event_inj;
|
|
uint32_t int_ctl;
|
|
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0, GETPC());
|
|
|
|
if (aflag == 2) {
|
|
addr = env->regs[R_EAX];
|
|
} else {
|
|
addr = (uint32_t)env->regs[R_EAX];
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
|
|
|
|
env->vm_vmcb = addr;
|
|
|
|
/* save the current CPU state in the hsave page */
|
|
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base),
|
|
env->gdt.base);
|
|
x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit),
|
|
env->gdt.limit);
|
|
|
|
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base),
|
|
env->idt.base);
|
|
x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit),
|
|
env->idt.limit);
|
|
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
|
|
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.rflags),
|
|
cpu_compute_eflags(env));
|
|
|
|
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es),
|
|
&env->segs[R_ES]);
|
|
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
|
|
&env->segs[R_CS]);
|
|
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
|
|
&env->segs[R_SS]);
|
|
svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
|
|
&env->segs[R_DS]);
|
|
|
|
x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip),
|
|
env->eip + next_eip_addend);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
|
|
x86_stq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
|
|
|
|
/* load the interception bitmaps so we do not need to access the
|
|
vmcb in svm mode */
|
|
env->intercept = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
control.intercept));
|
|
env->intercept_cr_read = x86_lduw_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.intercept_cr_read));
|
|
env->intercept_cr_write = x86_lduw_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.intercept_cr_write));
|
|
env->intercept_dr_read = x86_lduw_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.intercept_dr_read));
|
|
env->intercept_dr_write = x86_lduw_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.intercept_dr_write));
|
|
env->intercept_exceptions = x86_ldl_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.intercept_exceptions
|
|
));
|
|
|
|
/* enable intercepts */
|
|
env->hflags |= HF_SVMI_MASK;
|
|
|
|
env->tsc_offset = x86_ldq_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb, control.tsc_offset));
|
|
|
|
env->gdt.base = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
save.gdtr.base));
|
|
env->gdt.limit = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
save.gdtr.limit));
|
|
|
|
env->idt.base = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
save.idtr.base));
|
|
env->idt.limit = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
save.idtr.limit));
|
|
|
|
/* clear exit_info_2 so we behave like the real hardware */
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
|
|
|
|
cpu_x86_update_cr0(env, x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb,
|
|
save.cr0)));
|
|
cpu_x86_update_cr4(env, x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb,
|
|
save.cr4)));
|
|
cpu_x86_update_cr3(env, x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb,
|
|
save.cr3)));
|
|
env->cr[2] = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.cr2));
|
|
int_ctl = x86_ldl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
|
|
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
|
|
if (int_ctl & V_INTR_MASKING_MASK) {
|
|
env->v_tpr = int_ctl & V_TPR_MASK;
|
|
env->hflags2 |= HF2_VINTR_MASK;
|
|
if (env->eflags & IF_MASK) {
|
|
env->hflags2 |= HF2_HIF_MASK;
|
|
}
|
|
}
|
|
|
|
cpu_load_efer(env,
|
|
x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.efer)));
|
|
env->eflags = 0;
|
|
cpu_load_eflags(env, x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb,
|
|
save.rflags)),
|
|
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
|
|
|
|
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
|
|
R_ES);
|
|
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
|
|
R_CS);
|
|
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
|
|
R_SS);
|
|
svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
|
|
R_DS);
|
|
|
|
env->eip = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.rip));
|
|
|
|
env->regs[R_ESP] = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.rsp));
|
|
env->regs[R_EAX] = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.rax));
|
|
env->dr[7] = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.dr7));
|
|
env->dr[6] = x86_ldq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.dr6));
|
|
|
|
/* FIXME: guest state consistency checks */
|
|
|
|
switch (ldub_phys(cs->as,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
|
|
case TLB_CONTROL_DO_NOTHING:
|
|
break;
|
|
case TLB_CONTROL_FLUSH_ALL_ASID:
|
|
/* FIXME: this is not 100% correct but should work for now */
|
|
tlb_flush(cs);
|
|
break;
|
|
}
|
|
|
|
env->hflags2 |= HF2_GIF_MASK;
|
|
|
|
if (int_ctl & V_IRQ_MASK) {
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
|
|
cs->interrupt_request |= CPU_INTERRUPT_VIRQ;
|
|
}
|
|
|
|
/* maybe we need to inject an event */
|
|
event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
control.event_inj));
|
|
if (event_inj & SVM_EVTINJ_VALID) {
|
|
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
|
|
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
|
|
uint32_t event_inj_err = x86_ldl_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.event_inj_err));
|
|
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
|
|
/* FIXME: need to implement valid_err */
|
|
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
|
|
case SVM_EVTINJ_TYPE_INTR:
|
|
cs->exception_index = vector;
|
|
env->error_code = event_inj_err;
|
|
env->exception_is_int = 0;
|
|
env->exception_next_eip = -1;
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
|
|
/* XXX: is it always correct? */
|
|
do_interrupt_x86_hardirq(env, vector, 1);
|
|
break;
|
|
case SVM_EVTINJ_TYPE_NMI:
|
|
cs->exception_index = EXCP02_NMI;
|
|
env->error_code = event_inj_err;
|
|
env->exception_is_int = 0;
|
|
env->exception_next_eip = env->eip;
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
|
|
cpu_loop_exit(cs);
|
|
break;
|
|
case SVM_EVTINJ_TYPE_EXEPT:
|
|
cs->exception_index = vector;
|
|
env->error_code = event_inj_err;
|
|
env->exception_is_int = 0;
|
|
env->exception_next_eip = -1;
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
|
|
cpu_loop_exit(cs);
|
|
break;
|
|
case SVM_EVTINJ_TYPE_SOFT:
|
|
cs->exception_index = vector;
|
|
env->error_code = event_inj_err;
|
|
env->exception_is_int = 1;
|
|
env->exception_next_eip = env->eip;
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
|
|
cpu_loop_exit(cs);
|
|
break;
|
|
}
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index,
|
|
env->error_code);
|
|
}
|
|
}
|
|
|
|
void helper_vmmcall(CPUX86State *env)
|
|
{
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0, GETPC());
|
|
raise_exception(env, EXCP06_ILLOP);
|
|
}
|
|
|
|
void helper_vmload(CPUX86State *env, int aflag)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
target_ulong addr;
|
|
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0, GETPC());
|
|
|
|
if (aflag == 2) {
|
|
addr = env->regs[R_EAX];
|
|
} else {
|
|
addr = (uint32_t)env->regs[R_EAX];
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx
|
|
"\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
|
|
addr, x86_ldq_phys(cs, addr + offsetof(struct vmcb,
|
|
save.fs.base)),
|
|
env->segs[R_FS].base);
|
|
|
|
svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS);
|
|
svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS);
|
|
svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr);
|
|
svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt);
|
|
|
|
#ifdef TARGET_X86_64
|
|
env->kernelgsbase = x86_ldq_phys(cs, addr + offsetof(struct vmcb,
|
|
save.kernel_gs_base));
|
|
env->lstar = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.lstar));
|
|
env->cstar = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.cstar));
|
|
env->fmask = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.sfmask));
|
|
#endif
|
|
env->star = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.star));
|
|
env->sysenter_cs = x86_ldq_phys(cs,
|
|
addr + offsetof(struct vmcb, save.sysenter_cs));
|
|
env->sysenter_esp = x86_ldq_phys(cs, addr + offsetof(struct vmcb,
|
|
save.sysenter_esp));
|
|
env->sysenter_eip = x86_ldq_phys(cs, addr + offsetof(struct vmcb,
|
|
save.sysenter_eip));
|
|
}
|
|
|
|
void helper_vmsave(CPUX86State *env, int aflag)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
target_ulong addr;
|
|
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0, GETPC());
|
|
|
|
if (aflag == 2) {
|
|
addr = env->regs[R_EAX];
|
|
} else {
|
|
addr = (uint32_t)env->regs[R_EAX];
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx
|
|
"\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
|
|
addr, x86_ldq_phys(cs,
|
|
addr + offsetof(struct vmcb, save.fs.base)),
|
|
env->segs[R_FS].base);
|
|
|
|
svm_save_seg(env, addr + offsetof(struct vmcb, save.fs),
|
|
&env->segs[R_FS]);
|
|
svm_save_seg(env, addr + offsetof(struct vmcb, save.gs),
|
|
&env->segs[R_GS]);
|
|
svm_save_seg(env, addr + offsetof(struct vmcb, save.tr),
|
|
&env->tr);
|
|
svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr),
|
|
&env->ldt);
|
|
|
|
#ifdef TARGET_X86_64
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.kernel_gs_base),
|
|
env->kernelgsbase);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.lstar), env->lstar);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.cstar), env->cstar);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sfmask), env->fmask);
|
|
#endif
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.star), env->star);
|
|
x86_stq_phys(cs,
|
|
addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sysenter_esp),
|
|
env->sysenter_esp);
|
|
x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sysenter_eip),
|
|
env->sysenter_eip);
|
|
}
|
|
|
|
void helper_stgi(CPUX86State *env)
|
|
{
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0, GETPC());
|
|
env->hflags2 |= HF2_GIF_MASK;
|
|
}
|
|
|
|
void helper_clgi(CPUX86State *env)
|
|
{
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0, GETPC());
|
|
env->hflags2 &= ~HF2_GIF_MASK;
|
|
}
|
|
|
|
void helper_skinit(CPUX86State *env)
|
|
{
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0, GETPC());
|
|
/* XXX: not implemented */
|
|
raise_exception(env, EXCP06_ILLOP);
|
|
}
|
|
|
|
void helper_invlpga(CPUX86State *env, int aflag)
|
|
{
|
|
X86CPU *cpu = x86_env_get_cpu(env);
|
|
target_ulong addr;
|
|
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0, GETPC());
|
|
|
|
if (aflag == 2) {
|
|
addr = env->regs[R_EAX];
|
|
} else {
|
|
addr = (uint32_t)env->regs[R_EAX];
|
|
}
|
|
|
|
/* XXX: could use the ASID to see if it is needed to do the
|
|
flush */
|
|
tlb_flush_page(CPU(cpu), addr);
|
|
}
|
|
|
|
void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type,
|
|
uint64_t param, uintptr_t retaddr)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
|
|
if (likely(!(env->hflags & HF_SVMI_MASK))) {
|
|
return;
|
|
}
|
|
if ( (int32_t)type >= SVM_EXIT_READ_CR0 && type <= SVM_EXIT_READ_CR0 + 8 ) {
|
|
if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
} else if ( type >= SVM_EXIT_WRITE_CR0 && type <= SVM_EXIT_WRITE_CR0 + 8 ) {
|
|
if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
} else if ( type >= SVM_EXIT_READ_DR0 && type <= SVM_EXIT_READ_DR0 + 7 ) {
|
|
if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
} else if ( type >= SVM_EXIT_WRITE_DR0 && type <= SVM_EXIT_WRITE_DR0 + 7 ) {
|
|
if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
} else if ( type >= SVM_EXIT_EXCP_BASE && type <= SVM_EXIT_EXCP_BASE + 31 ) {
|
|
if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
} else if ( type == SVM_EXIT_MSR ) {
|
|
if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
|
|
/* FIXME: this should be read in at vmrun (faster this way?) */
|
|
uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb,
|
|
control.msrpm_base_pa));
|
|
uint32_t t0, t1;
|
|
|
|
uint32_t ecx = (uint32_t)env->regs[R_ECX];
|
|
if ( (int32_t)ecx >= 0 && ecx <= 0x1fff ) {
|
|
t0 = (env->regs[R_ECX] * 2) % 8;
|
|
t1 = (env->regs[R_ECX] * 2) / 8;
|
|
} else if ( ecx >= 0xc0000000 && ecx <= 0xc0001fff ) {
|
|
t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2;
|
|
t1 = (t0 / 8);
|
|
t0 %= 8;
|
|
} else if ( ecx >= 0xc0010000 && ecx <= 0xc0011fff ) {
|
|
t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2;
|
|
t1 = (t0 / 8);
|
|
t0 %= 8;
|
|
} else {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
t0 = 0;
|
|
t1 = 0;
|
|
}
|
|
if (ldub_phys(cs->as, addr + t1) & ((1 << param) << t0)) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
}
|
|
} else {
|
|
if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
|
|
cpu_vmexit(env, type, param, retaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type,
|
|
uint64_t param)
|
|
{
|
|
cpu_svm_check_intercept_param(env, type, param, GETPC());
|
|
}
|
|
|
|
void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param,
|
|
uint32_t next_eip_addend)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
|
|
if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
|
|
/* FIXME: this should be read in at vmrun (faster this way?) */
|
|
uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb +
|
|
offsetof(struct vmcb, control.iopm_base_pa));
|
|
uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
|
|
|
|
if (x86_lduw_phys(cs, addr + port / 8) & (mask << (port & 7))) {
|
|
/* next env->eip */
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
|
|
env->eip + next_eip_addend);
|
|
cpu_vmexit(env, SVM_EXIT_IOIO, param | (port << 16), GETPC());
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1,
|
|
uintptr_t retaddr)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
|
|
cpu_restore_state(cs, retaddr, true);
|
|
|
|
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016"
|
|
PRIx64 ", " TARGET_FMT_lx ")!\n",
|
|
exit_code, exit_info_1,
|
|
x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
control.exit_info_2)),
|
|
env->eip);
|
|
|
|
cs->exception_index = EXCP_VMEXIT + exit_code;
|
|
env->error_code = exit_info_1;
|
|
|
|
/* remove any pending exception */
|
|
env->old_exception = -1;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
void do_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1)
|
|
{
|
|
CPUState *cs = CPU(x86_env_get_cpu(env));
|
|
uint32_t int_ctl;
|
|
|
|
if (env->hflags & HF_INHIBIT_IRQ_MASK) {
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.int_state),
|
|
SVM_INTERRUPT_SHADOW_MASK);
|
|
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
|
|
} else {
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
|
|
}
|
|
|
|
/* Save the VM state in the vmcb */
|
|
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es),
|
|
&env->segs[R_ES]);
|
|
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs),
|
|
&env->segs[R_CS]);
|
|
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss),
|
|
&env->segs[R_SS]);
|
|
svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds),
|
|
&env->segs[R_DS]);
|
|
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base),
|
|
env->gdt.base);
|
|
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit),
|
|
env->gdt.limit);
|
|
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base),
|
|
env->idt.base);
|
|
x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit),
|
|
env->idt.limit);
|
|
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
|
|
|
|
int_ctl = x86_ldl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
|
|
int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
|
|
int_ctl |= env->v_tpr & V_TPR_MASK;
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
|
|
int_ctl |= V_IRQ_MASK;
|
|
}
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
|
|
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags),
|
|
cpu_compute_eflags(env));
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip),
|
|
env->eip);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
|
|
x86_stq_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
|
|
x86_stb_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cpl),
|
|
env->hflags & HF_CPL_MASK);
|
|
|
|
/* Reload the host state from vm_hsave */
|
|
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
|
|
env->hflags &= ~HF_SVMI_MASK;
|
|
env->intercept = 0;
|
|
env->intercept_exceptions = 0;
|
|
cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
|
env->tsc_offset = 0;
|
|
|
|
env->gdt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
|
|
save.gdtr.base));
|
|
env->gdt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb,
|
|
save.gdtr.limit));
|
|
|
|
env->idt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
|
|
save.idtr.base));
|
|
env->idt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb,
|
|
save.idtr.limit));
|
|
|
|
cpu_x86_update_cr0(env, x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb,
|
|
save.cr0)) |
|
|
CR0_PE_MASK);
|
|
cpu_x86_update_cr4(env, x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb,
|
|
save.cr4)));
|
|
cpu_x86_update_cr3(env, x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb,
|
|
save.cr3)));
|
|
/* we need to set the efer after the crs so the hidden flags get
|
|
set properly */
|
|
cpu_load_efer(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb,
|
|
save.efer)));
|
|
env->eflags = 0;
|
|
cpu_load_eflags(env, x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb,
|
|
save.rflags)),
|
|
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK |
|
|
VM_MASK));
|
|
|
|
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es),
|
|
R_ES);
|
|
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs),
|
|
R_CS);
|
|
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss),
|
|
R_SS);
|
|
svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds),
|
|
R_DS);
|
|
|
|
env->eip = x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.rip));
|
|
env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_hsave +
|
|
offsetof(struct vmcb, save.rsp));
|
|
env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_hsave +
|
|
offsetof(struct vmcb, save.rax));
|
|
|
|
env->dr[6] = x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.dr6));
|
|
env->dr[7] = x86_ldq_phys(cs,
|
|
env->vm_hsave + offsetof(struct vmcb, save.dr7));
|
|
|
|
/* other setups */
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_code),
|
|
exit_code);
|
|
x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1),
|
|
exit_info_1);
|
|
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
|
|
x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
control.event_inj)));
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
|
|
x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
|
|
control.event_inj_err)));
|
|
x86_stl_phys(cs,
|
|
env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
|
|
|
|
env->hflags2 &= ~HF2_GIF_MASK;
|
|
/* FIXME: Resets the current ASID register to zero (host ASID). */
|
|
|
|
/* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
|
|
|
|
/* Clears the TSC_OFFSET inside the processor. */
|
|
|
|
/* If the host is in PAE mode, the processor reloads the host's PDPEs
|
|
from the page table indicated the host's CR3. If the PDPEs contain
|
|
illegal state, the processor causes a shutdown. */
|
|
|
|
/* Disables all breakpoints in the host DR7 register. */
|
|
|
|
/* Checks the reloaded host state for consistency. */
|
|
|
|
/* If the host's rIP reloaded by #VMEXIT is outside the limit of the
|
|
host's code segment or non-canonical (in the case of long mode), a
|
|
#GP fault is delivered inside the host. */
|
|
}
|
|
|
|
#endif
|