mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-22 19:00:58 +00:00
f66e74d65b
Some code paths can lead to atomic accesses racing with memset() on cpu->tb_jmp_cache, which can result in torn reads/writes and is undefined behaviour in C11. These torn accesses are unlikely to show up as bugs, but from code inspection they seem possible. For example, tb_phys_invalidate does: /* remove the TB from the hash list */ h = tb_jmp_cache_hash_func(tb->pc); CPU_FOREACH(cpu) { if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { atomic_set(&cpu->tb_jmp_cache[h], NULL); } } Here atomic_set might race with a concurrent memset (such as the ones scheduled via "unsafe" async work, e.g. tlb_flush_page) and therefore we might end up with a torn pointer (or who knows what, because we are under undefined behaviour). This patch converts parallel accesses to cpu->tb_jmp_cache to use atomic primitives, thereby bringing these accesses back to defined behaviour. The price to pay is to potentially execute more instructions when clearing cpu->tb_jmp_cache, but given how infrequently they happen and the small size of the cache, the performance impact I have measured is within noise range when booting debian-arm. Note that under "safe async" work (e.g. do_tb_flush) we could use memset because no other vcpus are running. However I'm keeping these accesses atomic as well to keep things simple and to avoid confusing analysis tools such as ThreadSanitizer. Backports commit f3ced3c59287dabc253f83f0c70aa4934470c15e from qemu
703 lines
22 KiB
C
703 lines
22 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/cputlb.h"
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/atomic.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
|
|
/* #define DEBUG_TLB */
|
|
/* #define DEBUG_TLB_LOG */
|
|
|
|
#ifdef DEBUG_TLB
|
|
# define DEBUG_TLB_GATE 1
|
|
# ifdef DEBUG_TLB_LOG
|
|
# define DEBUG_TLB_LOG_GATE 1
|
|
# else
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
# endif
|
|
#else
|
|
# define DEBUG_TLB_GATE 0
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
#endif
|
|
|
|
#define tlb_debug(fmt, ...) do { \
|
|
if (DEBUG_TLB_LOG_GATE) { \
|
|
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
|
|
## __VA_ARGS__); \
|
|
} else if (DEBUG_TLB_GATE) { \
|
|
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr);
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe);
|
|
static ram_addr_t qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr);
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size);
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr);
|
|
|
|
/* This is OK because CPU architectures generally permit an
|
|
* implementation to drop entries from the TLB at any time, so
|
|
* flushing more entries than required is only an efficiency issue,
|
|
* not a correctness issue.
|
|
*/
|
|
void tlb_flush(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
memset(env->tlb_table, -1, sizeof(env->tlb_table));
|
|
memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
|
|
env->vtlb_index = 0;
|
|
env->tlb_flush_addr = -1;
|
|
env->tlb_flush_mask = 0;
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("page :" TARGET_FMT_lx "\n", addr);
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
tlb_debug("forcing full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
|
|
tlb_flush(cpu);
|
|
return;
|
|
}
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
|
}
|
|
|
|
/* check whether there are entries that need to be flushed in the vtlb */
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t addr;
|
|
|
|
if (tlb_is_dirty_ram(tlb_entry)) {
|
|
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
supplied size is only used by tlb_flush_page. */
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong code_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te;
|
|
hwaddr iotlb, xlat, sz;
|
|
unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
|
|
assert(size >= TARGET_PAGE_SIZE);
|
|
if (size != TARGET_PAGE_SIZE) {
|
|
tlb_add_large_page(env, vaddr, size);
|
|
}
|
|
|
|
sz = size;
|
|
section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
|
|
address = vaddr;
|
|
if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
|
|
/* IO memory case */
|
|
address |= TLB_MMIO;
|
|
addend = 0;
|
|
} else {
|
|
/* TLB_MMIO for rom/romd handled below */
|
|
addend = (uintptr_t)((char*)memory_region_get_ram_ptr(section->mr) + xlat);
|
|
}
|
|
|
|
code_address = address;
|
|
iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
|
|
prot, &address);
|
|
|
|
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
te = &env->tlb_table[mmu_idx][index];
|
|
|
|
/* do not discard the translation in te, evict it into a victim tlb */
|
|
env->tlb_v_table[mmu_idx][vidx] = *te;
|
|
env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
|
|
|
|
/* refill the tlb */
|
|
env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
|
|
env->iotlb[mmu_idx][index].attrs = attrs;
|
|
te->addend = (uintptr_t)(addend - vaddr);
|
|
if (prot & PAGE_READ) {
|
|
te->addr_read = address;
|
|
} else {
|
|
te->addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
te->addr_code = code_address;
|
|
} else {
|
|
te->addr_code = -1;
|
|
}
|
|
if (prot & PAGE_WRITE) {
|
|
if ((memory_region_is_ram(section->mr) && section->readonly)
|
|
|| memory_region_is_romd(section->mr)) {
|
|
/* Write access calls the I/O callback. */
|
|
te->addr_write = address | TLB_MMIO;
|
|
} else if (memory_region_is_ram(section->mr)
|
|
&& cpu_physical_memory_is_clean(cpu->uc,
|
|
memory_region_get_ram_addr(section->mr) + xlat)) {
|
|
te->addr_write = address | TLB_NOTDIRTY;
|
|
} else {
|
|
te->addr_write = address;
|
|
}
|
|
} else {
|
|
te->addr_write = -1;
|
|
}
|
|
}
|
|
|
|
/* Add a new TLB entry, but without specifying the memory
|
|
* transaction attributes to be used.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
|
|
prot, mmu_idx, size);
|
|
}
|
|
|
|
static ram_addr_t qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
ram_addr = qemu_ram_addr_from_host(uc, ptr);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
//error_report("Bad ram pointer %p", ptr);
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return ram_addr;
|
|
}
|
|
|
|
/* NOTE: this function can trigger an exception */
|
|
/* NOTE2: the returned address is not exactly the physical address: it
|
|
* is actually a ram_addr_t (in system mode; the user mode emulation
|
|
* version of this function returns a guest virtual address).
|
|
*/
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
|
|
{
|
|
int mmu_idx, index, pd;
|
|
void *p;
|
|
MemoryRegion *mr;
|
|
ram_addr_t ram_addr;
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUIOTLBEntry *iotlbentry;
|
|
|
|
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
mmu_idx = cpu_mmu_index(env, true);
|
|
if (unlikely(env->tlb_table[mmu_idx][index].addr_code !=
|
|
(addr & TARGET_PAGE_MASK))) {
|
|
cpu_ldub_code(env, addr);
|
|
//check for NX related error from softmmu
|
|
if (env->invalid_error == UC_ERR_FETCH_PROT) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
}
|
|
iotlbentry = &env->iotlb[mmu_idx][index];
|
|
pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
|
|
mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
|
|
if (memory_region_is_unassigned(cpu->uc, mr)) {
|
|
cpu_unassigned_access(cpu, addr, false, true, 0, 4);
|
|
/* The CPU's unassigned access hook might have longjumped out
|
|
* with an exception. If it didn't (or there was no hook) then
|
|
* we can't proceed further.
|
|
*/
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
|
|
ram_addr = qemu_ram_addr_from_host_nofail(cpu->uc, p);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
} else {
|
|
return ram_addr;
|
|
}
|
|
}
|
|
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
|
{
|
|
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size)
|
|
{
|
|
target_ulong mask = ~(size - 1);
|
|
|
|
if (env->tlb_flush_addr == (target_ulong)-1) {
|
|
env->tlb_flush_addr = vaddr & mask;
|
|
env->tlb_flush_mask = mask;
|
|
return;
|
|
}
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and the cost
|
|
of maintaining a full variable size TLB. */
|
|
mask &= env->tlb_flush_mask;
|
|
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
|
mask <<= 1;
|
|
}
|
|
env->tlb_flush_addr &= mask;
|
|
env->tlb_flush_mask = mask;
|
|
}
|
|
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
|
{
|
|
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
|
}
|
|
|
|
static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
unsigned long mmu_idx_bitmask = idxmap;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("start\n");
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
|
|
tlb_debug("%d\n", mmu_idx);
|
|
|
|
memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
|
|
memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
|
|
}
|
|
}
|
|
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
v_tlb_flush_by_mmuidx(cpu, idxmap);
|
|
}
|
|
|
|
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
|
{
|
|
if (addr == (tlb_entry->addr_read &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_write &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_code &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
}
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
unsigned long mmu_idx_bitmap = idxmap;
|
|
int i, page, mmu_idx;
|
|
|
|
tlb_debug("addr "TARGET_FMT_lx"\n", addr);
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
tlb_debug("forced full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
|
|
v_tlb_flush_by_mmuidx(cpu, idxmap);
|
|
return;
|
|
}
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
|
|
/* check whether there are vltb entries that need to be flushed */
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
/* update the TLBs so that writes to code in the virtual page 'addr'
|
|
can be detected */
|
|
void tlb_protect_code(struct uc_struct *uc, ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(uc, ram_addr, TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
|
tested for self modifying code */
|
|
void tlb_unprotect_code(CPUState *cpu, ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_set_dirty_flag(cpu->uc, ram_addr, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
target_ulong addr, uintptr_t retaddr, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr physaddr = iotlbentry->addr;
|
|
MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
|
|
uint64_t val;
|
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs);
|
|
return val;
|
|
}
|
|
|
|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
uint64_t val, target_ulong addr,
|
|
uintptr_t retaddr, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr physaddr = iotlbentry->addr;
|
|
MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
|
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs);
|
|
}
|
|
|
|
/* Return true if ADDR is present in the victim tlb, and has been copied
|
|
back to the main tlb. */
|
|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
|
|
size_t elt_ofs, target_ulong page)
|
|
{
|
|
size_t vidx;
|
|
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
|
|
CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
|
|
target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
|
|
|
|
if (cmp == page) {
|
|
/* Found entry in victim tlb, swap tlb and iotlb. */
|
|
CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
|
|
CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
|
|
CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
|
|
|
|
tmptlb = *tlb; *tlb = *vtlb; *vtlb = tmptlb;
|
|
tmpio = *io; *io = *vio; *vio = tmpio;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Macro to call the above, with local variables from the use context. */
|
|
#define VICTIM_TLB_HIT(TY, ADDR) \
|
|
victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
|
|
(ADDR) & TARGET_PAGE_MASK)
|
|
|
|
/* Probe for whether the specified guest write access is permitted.
|
|
* If it is not permitted then an exception will be taken in the same
|
|
* way as if this were a real write access (and we will not return).
|
|
* Otherwise the function will return, and there will be a valid
|
|
* entry in the TLB for this access.
|
|
*/
|
|
void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
/* TLB entry is for a different page */
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Probe for a read-modify-write atomic operation. Do not allow unaligned
|
|
* operations, or io operations to proceed. Return the host address. */
|
|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
size_t mmu_idx = get_mmuidx(oi);
|
|
size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
|
|
target_ulong tlb_addr = tlbe->addr_write;
|
|
TCGMemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
int s_bits = mop & MO_SIZE;
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
|
|
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* Enforce qemu required alignment. */
|
|
if (unlikely(addr & ((1 << s_bits) - 1))) {
|
|
/* We get here if guest alignment was not requested,
|
|
or was not enforced by cpu_unaligned_access above.
|
|
We might widen the access and emulate, but for now
|
|
mark an exception and exit the cpu loop. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Check TLB entry and enforce page permissions. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = tlbe->addr_write;
|
|
}
|
|
|
|
/* Check notdirty */
|
|
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
|
|
tlb_set_dirty(ENV_GET_CPU(env), addr);
|
|
tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
|
|
}
|
|
|
|
/* Notice an IO access */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
/* There's really nothing that can be done to
|
|
support this apart from stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Let the guest notice RMW on a write-only page. */
|
|
if (unlikely(tlbe->addr_read != tlb_addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
|
|
/* Since we don't support reads and writes to different addresses,
|
|
and we do have the proper page loaded for write, this shouldn't
|
|
ever return. But just in case, handle via stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
return (void *)((uintptr_t)addr + tlbe->addend);
|
|
|
|
stop_the_world:
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
|
|
}
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
# define TGT_BE(X) (X)
|
|
# define TGT_LE(X) BSWAP(X)
|
|
#else
|
|
# define TGT_BE(X) BSWAP(X)
|
|
# define TGT_LE(X) (X)
|
|
#endif
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define DATA_SIZE 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 8
|
|
#include "softmmu_template.h"
|
|
|
|
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
|
them callable from other helpers. */
|
|
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
|
|
#define ATOMIC_NAME(X) \
|
|
HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
#ifdef CONFIG_ATOMIC128
|
|
#define DATA_SIZE 16
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Second set of helpers are directly callable from TCG as helpers. */
|
|
|
|
#undef EXTRA_ARGS
|
|
#undef ATOMIC_NAME
|
|
#undef ATOMIC_MMU_LOOKUP
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi
|
|
#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Code access functions. */
|
|
|
|
#undef MMUSUFFIX
|
|
#define MMUSUFFIX _cmmu
|
|
#undef GETPC
|
|
#define GETPC() ((uintptr_t)0)
|
|
#define SOFTMMU_CODE_ACCESS
|
|
|
|
#define DATA_SIZE 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "softmmu_template.h"
|
|
|
|
#define DATA_SIZE 8
|
|
#include "softmmu_template.h"
|