mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-11 20:45:36 +00:00
b78e283513
Backports commit f6dbf62a7e3d00e9a1dcc7fe3e53b32c3ed93e24 from qemu
3776 lines
138 KiB
C
3776 lines
138 KiB
C
/*
|
|
* ARM SVE Operations
|
|
*
|
|
* Copyright (c) 2018 Linaro, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
/* Note that vector data is stored in host-endian 64-bit chunks,
|
|
so addressing units smaller than that needs a host-endian fixup. */
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define H1(x) ((x) ^ 7)
|
|
#define H1_2(x) ((x) ^ 6)
|
|
#define H1_4(x) ((x) ^ 4)
|
|
#define H2(x) ((x) ^ 3)
|
|
#define H4(x) ((x) ^ 1)
|
|
#else
|
|
#define H1(x) (x)
|
|
#define H1_2(x) (x)
|
|
#define H1_4(x) (x)
|
|
#define H2(x) (x)
|
|
#define H4(x) (x)
|
|
#endif
|
|
|
|
/* Return a value for NZCV as per the ARM PredTest pseudofunction.
|
|
*
|
|
* The return value has bit 31 set if N is set, bit 1 set if Z is clear,
|
|
* and bit 0 set if C is set. Compare the definitions of these variables
|
|
* within CPUARMState.
|
|
*/
|
|
|
|
/* For no G bits set, NZCV = C. */
|
|
#define PREDTEST_INIT 1
|
|
|
|
/* This is an iterative function, called for each Pd and Pg word
|
|
* moving forward.
|
|
*/
|
|
static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
|
|
{
|
|
if (likely(g)) {
|
|
/* Compute N from first D & G.
|
|
Use bit 2 to signal first G bit seen. */
|
|
if (!(flags & 4)) {
|
|
flags |= ((d & (g & -g)) != 0) << 31;
|
|
flags |= 4;
|
|
}
|
|
|
|
/* Accumulate Z from each D & G. */
|
|
flags |= ((d & g) != 0) << 1;
|
|
|
|
/* Compute C from last !(D & G). Replace previous. */
|
|
flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/* This is an iterative function, called for each Pd and Pg word
|
|
* moving backward.
|
|
*/
|
|
static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
|
|
{
|
|
if (likely(g)) {
|
|
/* Compute C from first (i.e last) !(D & G).
|
|
Use bit 2 to signal first G bit seen. */
|
|
if (!(flags & 4)) {
|
|
flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
|
|
flags |= (d & pow2floor(g)) == 0;
|
|
}
|
|
|
|
/* Accumulate Z from each D & G. */
|
|
flags |= ((d & g) != 0) << 1;
|
|
|
|
/* Compute N from last (i.e first) D & G. Replace previous. */
|
|
flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/* The same for a single word predicate. */
|
|
uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
|
|
{
|
|
return iter_predtest_fwd(d, g, PREDTEST_INIT);
|
|
}
|
|
|
|
/* The same for a multi-word predicate. */
|
|
uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
|
|
{
|
|
uint32_t flags = PREDTEST_INIT;
|
|
uint64_t *d = vd, *g = vg;
|
|
uintptr_t i = 0;
|
|
|
|
do {
|
|
flags = iter_predtest_fwd(d[i], g[i], flags);
|
|
} while (++i < words);
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* Expand active predicate bits to bytes, for byte elements.
|
|
* for (i = 0; i < 256; ++i) {
|
|
* unsigned long m = 0;
|
|
* for (j = 0; j < 8; j++) {
|
|
* if ((i >> j) & 1) {
|
|
* m |= 0xfful << (j << 3);
|
|
* }
|
|
* }
|
|
* printf("0x%016lx,\n", m);
|
|
* }
|
|
*/
|
|
static inline uint64_t expand_pred_b(uint8_t byte)
|
|
{
|
|
static const uint64_t word[256] = {
|
|
0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
|
|
0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
|
|
0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
|
|
0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
|
|
0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
|
|
0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
|
|
0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
|
|
0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
|
|
0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
|
|
0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
|
|
0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
|
|
0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
|
|
0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
|
|
0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
|
|
0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
|
|
0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
|
|
0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
|
|
0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
|
|
0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
|
|
0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
|
|
0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
|
|
0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
|
|
0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
|
|
0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
|
|
0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
|
|
0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
|
|
0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
|
|
0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
|
|
0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
|
|
0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
|
|
0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
|
|
0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
|
|
0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
|
|
0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
|
|
0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
|
|
0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
|
|
0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
|
|
0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
|
|
0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
|
|
0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
|
|
0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
|
|
0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
|
|
0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
|
|
0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
|
|
0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
|
|
0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
|
|
0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
|
|
0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
|
|
0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
|
|
0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
|
|
0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
|
|
0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
|
|
0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
|
|
0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
|
|
0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
|
|
0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
|
|
0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
|
|
0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
|
|
0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
|
|
0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
|
|
0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
|
|
0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
|
|
0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
|
|
0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
|
|
0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
|
|
0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
|
|
0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
|
|
0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
|
|
0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
|
|
0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
|
|
0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
|
|
0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
|
|
0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
|
|
0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
|
|
0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
|
|
0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
|
|
0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
|
|
0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
|
|
0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
|
|
0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
|
|
0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
|
|
0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
|
|
0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
|
|
0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
|
|
0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
|
|
0xffffffffffffffff,
|
|
};
|
|
return word[byte];
|
|
}
|
|
|
|
/* Similarly for half-word elements.
|
|
* for (i = 0; i < 256; ++i) {
|
|
* unsigned long m = 0;
|
|
* if (i & 0xaa) {
|
|
* continue;
|
|
* }
|
|
* for (j = 0; j < 8; j += 2) {
|
|
* if ((i >> j) & 1) {
|
|
* m |= 0xfffful << (j << 3);
|
|
* }
|
|
* }
|
|
* printf("[0x%x] = 0x%016lx,\n", i, m);
|
|
* }
|
|
*/
|
|
static inline uint64_t expand_pred_h(uint8_t byte)
|
|
{
|
|
static const uint64_t word[] = {
|
|
[0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
|
|
[0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
|
|
[0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
|
|
[0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
|
|
[0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
|
|
[0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
|
|
[0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
|
|
[0x55] = 0xffffffffffffffff,
|
|
};
|
|
return word[byte & 0x55];
|
|
}
|
|
|
|
/* Similarly for single word elements. */
|
|
static inline uint64_t expand_pred_s(uint8_t byte)
|
|
{
|
|
static const uint64_t word[] = {
|
|
[0x01] = 0x00000000ffffffffull,
|
|
[0x10] = 0xffffffff00000000ull,
|
|
[0x11] = 0xffffffffffffffffull,
|
|
};
|
|
return word[byte & 0x11];
|
|
}
|
|
|
|
/* Swap 16-bit words within a 32-bit word. */
|
|
static inline uint32_t hswap32(uint32_t h)
|
|
{
|
|
return rol32(h, 16);
|
|
}
|
|
|
|
/* Swap 16-bit words within a 64-bit word. */
|
|
static inline uint64_t hswap64(uint64_t h)
|
|
{
|
|
uint64_t m = 0x0000ffff0000ffffull;
|
|
h = rol64(h, 32);
|
|
return ((h & m) << 16) | ((h >> 16) & m);
|
|
}
|
|
|
|
/* Swap 32-bit words within a 64-bit word. */
|
|
static inline uint64_t wswap64(uint64_t h)
|
|
{
|
|
return rol64(h, 32);
|
|
}
|
|
|
|
#define LOGICAL_PPPP(NAME, FUNC) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
uintptr_t opr_sz = simd_oprsz(desc); \
|
|
uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
|
|
uintptr_t i; \
|
|
for (i = 0; i < opr_sz / 8; ++i) { \
|
|
d[i] = FUNC(n[i], m[i], g[i]); \
|
|
} \
|
|
}
|
|
|
|
#define DO_AND(N, M, G) (((N) & (M)) & (G))
|
|
#define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
|
|
#define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
|
|
#define DO_ORR(N, M, G) (((N) | (M)) & (G))
|
|
#define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
|
|
#define DO_NOR(N, M, G) (~((N) | (M)) & (G))
|
|
#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
|
|
#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
|
|
|
|
LOGICAL_PPPP(sve_and_pppp, DO_AND)
|
|
LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
|
|
LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
|
|
LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
|
|
LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
|
|
LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
|
|
LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
|
|
LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
|
|
|
|
#undef DO_AND
|
|
#undef DO_BIC
|
|
#undef DO_EOR
|
|
#undef DO_ORR
|
|
#undef DO_ORN
|
|
#undef DO_NOR
|
|
#undef DO_NAND
|
|
#undef DO_SEL
|
|
#undef LOGICAL_PPPP
|
|
|
|
/* Fully general three-operand expander, controlled by a predicate.
|
|
* This is complicated by the host-endian storage of the register file.
|
|
*/
|
|
/* ??? I don't expect the compiler could ever vectorize this itself.
|
|
* With some tables we can convert bit masks to byte masks, and with
|
|
* extra care wrt byte/word ordering we could use gcc generic vectors
|
|
* and do 16 bytes at a time.
|
|
*/
|
|
#define DO_ZPZZ(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
TYPE mm = *(TYPE *)(vm + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
|
|
} \
|
|
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
/* Similarly, specialized for 64-bit operands. */
|
|
#define DO_ZPZZ_D(NAME, TYPE, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
|
|
TYPE *d = vd, *n = vn, *m = vm; \
|
|
uint8_t *pg = vg; \
|
|
for (i = 0; i < opr_sz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
TYPE nn = n[i], mm = m[i]; \
|
|
d[i] = OP(nn, mm); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define DO_AND(N, M) (N & M)
|
|
#define DO_EOR(N, M) (N ^ M)
|
|
#define DO_ORR(N, M) (N | M)
|
|
#define DO_BIC(N, M) (N & ~M)
|
|
#define DO_ADD(N, M) (N + M)
|
|
#define DO_SUB(N, M) (N - M)
|
|
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
|
|
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
|
|
#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
|
|
#define DO_MUL(N, M) (N * M)
|
|
#define DO_DIV(N, M) (M ? N / M : 0)
|
|
|
|
DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
|
|
DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
|
|
DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
|
|
DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
|
|
|
|
DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
|
|
DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
|
|
DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
|
|
DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
|
|
|
|
DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
|
|
DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
|
|
DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
|
|
DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
|
|
|
|
DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
|
|
DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
|
|
DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
|
|
DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
|
|
|
|
DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
|
|
DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
|
|
DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
|
|
DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
|
|
|
|
DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
|
|
DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
|
|
DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
|
|
DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
|
|
|
|
DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
|
|
DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
|
|
DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
|
|
DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
|
|
|
|
DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
|
|
DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
|
|
DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
|
|
DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
|
|
|
|
DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
|
|
DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
|
|
DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
|
|
DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
|
|
|
|
DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
|
|
DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
|
|
DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
|
|
DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
|
|
|
|
DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
|
|
DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
|
|
DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
|
|
DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
|
|
|
|
DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
|
|
DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
|
|
DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
|
|
DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
|
|
|
|
/* Because the computation type is at least twice as large as required,
|
|
these work for both signed and unsigned source types. */
|
|
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
|
|
{
|
|
return (n * m) >> 8;
|
|
}
|
|
|
|
static inline uint16_t do_mulh_h(int32_t n, int32_t m)
|
|
{
|
|
return (n * m) >> 16;
|
|
}
|
|
|
|
static inline uint32_t do_mulh_s(int64_t n, int64_t m)
|
|
{
|
|
return (n * m) >> 32;
|
|
}
|
|
|
|
static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
|
|
{
|
|
uint64_t lo, hi;
|
|
muls64(&lo, &hi, n, m);
|
|
return hi;
|
|
}
|
|
|
|
static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
|
|
{
|
|
uint64_t lo, hi;
|
|
mulu64(&lo, &hi, n, m);
|
|
return hi;
|
|
}
|
|
|
|
DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
|
|
DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
|
|
DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
|
|
DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
|
|
|
|
DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
|
|
DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
|
|
DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
|
|
DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
|
|
|
|
DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
|
|
DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
|
|
DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
|
|
DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
|
|
|
|
DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_DIV)
|
|
DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_DIV)
|
|
|
|
DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_DIV)
|
|
DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_DIV)
|
|
|
|
/* Note that all bits of the shift are significant
|
|
and not modulo the element size. */
|
|
#define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
|
|
#define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
|
|
#define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
|
|
|
|
DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
|
|
DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
|
|
DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
|
|
|
|
DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
|
|
DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
|
|
DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
|
|
|
|
DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
|
|
DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
|
|
DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
|
|
|
|
DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
|
|
DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
|
|
DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
|
|
|
|
#undef DO_ZPZZ
|
|
#undef DO_ZPZZ_D
|
|
|
|
/* Three-operand expander, controlled by a predicate, in which the
|
|
* third operand is "wide". That is, for D = N op M, the same 64-bit
|
|
* value of M is used with all of the narrower values of N.
|
|
*/
|
|
#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
|
|
TYPEW mm = *(TYPEW *)(vm + i); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
|
|
} \
|
|
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
|
|
} while (i & 7); \
|
|
} \
|
|
}
|
|
|
|
DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
|
|
DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
|
|
DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
|
|
|
|
DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
|
|
DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
|
|
DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
|
|
|
|
DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
|
|
DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
|
|
DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
|
|
|
|
#undef DO_ZPZW
|
|
|
|
/* Fully general two-operand expander, controlled by a predicate.
|
|
*/
|
|
#define DO_ZPZ(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn); \
|
|
} \
|
|
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
/* Similarly, specialized for 64-bit operands. */
|
|
#define DO_ZPZ_D(NAME, TYPE, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
|
|
TYPE *d = vd, *n = vn; \
|
|
uint8_t *pg = vg; \
|
|
for (i = 0; i < opr_sz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
TYPE nn = n[i]; \
|
|
d[i] = OP(nn); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define DO_CLS_B(N) (clrsb32(N) - 24)
|
|
#define DO_CLS_H(N) (clrsb32(N) - 16)
|
|
|
|
DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
|
|
DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
|
|
DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
|
|
DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
|
|
|
|
#define DO_CLZ_B(N) (clz32(N) - 24)
|
|
#define DO_CLZ_H(N) (clz32(N) - 16)
|
|
|
|
DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
|
|
DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
|
|
DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
|
|
DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
|
|
|
|
DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
|
|
DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
|
|
DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
|
|
DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
|
|
|
|
#define DO_CNOT(N) (N == 0)
|
|
|
|
DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
|
|
DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
|
|
DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
|
|
DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
|
|
|
|
#define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
|
|
|
|
DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
|
|
DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
|
|
DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
|
|
|
|
#define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
|
|
|
|
DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
|
|
DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
|
|
DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
|
|
|
|
#define DO_NOT(N) (~N)
|
|
|
|
DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
|
|
DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
|
|
DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
|
|
DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
|
|
|
|
#define DO_SXTB(N) ((int8_t)N)
|
|
#define DO_SXTH(N) ((int16_t)N)
|
|
#define DO_SXTS(N) ((int32_t)N)
|
|
#define DO_UXTB(N) ((uint8_t)N)
|
|
#define DO_UXTH(N) ((uint16_t)N)
|
|
#define DO_UXTS(N) ((uint32_t)N)
|
|
|
|
DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
|
|
DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
|
|
DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
|
|
DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
|
|
DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
|
|
DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
|
|
|
|
DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
|
|
DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
|
|
DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
|
|
DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
|
|
DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
|
|
DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
|
|
|
|
#define DO_ABS(N) (N < 0 ? -N : N)
|
|
|
|
DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
|
|
DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
|
|
DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
|
|
DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
|
|
|
|
#define DO_NEG(N) (-N)
|
|
|
|
DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
|
|
DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
|
|
DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
|
|
DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
|
|
|
|
DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
|
|
DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
|
|
DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
|
|
|
|
DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
|
|
DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
|
|
|
|
DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
|
|
|
|
DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
|
|
DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
|
|
DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
|
|
DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
|
|
|
|
/* Three-operand expander, unpredicated, in which the third operand is "wide".
|
|
*/
|
|
#define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
TYPEW mm = *(TYPEW *)(vm + i); \
|
|
do { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
|
|
i += sizeof(TYPE); \
|
|
} while (i & 7); \
|
|
} \
|
|
}
|
|
|
|
DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
|
|
DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
|
|
DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
|
|
|
|
DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
|
|
DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
|
|
DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
|
|
|
|
DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
|
|
DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
|
|
DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
|
|
|
|
#undef DO_ZZW
|
|
|
|
#undef DO_CLS_B
|
|
#undef DO_CLS_H
|
|
#undef DO_CLZ_B
|
|
#undef DO_CLZ_H
|
|
#undef DO_CNOT
|
|
#undef DO_FABS
|
|
#undef DO_FNEG
|
|
#undef DO_ABS
|
|
#undef DO_NEG
|
|
#undef DO_ZPZ
|
|
#undef DO_ZPZ_D
|
|
|
|
/* Two-operand reduction expander, controlled by a predicate.
|
|
* The difference between TYPERED and TYPERET has to do with
|
|
* sign-extension. E.g. for SMAX, TYPERED must be signed,
|
|
* but TYPERET must be unsigned so that e.g. a 32-bit value
|
|
* is not sign-extended to the ABI uint64_t return type.
|
|
*/
|
|
/* ??? If we were to vectorize this by hand the reduction ordering
|
|
* would change. For integer operands, this is perfectly fine.
|
|
*/
|
|
#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
|
|
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
TYPERED ret = INIT; \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
|
|
ret = OP(ret, nn); \
|
|
} \
|
|
i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
|
|
} while (i & 15); \
|
|
} \
|
|
return (TYPERET)ret; \
|
|
}
|
|
|
|
#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
|
|
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
|
|
TYPEE *n = vn; \
|
|
uint8_t *pg = vg; \
|
|
TYPER ret = INIT; \
|
|
for (i = 0; i < opr_sz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
TYPEE nn = n[i]; \
|
|
ret = OP(ret, nn); \
|
|
} \
|
|
} \
|
|
return ret; \
|
|
}
|
|
|
|
DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
|
|
DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
|
|
DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
|
|
DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
|
|
|
|
DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
|
|
DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
|
|
DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
|
|
DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
|
|
|
|
DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
|
|
DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
|
|
DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
|
|
DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
|
|
|
|
DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
|
|
DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
|
|
DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
|
|
|
|
DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
|
|
DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
|
|
DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
|
|
DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
|
|
|
|
DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
|
|
DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
|
|
DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
|
|
DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
|
|
|
|
DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
|
|
DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
|
|
DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
|
|
DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
|
|
|
|
DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
|
|
DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
|
|
DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
|
|
DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
|
|
|
|
DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
|
|
DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
|
|
DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
|
|
DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
|
|
|
|
#undef DO_VPZ
|
|
#undef DO_VPZ_D
|
|
|
|
/* Two vector operand, one scalar operand, unpredicated. */
|
|
#define DO_ZZI(NAME, TYPE, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
|
|
TYPE s = s64, *d = vd, *n = vn; \
|
|
for (i = 0; i < opr_sz; ++i) { \
|
|
d[i] = OP(n[i], s); \
|
|
} \
|
|
}
|
|
|
|
#define DO_SUBR(X, Y) (Y - X)
|
|
|
|
DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
|
|
DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
|
|
DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
|
|
DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
|
|
|
|
DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
|
|
DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
|
|
DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
|
|
DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
|
|
|
|
DO_ZZI(sve_smini_b, int8_t, DO_MIN)
|
|
DO_ZZI(sve_smini_h, int16_t, DO_MIN)
|
|
DO_ZZI(sve_smini_s, int32_t, DO_MIN)
|
|
DO_ZZI(sve_smini_d, int64_t, DO_MIN)
|
|
|
|
DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
|
|
DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
|
|
DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
|
|
DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
|
|
|
|
DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
|
|
DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
|
|
DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
|
|
DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
|
|
|
|
#undef DO_ZZI
|
|
|
|
#undef DO_AND
|
|
#undef DO_ORR
|
|
#undef DO_EOR
|
|
#undef DO_BIC
|
|
#undef DO_ADD
|
|
#undef DO_SUB
|
|
#undef DO_MAX
|
|
#undef DO_MIN
|
|
#undef DO_ABD
|
|
#undef DO_MUL
|
|
#undef DO_DIV
|
|
#undef DO_ASR
|
|
#undef DO_LSR
|
|
#undef DO_LSL
|
|
#undef DO_SUBR
|
|
|
|
/* Similar to the ARM LastActiveElement pseudocode function, except the
|
|
result is multiplied by the element size. This includes the not found
|
|
indication; e.g. not found for esz=3 is -8. */
|
|
static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
|
|
{
|
|
uint64_t mask = pred_esz_masks[esz];
|
|
intptr_t i = words;
|
|
|
|
do {
|
|
uint64_t this_g = g[--i] & mask;
|
|
if (this_g) {
|
|
return i * 64 + (63 - clz64(this_g));
|
|
}
|
|
} while (i > 0);
|
|
return (intptr_t)-1 << esz;
|
|
}
|
|
|
|
uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
|
|
{
|
|
uint32_t flags = PREDTEST_INIT;
|
|
uint64_t *d = vd, *g = vg;
|
|
intptr_t i = 0;
|
|
|
|
do {
|
|
uint64_t this_d = d[i];
|
|
uint64_t this_g = g[i];
|
|
|
|
if (this_g) {
|
|
if (!(flags & 4)) {
|
|
/* Set in D the first bit of G. */
|
|
this_d |= this_g & -this_g;
|
|
d[i] = this_d;
|
|
}
|
|
flags = iter_predtest_fwd(this_d, this_g, flags);
|
|
}
|
|
} while (++i < words);
|
|
|
|
return flags;
|
|
}
|
|
|
|
uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
|
|
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
uint32_t flags = PREDTEST_INIT;
|
|
uint64_t *d = vd, *g = vg, esz_mask;
|
|
intptr_t i, next;
|
|
|
|
next = last_active_element(vd, words, esz) + (1 << esz);
|
|
esz_mask = pred_esz_masks[esz];
|
|
|
|
/* Similar to the pseudocode for pnext, but scaled by ESZ
|
|
so that we find the correct bit. */
|
|
if (next < words * 64) {
|
|
uint64_t mask = -1;
|
|
|
|
if (next & 63) {
|
|
mask = ~((1ull << (next & 63)) - 1);
|
|
next &= -64;
|
|
}
|
|
do {
|
|
uint64_t this_g = g[next / 64] & esz_mask & mask;
|
|
if (this_g != 0) {
|
|
next = (next & -64) + ctz64(this_g);
|
|
break;
|
|
}
|
|
next += 64;
|
|
mask = -1;
|
|
} while (next < words * 64);
|
|
}
|
|
|
|
i = 0;
|
|
do {
|
|
uint64_t this_d = 0;
|
|
if (i == next / 64) {
|
|
this_d = 1ull << (next & 63);
|
|
}
|
|
d[i] = this_d;
|
|
flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
|
|
} while (++i < words);
|
|
|
|
return flags;
|
|
}
|
|
|
|
/* Store zero into every active element of Zd. We will use this for two
|
|
* and three-operand predicated instructions for which logic dictates a
|
|
* zero result. In particular, logical shift by element size, which is
|
|
* otherwise undefined on the host.
|
|
*
|
|
* For element sizes smaller than uint64_t, we use tables to expand
|
|
* the N bits of the controlling predicate to a byte mask, and clear
|
|
* those bytes.
|
|
*/
|
|
void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] &= ~expand_pred_b(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] &= ~expand_pred_h(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] &= ~expand_pred_s(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
if (pg[H1(i)] & 1) {
|
|
d[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Copy Zn into Zd, and store zero into inactive elements. */
|
|
void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] & expand_pred_b(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] & expand_pred_h(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] & expand_pred_s(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[1] & -(uint64_t)(pg[H1(i)] & 1);
|
|
}
|
|
}
|
|
|
|
/* Three-operand expander, immediate operand, controlled by a predicate.
|
|
*/
|
|
#define DO_ZPZI(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
TYPE imm = simd_data(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, imm); \
|
|
} \
|
|
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
/* Similarly, specialized for 64-bit operands. */
|
|
#define DO_ZPZI_D(NAME, TYPE, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
|
|
TYPE *d = vd, *n = vn; \
|
|
TYPE imm = simd_data(desc); \
|
|
uint8_t *pg = vg; \
|
|
for (i = 0; i < opr_sz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
TYPE nn = n[i]; \
|
|
d[i] = OP(nn, imm); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define DO_SHR(N, M) (N >> M)
|
|
#define DO_SHL(N, M) (N << M)
|
|
|
|
/* Arithmetic shift right for division. This rounds negative numbers
|
|
toward zero as per signed division. Therefore before shifting,
|
|
when N is negative, add 2**M-1. */
|
|
#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
|
|
|
|
DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
|
|
DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
|
|
DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
|
|
DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
|
|
|
|
DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
|
|
DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
|
|
DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
|
|
DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
|
|
|
|
DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
|
|
DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
|
|
DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
|
|
DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
|
|
|
|
DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
|
|
DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
|
|
DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
|
|
DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
|
|
|
|
#undef DO_SHR
|
|
#undef DO_SHL
|
|
#undef DO_ASRD
|
|
#undef DO_ZPZI
|
|
#undef DO_ZPZI_D
|
|
|
|
/* Fully general four-operand expander, controlled by a predicate.
|
|
*/
|
|
#define DO_ZPZZZ(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
|
|
void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
for (i = 0; i < opr_sz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
TYPE mm = *(TYPE *)(vm + H(i)); \
|
|
TYPE aa = *(TYPE *)(va + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
|
|
} \
|
|
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
/* Similarly, specialized for 64-bit operands. */
|
|
#define DO_ZPZZZ_D(NAME, TYPE, OP) \
|
|
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
|
|
void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
|
|
TYPE *d = vd, *a = va, *n = vn, *m = vm; \
|
|
uint8_t *pg = vg; \
|
|
for (i = 0; i < opr_sz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
TYPE aa = a[i], nn = n[i], mm = m[i]; \
|
|
d[i] = OP(aa, nn, mm); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define DO_MLA(A, N, M) (A + N * M)
|
|
#define DO_MLS(A, N, M) (A - N * M)
|
|
|
|
DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
|
|
DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
|
|
|
|
DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
|
|
DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
|
|
|
|
DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
|
|
DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
|
|
|
|
DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
|
|
DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
|
|
|
|
#undef DO_MLA
|
|
#undef DO_MLS
|
|
#undef DO_ZPZZZ
|
|
#undef DO_ZPZZZ_D
|
|
|
|
void HELPER(sve_index_b)(void *vd, uint32_t start,
|
|
uint32_t incr, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc);
|
|
uint8_t *d = vd;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[H1(i)] = start + i * incr;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_index_h)(void *vd, uint32_t start,
|
|
uint32_t incr, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
|
|
uint16_t *d = vd;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[H2(i)] = start + i * incr;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_index_s)(void *vd, uint32_t start,
|
|
uint32_t incr, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
|
|
uint32_t *d = vd;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[H4(i)] = start + i * incr;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_index_d)(void *vd, uint64_t start,
|
|
uint64_t incr, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = start + i * incr;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
|
|
uint32_t sh = simd_data(desc);
|
|
uint32_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] + (m[i] << sh);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t sh = simd_data(desc);
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] + (m[i] << sh);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t sh = simd_data(desc);
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t sh = simd_data(desc);
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
/* These constants are cut-and-paste directly from the ARM pseudocode. */
|
|
static const uint16_t coeff[] = {
|
|
0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
|
|
0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
|
|
0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
|
|
0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
|
|
};
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
|
|
uint16_t *d = vd, *n = vn;
|
|
|
|
for (i = 0; i < opr_sz; i++) {
|
|
uint16_t nn = n[i];
|
|
intptr_t idx = extract32(nn, 0, 5);
|
|
uint16_t exp = extract32(nn, 5, 5);
|
|
d[i] = coeff[idx] | (exp << 10);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
/* These constants are cut-and-paste directly from the ARM pseudocode. */
|
|
static const uint32_t coeff[] = {
|
|
0x000000, 0x0164d2, 0x02cd87, 0x043a29,
|
|
0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
|
|
0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
|
|
0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
|
|
0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
|
|
0x1ef532, 0x20b051, 0x227043, 0x243516,
|
|
0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
|
|
0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
|
|
0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
|
|
0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
|
|
0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
|
|
0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
|
|
0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
|
|
0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
|
|
0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
|
|
0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
|
|
};
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
|
|
uint32_t *d = vd, *n = vn;
|
|
|
|
for (i = 0; i < opr_sz; i++) {
|
|
uint32_t nn = n[i];
|
|
intptr_t idx = extract32(nn, 0, 6);
|
|
uint32_t exp = extract32(nn, 6, 8);
|
|
d[i] = coeff[idx] | (exp << 23);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
/* These constants are cut-and-paste directly from the ARM pseudocode. */
|
|
static const uint64_t coeff[] = {
|
|
0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
|
|
0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
|
|
0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
|
|
0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
|
|
0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
|
|
0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
|
|
0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
|
|
0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
|
|
0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
|
|
0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
|
|
0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
|
|
0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
|
|
0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
|
|
0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
|
|
0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
|
|
0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
|
|
0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
|
|
0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
|
|
0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
|
|
0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
|
|
0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
|
|
0xFA7C1819E90D8ull,
|
|
};
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
|
|
for (i = 0; i < opr_sz; i++) {
|
|
uint64_t nn = n[i];
|
|
intptr_t idx = extract32(nn, 0, 6);
|
|
uint64_t exp = extract32(nn, 6, 11);
|
|
d[i] = coeff[idx] | (exp << 52);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
|
|
uint16_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint16_t nn = n[i];
|
|
uint16_t mm = m[i];
|
|
if (mm & 1) {
|
|
nn = float16_one;
|
|
}
|
|
d[i] = nn ^ (mm & 2) << 14;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
|
|
uint32_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint32_t nn = n[i];
|
|
uint32_t mm = m[i];
|
|
if (mm & 1) {
|
|
nn = float32_one;
|
|
}
|
|
d[i] = nn ^ (mm & 2) << 30;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i];
|
|
uint64_t mm = m[i];
|
|
if (mm & 1) {
|
|
nn = float64_one;
|
|
}
|
|
d[i] = nn ^ (mm & 2) << 62;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Signed saturating addition with scalar operand.
|
|
*/
|
|
|
|
void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(int8_t)) {
|
|
int r = *(int8_t *)(a + i) + b;
|
|
if (r > INT8_MAX) {
|
|
r = INT8_MAX;
|
|
} else if (r < INT8_MIN) {
|
|
r = INT8_MIN;
|
|
}
|
|
*(int8_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(int16_t)) {
|
|
int r = *(int16_t *)(a + i) + b;
|
|
if (r > INT16_MAX) {
|
|
r = INT16_MAX;
|
|
} else if (r < INT16_MIN) {
|
|
r = INT16_MIN;
|
|
}
|
|
*(int16_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(int32_t)) {
|
|
int64_t r = *(int32_t *)(a + i) + b;
|
|
if (r > INT32_MAX) {
|
|
r = INT32_MAX;
|
|
} else if (r < INT32_MIN) {
|
|
r = INT32_MIN;
|
|
}
|
|
*(int32_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(int64_t)) {
|
|
int64_t ai = *(int64_t *)(a + i);
|
|
int64_t r = ai + b;
|
|
if (((r ^ ai) & ~(ai ^ b)) < 0) {
|
|
/* Signed overflow. */
|
|
r = (r < 0 ? INT64_MAX : INT64_MIN);
|
|
}
|
|
*(int64_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unsigned saturating addition with scalar operand.
|
|
*/
|
|
|
|
void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
|
|
int r = *(uint8_t *)(a + i) + b;
|
|
if (r > UINT8_MAX) {
|
|
r = UINT8_MAX;
|
|
} else if (r < 0) {
|
|
r = 0;
|
|
}
|
|
*(uint8_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
|
|
int r = *(uint16_t *)(a + i) + b;
|
|
if (r > UINT16_MAX) {
|
|
r = UINT16_MAX;
|
|
} else if (r < 0) {
|
|
r = 0;
|
|
}
|
|
*(uint16_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
|
|
int64_t r = *(uint32_t *)(a + i) + b;
|
|
if (r > UINT32_MAX) {
|
|
r = UINT32_MAX;
|
|
} else if (r < 0) {
|
|
r = 0;
|
|
}
|
|
*(uint32_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
|
|
uint64_t r = *(uint64_t *)(a + i) + b;
|
|
if (r < b) {
|
|
r = UINT64_MAX;
|
|
}
|
|
*(uint64_t *)(d + i) = r;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc);
|
|
|
|
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
|
|
uint64_t ai = *(uint64_t *)(a + i);
|
|
*(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
|
|
}
|
|
}
|
|
|
|
/* Two operand predicated copy immediate with merge. All valid immediates
|
|
* can fit within 17 signed bits in the simd_data field.
|
|
*/
|
|
void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
|
|
uint64_t mm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
mm = dup_const(MO_8, mm);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i];
|
|
uint64_t pp = expand_pred_b(pg[H1(i)]);
|
|
d[i] = (mm & pp) | (nn & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
|
|
uint64_t mm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
mm = dup_const(MO_16, mm);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i];
|
|
uint64_t pp = expand_pred_h(pg[H1(i)]);
|
|
d[i] = (mm & pp) | (nn & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
|
|
uint64_t mm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
mm = dup_const(MO_32, mm);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i];
|
|
uint64_t pp = expand_pred_s(pg[H1(i)]);
|
|
d[i] = (mm & pp) | (nn & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
|
|
uint64_t mm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i];
|
|
d[i] = (pg[H1(i)] & 1 ? mm : nn);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
|
|
val = dup_const(MO_8, val);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = val & expand_pred_b(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
|
|
val = dup_const(MO_16, val);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = val & expand_pred_h(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
|
|
val = dup_const(MO_32, val);
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = val & expand_pred_s(pg[H1(i)]);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
d[i] = (pg[H1(i)] & 1 ? val : 0);
|
|
}
|
|
}
|
|
|
|
/* Big-endian hosts need to frob the byte indicies. If the copy
|
|
* happens to be 8-byte aligned, then no frobbing necessary.
|
|
*/
|
|
static void swap_memmove(void *vd, void *vs, size_t n)
|
|
{
|
|
uintptr_t d = (uintptr_t)vd;
|
|
uintptr_t s = (uintptr_t)vs;
|
|
uintptr_t o = (d | s | n) & 7;
|
|
size_t i;
|
|
|
|
#ifndef HOST_WORDS_BIGENDIAN
|
|
o = 0;
|
|
#endif
|
|
switch (o) {
|
|
case 0:
|
|
memmove(vd, vs, n);
|
|
break;
|
|
|
|
case 4:
|
|
if (d < s || d >= s + n) {
|
|
for (i = 0; i < n; i += 4) {
|
|
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
|
|
}
|
|
} else {
|
|
for (i = n; i > 0; ) {
|
|
i -= 4;
|
|
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
case 6:
|
|
if (d < s || d >= s + n) {
|
|
for (i = 0; i < n; i += 2) {
|
|
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
|
|
}
|
|
} else {
|
|
for (i = n; i > 0; ) {
|
|
i -= 2;
|
|
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (d < s || d >= s + n) {
|
|
for (i = 0; i < n; i++) {
|
|
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
|
|
}
|
|
} else {
|
|
for (i = n; i > 0; ) {
|
|
i -= 1;
|
|
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t opr_sz = simd_oprsz(desc);
|
|
size_t n_ofs = simd_data(desc);
|
|
size_t n_siz = opr_sz - n_ofs;
|
|
|
|
if (vd != vm) {
|
|
swap_memmove(vd, vn + n_ofs, n_siz);
|
|
swap_memmove(vd + n_siz, vm, n_ofs);
|
|
} else if (vd != vn) {
|
|
swap_memmove(vd + n_siz, vd, n_ofs);
|
|
swap_memmove(vd, vn + n_ofs, n_siz);
|
|
} else {
|
|
/* vd == vn == vm. Need temp space. */
|
|
ARMVectorReg tmp;
|
|
swap_memmove(&tmp, vm, n_ofs);
|
|
swap_memmove(vd, vd + n_ofs, n_siz);
|
|
memcpy(vd + n_siz, &tmp, n_ofs);
|
|
}
|
|
}
|
|
|
|
#define DO_INSR(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
|
|
{ \
|
|
intptr_t opr_sz = simd_oprsz(desc); \
|
|
swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
|
|
*(TYPE *)(vd + H(0)) = val; \
|
|
}
|
|
|
|
DO_INSR(sve_insr_b, uint8_t, H1)
|
|
DO_INSR(sve_insr_h, uint16_t, H1_2)
|
|
DO_INSR(sve_insr_s, uint32_t, H1_4)
|
|
DO_INSR(sve_insr_d, uint64_t, )
|
|
|
|
#undef DO_INSR
|
|
|
|
void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc);
|
|
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
|
|
uint64_t f = *(uint64_t *)(vn + i);
|
|
uint64_t b = *(uint64_t *)(vn + j);
|
|
*(uint64_t *)(vd + i) = bswap64(b);
|
|
*(uint64_t *)(vd + j) = bswap64(f);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc);
|
|
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
|
|
uint64_t f = *(uint64_t *)(vn + i);
|
|
uint64_t b = *(uint64_t *)(vn + j);
|
|
*(uint64_t *)(vd + i) = hswap64(b);
|
|
*(uint64_t *)(vd + j) = hswap64(f);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc);
|
|
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
|
|
uint64_t f = *(uint64_t *)(vn + i);
|
|
uint64_t b = *(uint64_t *)(vn + j);
|
|
*(uint64_t *)(vd + i) = rol64(b, 32);
|
|
*(uint64_t *)(vd + j) = rol64(f, 32);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc);
|
|
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
|
|
uint64_t f = *(uint64_t *)(vn + i);
|
|
uint64_t b = *(uint64_t *)(vn + j);
|
|
*(uint64_t *)(vd + i) = b;
|
|
*(uint64_t *)(vd + j) = f;
|
|
}
|
|
}
|
|
|
|
#define DO_TBL(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
uintptr_t elem = opr_sz / sizeof(TYPE); \
|
|
TYPE *d = vd, *n = vn, *m = vm; \
|
|
ARMVectorReg tmp; \
|
|
if (unlikely(vd == vn)) { \
|
|
n = memcpy(&tmp, vn, opr_sz); \
|
|
} \
|
|
for (i = 0; i < elem; i++) { \
|
|
TYPE j = m[H(i)]; \
|
|
d[H(i)] = j < elem ? n[H(j)] : 0; \
|
|
} \
|
|
}
|
|
|
|
DO_TBL(sve_tbl_b, uint8_t, H1)
|
|
DO_TBL(sve_tbl_h, uint16_t, H2)
|
|
DO_TBL(sve_tbl_s, uint32_t, H4)
|
|
DO_TBL(sve_tbl_d, uint64_t, )
|
|
|
|
#undef TBL
|
|
|
|
#define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
|
|
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, opr_sz = simd_oprsz(desc); \
|
|
TYPED *d = vd; \
|
|
TYPES *n = vn; \
|
|
ARMVectorReg tmp; \
|
|
if (unlikely(vn - vd < opr_sz)) { \
|
|
n = memcpy(&tmp, n, opr_sz / 2); \
|
|
} \
|
|
for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
|
|
d[HD(i)] = n[HS(i)]; \
|
|
} \
|
|
}
|
|
|
|
DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
|
|
DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
|
|
DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
|
|
|
|
DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
|
|
DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
|
|
DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
|
|
|
|
#undef DO_UNPK
|
|
|
|
/* Mask of bits included in the even numbered predicates of width esz.
|
|
* We also use this for expand_bits/compress_bits, and so extend the
|
|
* same pattern out to 16-bit units.
|
|
*/
|
|
static const uint64_t even_bit_esz_masks[5] = {
|
|
0x5555555555555555ull,
|
|
0x3333333333333333ull,
|
|
0x0f0f0f0f0f0f0f0full,
|
|
0x00ff00ff00ff00ffull,
|
|
0x0000ffff0000ffffull,
|
|
};
|
|
|
|
/* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
|
|
* For N==0, this corresponds to the operation that in qemu/bitops.h
|
|
* we call half_shuffle64; this algorithm is from Hacker's Delight,
|
|
* section 7-2 Shuffling Bits.
|
|
*/
|
|
static uint64_t expand_bits(uint64_t x, int n)
|
|
{
|
|
int i;
|
|
|
|
x &= 0xffffffffu;
|
|
for (i = 4; i >= n; i--) {
|
|
int sh = 1 << i;
|
|
x = ((x << sh) | x) & even_bit_esz_masks[i];
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/* Compress units of 2**(N+1) bits to units of 2**N bits.
|
|
* For N==0, this corresponds to the operation that in qemu/bitops.h
|
|
* we call half_unshuffle64; this algorithm is from Hacker's Delight,
|
|
* section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
|
|
*/
|
|
static uint64_t compress_bits(uint64_t x, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = n; i <= 4; i++) {
|
|
int sh = 1 << i;
|
|
x &= even_bit_esz_masks[i];
|
|
x = (x >> sh) | x;
|
|
}
|
|
return x & 0xffffffffu;
|
|
}
|
|
|
|
void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
|
|
uint64_t *d = vd;
|
|
intptr_t i;
|
|
|
|
if (oprsz <= 8) {
|
|
uint64_t nn = *(uint64_t *)vn;
|
|
uint64_t mm = *(uint64_t *)vm;
|
|
int half = 4 * oprsz;
|
|
|
|
nn = extract64(nn, high * half, half);
|
|
mm = extract64(mm, high * half, half);
|
|
nn = expand_bits(nn, esz);
|
|
mm = expand_bits(mm, esz);
|
|
d[0] = nn + (mm << (1 << esz));
|
|
} else {
|
|
ARMPredicateReg tmp_n, tmp_m;
|
|
|
|
/* We produce output faster than we consume input.
|
|
Therefore we must be mindful of possible overlap. */
|
|
if ((vn - vd) < (uintptr_t)oprsz) {
|
|
vn = memcpy(&tmp_n, vn, oprsz);
|
|
}
|
|
if ((vm - vd) < (uintptr_t)oprsz) {
|
|
vm = memcpy(&tmp_m, vm, oprsz);
|
|
}
|
|
if (high) {
|
|
high = oprsz >> 1;
|
|
}
|
|
|
|
if ((high & 3) == 0) {
|
|
uint32_t *n = vn, *m = vm;
|
|
high >>= 2;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
|
|
uint64_t nn = n[H4(high + i)];
|
|
uint64_t mm = m[H4(high + i)];
|
|
|
|
nn = expand_bits(nn, esz);
|
|
mm = expand_bits(mm, esz);
|
|
d[i] = nn + (mm << (1 << esz));
|
|
}
|
|
} else {
|
|
uint8_t *n = vn, *m = vm;
|
|
uint16_t *d16 = vd;
|
|
|
|
for (i = 0; i < oprsz / 2; i++) {
|
|
uint16_t nn = n[H1(high + i)];
|
|
uint16_t mm = m[H1(high + i)];
|
|
|
|
nn = expand_bits(nn, esz);
|
|
mm = expand_bits(mm, esz);
|
|
d16[H2(i)] = nn + (mm << (1 << esz));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint64_t l, h;
|
|
intptr_t i;
|
|
|
|
if (oprsz <= 8) {
|
|
l = compress_bits(n[0] >> odd, esz);
|
|
h = compress_bits(m[0] >> odd, esz);
|
|
d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz);
|
|
} else {
|
|
ARMPredicateReg tmp_m;
|
|
intptr_t oprsz_16 = oprsz / 16;
|
|
|
|
if ((vm - vd) < (uintptr_t)oprsz) {
|
|
m = memcpy(&tmp_m, vm, oprsz);
|
|
}
|
|
|
|
for (i = 0; i < oprsz_16; i++) {
|
|
l = n[2 * i + 0];
|
|
h = n[2 * i + 1];
|
|
l = compress_bits(l >> odd, esz);
|
|
h = compress_bits(h >> odd, esz);
|
|
d[i] = l + (h << 32);
|
|
}
|
|
|
|
/* For VL which is not a power of 2, the results from M do not
|
|
align nicely with the uint64_t for D. Put the aligned results
|
|
from M into TMP_M and then copy it into place afterward. */
|
|
if (oprsz & 15) {
|
|
d[i] = compress_bits(n[2 * i] >> odd, esz);
|
|
|
|
for (i = 0; i < oprsz_16; i++) {
|
|
l = m[2 * i + 0];
|
|
h = m[2 * i + 1];
|
|
l = compress_bits(l >> odd, esz);
|
|
h = compress_bits(h >> odd, esz);
|
|
tmp_m.p[i] = l + (h << 32);
|
|
}
|
|
tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz);
|
|
|
|
swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
|
|
} else {
|
|
for (i = 0; i < oprsz_16; i++) {
|
|
l = m[2 * i + 0];
|
|
h = m[2 * i + 1];
|
|
l = compress_bits(l >> odd, esz);
|
|
h = compress_bits(h >> odd, esz);
|
|
d[oprsz_16 + i] = l + (h << 32);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint64_t mask;
|
|
int shr, shl;
|
|
intptr_t i;
|
|
|
|
shl = 1 << esz;
|
|
shr = 0;
|
|
mask = even_bit_esz_masks[esz];
|
|
if (odd) {
|
|
mask <<= shl;
|
|
shr = shl;
|
|
shl = 0;
|
|
}
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
|
|
uint64_t nn = (n[i] & mask) >> shr;
|
|
uint64_t mm = (m[i] & mask) << shl;
|
|
d[i] = nn + mm;
|
|
}
|
|
}
|
|
|
|
/* Reverse units of 2**N bits. */
|
|
static uint64_t reverse_bits_64(uint64_t x, int n)
|
|
{
|
|
int i, sh;
|
|
|
|
x = bswap64(x);
|
|
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
|
|
uint64_t mask = even_bit_esz_masks[i];
|
|
x = ((x & mask) << sh) | ((x >> sh) & mask);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static uint8_t reverse_bits_8(uint8_t x, int n)
|
|
{
|
|
static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
|
|
int i, sh;
|
|
|
|
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
|
|
x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
intptr_t i, oprsz_2 = oprsz / 2;
|
|
|
|
if (oprsz <= 8) {
|
|
uint64_t l = *(uint64_t *)vn;
|
|
l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
|
|
*(uint64_t *)vd = l;
|
|
} else if ((oprsz & 15) == 0) {
|
|
for (i = 0; i < oprsz_2; i += 8) {
|
|
intptr_t ih = oprsz - 8 - i;
|
|
uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
|
|
uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
|
|
*(uint64_t *)(vd + i) = h;
|
|
*(uint64_t *)(vd + ih) = l;
|
|
}
|
|
} else {
|
|
for (i = 0; i < oprsz_2; i += 1) {
|
|
intptr_t il = H1(i);
|
|
intptr_t ih = H1(oprsz - 1 - i);
|
|
uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
|
|
uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
|
|
*(uint8_t *)(vd + il) = h;
|
|
*(uint8_t *)(vd + ih) = l;
|
|
}
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
|
|
uint64_t *d = vd;
|
|
intptr_t i;
|
|
|
|
if (oprsz <= 8) {
|
|
uint64_t nn = *(uint64_t *)vn;
|
|
int half = 4 * oprsz;
|
|
|
|
nn = extract64(nn, high * half, half);
|
|
nn = expand_bits(nn, 0);
|
|
d[0] = nn;
|
|
} else {
|
|
ARMPredicateReg tmp_n;
|
|
|
|
/* We produce output faster than we consume input.
|
|
Therefore we must be mindful of possible overlap. */
|
|
if ((vn - vd) < (uintptr_t)oprsz) {
|
|
vn = memcpy(&tmp_n, vn, oprsz);
|
|
}
|
|
if (high) {
|
|
high = oprsz >> 1;
|
|
}
|
|
|
|
if ((high & 3) == 0) {
|
|
uint32_t *n = vn;
|
|
high >>= 2;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
|
|
uint64_t nn = n[H4(high + i)];
|
|
d[i] = expand_bits(nn, 0);
|
|
}
|
|
} else {
|
|
uint16_t *d16 = vd;
|
|
uint8_t *n = vn;
|
|
|
|
for (i = 0; i < oprsz / 2; i++) {
|
|
uint16_t nn = n[H1(high + i)];
|
|
d16[H2(i)] = expand_bits(nn, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define DO_ZIP(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
|
|
{ \
|
|
intptr_t oprsz = simd_oprsz(desc); \
|
|
intptr_t i, oprsz_2 = oprsz / 2; \
|
|
ARMVectorReg tmp_n, tmp_m; \
|
|
/* We produce output faster than we consume input. \
|
|
Therefore we must be mindful of possible overlap. */ \
|
|
if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
|
|
vn = memcpy(&tmp_n, vn, oprsz_2); \
|
|
} \
|
|
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
|
|
vm = memcpy(&tmp_m, vm, oprsz_2); \
|
|
} \
|
|
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
|
|
*(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
|
|
} \
|
|
}
|
|
|
|
DO_ZIP(sve_zip_b, uint8_t, H1)
|
|
DO_ZIP(sve_zip_h, uint16_t, H1_2)
|
|
DO_ZIP(sve_zip_s, uint32_t, H1_4)
|
|
DO_ZIP(sve_zip_d, uint64_t, )
|
|
|
|
#define DO_UZP(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
|
|
{ \
|
|
intptr_t oprsz = simd_oprsz(desc); \
|
|
intptr_t oprsz_2 = oprsz / 2; \
|
|
intptr_t odd_ofs = simd_data(desc); \
|
|
intptr_t i; \
|
|
ARMVectorReg tmp_m; \
|
|
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
|
|
vm = memcpy(&tmp_m, vm, oprsz); \
|
|
} \
|
|
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
|
|
*(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
|
|
} \
|
|
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
|
|
*(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
|
|
} \
|
|
}
|
|
|
|
DO_UZP(sve_uzp_b, uint8_t, H1)
|
|
DO_UZP(sve_uzp_h, uint16_t, H1_2)
|
|
DO_UZP(sve_uzp_s, uint32_t, H1_4)
|
|
DO_UZP(sve_uzp_d, uint64_t, )
|
|
|
|
#define DO_TRN(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
|
|
{ \
|
|
intptr_t oprsz = simd_oprsz(desc); \
|
|
intptr_t odd_ofs = simd_data(desc); \
|
|
intptr_t i; \
|
|
for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
|
|
TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
|
|
TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
|
|
*(TYPE *)(vd + H(i + 0)) = ae; \
|
|
*(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
|
|
} \
|
|
}
|
|
|
|
DO_TRN(sve_trn_b, uint8_t, H1)
|
|
DO_TRN(sve_trn_h, uint16_t, H1_2)
|
|
DO_TRN(sve_trn_s, uint32_t, H1_4)
|
|
DO_TRN(sve_trn_d, uint64_t, )
|
|
|
|
#undef DO_ZIP
|
|
#undef DO_UZP
|
|
#undef DO_TRN
|
|
|
|
void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
|
|
uint32_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = j = 0; i < opr_sz; i++) {
|
|
if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
|
|
d[H4(j)] = n[H4(i)];
|
|
j++;
|
|
}
|
|
}
|
|
for (; j < opr_sz; j++) {
|
|
d[H4(j)] = 0;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = j = 0; i < opr_sz; i++) {
|
|
if (pg[H1(i)] & 1) {
|
|
d[j] = n[i];
|
|
j++;
|
|
}
|
|
}
|
|
for (; j < opr_sz; j++) {
|
|
d[j] = 0;
|
|
}
|
|
}
|
|
|
|
/* Similar to the ARM LastActiveElement pseudocode function, except the
|
|
* result is multiplied by the element size. This includes the not found
|
|
* indication; e.g. not found for esz=3 is -8.
|
|
*/
|
|
int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
|
|
return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz);
|
|
}
|
|
|
|
void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
|
|
{
|
|
intptr_t opr_sz = simd_oprsz(desc) / 8;
|
|
int esz = simd_data(desc);
|
|
uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
|
|
intptr_t i, first_i, last_i;
|
|
ARMVectorReg tmp;
|
|
|
|
first_i = last_i = 0;
|
|
first_g = last_g = 0;
|
|
|
|
/* Find the extent of the active elements within VG. */
|
|
for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
|
|
pg = *(uint64_t *)(vg + i) & mask;
|
|
if (pg) {
|
|
if (last_g == 0) {
|
|
last_g = pg;
|
|
last_i = i;
|
|
}
|
|
first_g = pg;
|
|
first_i = i;
|
|
}
|
|
}
|
|
|
|
len = 0;
|
|
if (first_g != 0) {
|
|
first_i = first_i * 8 + ctz64(first_g);
|
|
last_i = last_i * 8 + 63 - clz64(last_g);
|
|
len = last_i - first_i + (1 << esz);
|
|
if (vd == vm) {
|
|
vm = memcpy(&tmp, vm, opr_sz * 8);
|
|
}
|
|
swap_memmove(vd, vn + first_i, len);
|
|
}
|
|
swap_memmove(vd + len, vm, opr_sz * 8 - len);
|
|
}
|
|
|
|
void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
|
|
void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i], mm = m[i];
|
|
uint64_t pp = expand_pred_b(pg[H1(i)]);
|
|
d[i] = (nn & pp) | (mm & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
|
|
void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i], mm = m[i];
|
|
uint64_t pp = expand_pred_h(pg[H1(i)]);
|
|
d[i] = (nn & pp) | (mm & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
|
|
void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i], mm = m[i];
|
|
uint64_t pp = expand_pred_s(pg[H1(i)]);
|
|
d[i] = (nn & pp) | (mm & ~pp);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
|
|
void *vg, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *d = vd, *n = vn, *m = vm;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i += 1) {
|
|
uint64_t nn = n[i], mm = m[i];
|
|
d[i] = (pg[H1(i)] & 1 ? nn : mm);
|
|
}
|
|
}
|
|
|
|
/* Two operand comparison controlled by a predicate.
|
|
* ??? It is very tempting to want to be able to expand this inline
|
|
* with x86 instructions, e.g.
|
|
*
|
|
* vcmpeqw zm, zn, %ymm0
|
|
* vpmovmskb %ymm0, %eax
|
|
* and $0x5555, %eax
|
|
* and pg, %eax
|
|
*
|
|
* or even aarch64, e.g.
|
|
*
|
|
* // mask = 4000 1000 0400 0100 0040 0010 0004 0001
|
|
* cmeq v0.8h, zn, zm
|
|
* and v0.8h, v0.8h, mask
|
|
* addv h0, v0.8h
|
|
* and v0.8b, pg
|
|
*
|
|
* However, coming up with an abstraction that allows vector inputs and
|
|
* a scalar output, and also handles the byte-ordering of sub-uint64_t
|
|
* scalar outputs, is tricky.
|
|
*/
|
|
#define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
|
|
uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t opr_sz = simd_oprsz(desc); \
|
|
uint32_t flags = PREDTEST_INIT; \
|
|
intptr_t i = opr_sz; \
|
|
do { \
|
|
uint64_t out = 0, pg; \
|
|
do { \
|
|
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
TYPE mm = *(TYPE *)(vm + H(i)); \
|
|
out |= nn OP mm; \
|
|
} while (i & 63); \
|
|
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
|
|
out &= pg; \
|
|
*(uint64_t *)(vd + (i >> 3)) = out; \
|
|
flags = iter_predtest_bwd(out, pg, flags); \
|
|
} while (i > 0); \
|
|
return flags; \
|
|
}
|
|
|
|
#define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
|
|
DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
|
|
#define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
|
|
DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
|
|
#define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
|
|
DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
|
|
#define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
|
|
DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
|
|
DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
|
|
DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
|
|
DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
|
|
DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
|
|
DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
|
|
DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
|
|
DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
|
|
DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
|
|
DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
|
|
DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
|
|
DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
|
|
DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
|
|
DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
|
|
DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
|
|
DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
|
|
|
|
DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
|
|
DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
|
|
DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
|
|
DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
|
|
|
|
#undef DO_CMP_PPZZ_B
|
|
#undef DO_CMP_PPZZ_H
|
|
#undef DO_CMP_PPZZ_S
|
|
#undef DO_CMP_PPZZ_D
|
|
#undef DO_CMP_PPZZ
|
|
|
|
/* Similar, but the second source is "wide". */
|
|
#define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
|
|
uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t opr_sz = simd_oprsz(desc); \
|
|
uint32_t flags = PREDTEST_INIT; \
|
|
intptr_t i = opr_sz; \
|
|
do { \
|
|
uint64_t out = 0, pg; \
|
|
do { \
|
|
TYPEW mm = *(TYPEW *)(vm + i - 8); \
|
|
do { \
|
|
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
out |= nn OP mm; \
|
|
} while (i & 7); \
|
|
} while (i & 63); \
|
|
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
|
|
out &= pg; \
|
|
*(uint64_t *)(vd + (i >> 3)) = out; \
|
|
flags = iter_predtest_bwd(out, pg, flags); \
|
|
} while (i > 0); \
|
|
return flags; \
|
|
}
|
|
|
|
#define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
|
|
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
|
|
#define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
|
|
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
|
|
#define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
|
|
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
|
|
|
|
DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, uint8_t, uint64_t, ==)
|
|
DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, uint16_t, uint64_t, ==)
|
|
DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, uint32_t, uint64_t, ==)
|
|
|
|
DO_CMP_PPZW_B(sve_cmpne_ppzw_b, uint8_t, uint64_t, !=)
|
|
DO_CMP_PPZW_H(sve_cmpne_ppzw_h, uint16_t, uint64_t, !=)
|
|
DO_CMP_PPZW_S(sve_cmpne_ppzw_s, uint32_t, uint64_t, !=)
|
|
|
|
DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
|
|
DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
|
|
DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
|
|
|
|
DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
|
|
DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
|
|
DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
|
|
|
|
DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
|
|
DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
|
|
DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
|
|
|
|
DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
|
|
DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
|
|
DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
|
|
|
|
DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
|
|
DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
|
|
DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
|
|
|
|
DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
|
|
DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
|
|
DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
|
|
|
|
DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
|
|
DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
|
|
DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
|
|
|
|
DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
|
|
DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
|
|
DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
|
|
|
|
#undef DO_CMP_PPZW_B
|
|
#undef DO_CMP_PPZW_H
|
|
#undef DO_CMP_PPZW_S
|
|
#undef DO_CMP_PPZW
|
|
|
|
/* Similar, but the second source is immediate. */
|
|
#define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
|
|
uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
|
|
{ \
|
|
intptr_t opr_sz = simd_oprsz(desc); \
|
|
uint32_t flags = PREDTEST_INIT; \
|
|
TYPE mm = simd_data(desc); \
|
|
intptr_t i = opr_sz; \
|
|
do { \
|
|
uint64_t out = 0, pg; \
|
|
do { \
|
|
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
out |= nn OP mm; \
|
|
} while (i & 63); \
|
|
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
|
|
out &= pg; \
|
|
*(uint64_t *)(vd + (i >> 3)) = out; \
|
|
flags = iter_predtest_bwd(out, pg, flags); \
|
|
} while (i > 0); \
|
|
return flags; \
|
|
}
|
|
|
|
#define DO_CMP_PPZI_B(NAME, TYPE, OP) \
|
|
DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
|
|
#define DO_CMP_PPZI_H(NAME, TYPE, OP) \
|
|
DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
|
|
#define DO_CMP_PPZI_S(NAME, TYPE, OP) \
|
|
DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
|
|
#define DO_CMP_PPZI_D(NAME, TYPE, OP) \
|
|
DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull)
|
|
|
|
DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
|
|
DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
|
|
DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
|
|
DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
|
|
|
|
DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
|
|
DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
|
|
DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
|
|
DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
|
|
|
|
DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
|
|
DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
|
|
DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
|
|
DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
|
|
|
|
DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
|
|
DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
|
|
DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
|
|
DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
|
|
|
|
DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
|
|
DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
|
|
DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
|
|
DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
|
|
|
|
DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
|
|
DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
|
|
DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
|
|
DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
|
|
|
|
DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
|
|
DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
|
|
DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
|
|
DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
|
|
|
|
DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
|
|
DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
|
|
DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
|
|
DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
|
|
|
|
DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
|
|
DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
|
|
DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
|
|
DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
|
|
|
|
DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
|
|
DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
|
|
DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
|
|
DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
|
|
|
|
#undef DO_CMP_PPZI_B
|
|
#undef DO_CMP_PPZI_H
|
|
#undef DO_CMP_PPZI_S
|
|
#undef DO_CMP_PPZI_D
|
|
#undef DO_CMP_PPZI
|
|
|
|
/* Similar to the ARM LastActive pseudocode function. */
|
|
static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
|
|
{
|
|
intptr_t i;
|
|
|
|
for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
|
|
uint64_t pg = *(uint64_t *)(vg + i);
|
|
if (pg) {
|
|
return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compute a mask into RETB that is true for all G, up to and including
|
|
* (if after) or excluding (if !after) the first G & N.
|
|
* Return true if BRK found.
|
|
*/
|
|
static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
|
|
bool brk, bool after)
|
|
{
|
|
uint64_t b;
|
|
|
|
if (brk) {
|
|
b = 0;
|
|
} else if ((g & n) == 0) {
|
|
/* For all G, no N are set; break not found. */
|
|
b = g;
|
|
} else {
|
|
/* Break somewhere in N. Locate it. */
|
|
b = g & n; /* guard true, pred true */
|
|
b = b & -b; /* first such */
|
|
if (after) {
|
|
b = b | (b - 1); /* break after same */
|
|
} else {
|
|
b = b - 1; /* break before same */
|
|
}
|
|
brk = true;
|
|
}
|
|
|
|
*retb = b;
|
|
return brk;
|
|
}
|
|
|
|
/* Compute a zeroing BRK. */
|
|
static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
|
|
intptr_t oprsz, bool after)
|
|
{
|
|
bool brk = false;
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
|
|
uint64_t this_b, this_g = g[i];
|
|
|
|
brk = compute_brk(&this_b, n[i], this_g, brk, after);
|
|
d[i] = this_b & this_g;
|
|
}
|
|
}
|
|
|
|
/* Likewise, but also compute flags. */
|
|
static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
|
|
intptr_t oprsz, bool after)
|
|
{
|
|
uint32_t flags = PREDTEST_INIT;
|
|
bool brk = false;
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
|
|
uint64_t this_b, this_d, this_g = g[i];
|
|
|
|
brk = compute_brk(&this_b, n[i], this_g, brk, after);
|
|
d[i] = this_d = this_b & this_g;
|
|
flags = iter_predtest_fwd(this_d, this_g, flags);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/* Compute a merging BRK. */
|
|
static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
|
|
intptr_t oprsz, bool after)
|
|
{
|
|
bool brk = false;
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
|
|
uint64_t this_b, this_g = g[i];
|
|
|
|
brk = compute_brk(&this_b, n[i], this_g, brk, after);
|
|
d[i] = (this_b & this_g) | (d[i] & ~this_g);
|
|
}
|
|
}
|
|
|
|
/* Likewise, but also compute flags. */
|
|
static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
|
|
intptr_t oprsz, bool after)
|
|
{
|
|
uint32_t flags = PREDTEST_INIT;
|
|
bool brk = false;
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < oprsz / 8; ++i) {
|
|
uint64_t this_b, this_d = d[i], this_g = g[i];
|
|
|
|
brk = compute_brk(&this_b, n[i], this_g, brk, after);
|
|
d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
|
|
flags = iter_predtest_fwd(this_d, this_g, flags);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
|
|
{
|
|
/* It is quicker to zero the whole predicate than loop on OPRSZ.
|
|
* The compiler should turn this into 4 64-bit integer stores.
|
|
*/
|
|
memset(d, 0, sizeof(ARMPredicateReg));
|
|
return PREDTEST_INIT;
|
|
}
|
|
|
|
void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
|
|
uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
if (last_active_pred(vn, vg, oprsz)) {
|
|
compute_brk_z(vd, vm, vg, oprsz, true);
|
|
} else {
|
|
do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
|
|
uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
if (last_active_pred(vn, vg, oprsz)) {
|
|
return compute_brks_z(vd, vm, vg, oprsz, true);
|
|
} else {
|
|
return do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
|
|
uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
if (last_active_pred(vn, vg, oprsz)) {
|
|
compute_brk_z(vd, vm, vg, oprsz, false);
|
|
} else {
|
|
do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
|
|
uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
if (last_active_pred(vn, vg, oprsz)) {
|
|
return compute_brks_z(vd, vm, vg, oprsz, false);
|
|
} else {
|
|
return do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
compute_brk_z(vd, vn, vg, oprsz, true);
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
return compute_brks_z(vd, vn, vg, oprsz, true);
|
|
}
|
|
|
|
void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
compute_brk_z(vd, vn, vg, oprsz, false);
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
return compute_brks_z(vd, vn, vg, oprsz, false);
|
|
}
|
|
|
|
void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
compute_brk_m(vd, vn, vg, oprsz, true);
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
return compute_brks_m(vd, vn, vg, oprsz, true);
|
|
}
|
|
|
|
void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
compute_brk_m(vd, vn, vg, oprsz, false);
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
return compute_brks_m(vd, vn, vg, oprsz, false);
|
|
}
|
|
|
|
void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
|
|
if (!last_active_pred(vn, vg, oprsz)) {
|
|
do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
/* As if PredTest(Ones(PL), D, esz). */
|
|
static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
|
|
uint64_t esz_mask)
|
|
{
|
|
uint32_t flags = PREDTEST_INIT;
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < oprsz / 8; i++) {
|
|
flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
|
|
}
|
|
if (oprsz & 7) {
|
|
uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
|
|
flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
|
|
if (last_active_pred(vn, vg, oprsz)) {
|
|
return predtest_ones(vd, oprsz, -1);
|
|
} else {
|
|
return do_zero(vd, oprsz);
|
|
}
|
|
}
|
|
|
|
uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
|
|
{
|
|
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
|
|
intptr_t i;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
|
|
uint64_t t = n[i] & g[i] & mask;
|
|
sum += ctpop64(t);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
|
|
{
|
|
uintptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
|
|
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
|
|
uint64_t esz_mask = pred_esz_masks[esz];
|
|
ARMPredicateReg *d = vd;
|
|
uint32_t flags;
|
|
intptr_t i;
|
|
|
|
/* Begin with a zero predicate register. */
|
|
flags = do_zero(d, oprsz);
|
|
if (count == 0) {
|
|
return flags;
|
|
}
|
|
|
|
/* Scale from predicate element count to bits. */
|
|
count <<= esz;
|
|
/* Bound to the bits in the predicate. */
|
|
count = MIN(count, oprsz * 8);
|
|
|
|
/* Set all of the requested bits. */
|
|
for (i = 0; i < count / 64; ++i) {
|
|
d->p[i] = esz_mask;
|
|
}
|
|
if (count & 63) {
|
|
d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
|
|
}
|
|
|
|
return predtest_ones(d, oprsz, esz_mask);
|
|
}
|
|
|
|
/* 4-operand predicated multiply-add. This requires 7 operands to pass
|
|
* "properly", so we need to encode some of the registers into DESC.
|
|
*/
|
|
QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 20 > 32);
|
|
|
|
static void do_fmla_zpzzz_h(CPUARMState *env, void *vg, uint32_t desc,
|
|
uint16_t neg1, uint16_t neg3)
|
|
{
|
|
intptr_t i = simd_oprsz(desc);
|
|
unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
|
|
unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
|
|
unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
|
|
unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
|
|
void *vd = &env->vfp.zregs[rd];
|
|
void *vn = &env->vfp.zregs[rn];
|
|
void *vm = &env->vfp.zregs[rm];
|
|
void *va = &env->vfp.zregs[ra];
|
|
uint64_t *g = vg;
|
|
|
|
do {
|
|
uint64_t pg = g[(i - 1) >> 6];
|
|
do {
|
|
i -= 2;
|
|
if (likely((pg >> (i & 63)) & 1)) {
|
|
float16 e1, e2, e3, r;
|
|
|
|
e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
|
|
e2 = *(uint16_t *)(vm + H1_2(i));
|
|
e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
|
|
r = float16_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
|
|
*(uint16_t *)(vd + H1_2(i)) = r;
|
|
}
|
|
} while (i & 63);
|
|
} while (i != 0);
|
|
}
|
|
|
|
void HELPER(sve_fmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_h(env, vg, desc, 0, 0);
|
|
}
|
|
|
|
void HELPER(sve_fmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0);
|
|
}
|
|
|
|
void HELPER(sve_fnmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0x8000);
|
|
}
|
|
|
|
void HELPER(sve_fnmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_h(env, vg, desc, 0, 0x8000);
|
|
}
|
|
|
|
static void do_fmla_zpzzz_s(CPUARMState *env, void *vg, uint32_t desc,
|
|
uint32_t neg1, uint32_t neg3)
|
|
{
|
|
intptr_t i = simd_oprsz(desc);
|
|
unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
|
|
unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
|
|
unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
|
|
unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
|
|
void *vd = &env->vfp.zregs[rd];
|
|
void *vn = &env->vfp.zregs[rn];
|
|
void *vm = &env->vfp.zregs[rm];
|
|
void *va = &env->vfp.zregs[ra];
|
|
uint64_t *g = vg;
|
|
|
|
do {
|
|
uint64_t pg = g[(i - 1) >> 6];
|
|
do {
|
|
i -= 4;
|
|
if (likely((pg >> (i & 63)) & 1)) {
|
|
float32 e1, e2, e3, r;
|
|
|
|
e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
|
|
e2 = *(uint32_t *)(vm + H1_4(i));
|
|
e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
|
|
r = float32_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
|
|
*(uint32_t *)(vd + H1_4(i)) = r;
|
|
}
|
|
} while (i & 63);
|
|
} while (i != 0);
|
|
}
|
|
|
|
void HELPER(sve_fmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_s(env, vg, desc, 0, 0);
|
|
}
|
|
|
|
void HELPER(sve_fmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0);
|
|
}
|
|
|
|
void HELPER(sve_fnmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0x80000000);
|
|
}
|
|
|
|
void HELPER(sve_fnmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_s(env, vg, desc, 0, 0x80000000);
|
|
}
|
|
|
|
static void do_fmla_zpzzz_d(CPUARMState *env, void *vg, uint32_t desc,
|
|
uint64_t neg1, uint64_t neg3)
|
|
{
|
|
intptr_t i = simd_oprsz(desc);
|
|
unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
|
|
unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
|
|
unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
|
|
unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
|
|
void *vd = &env->vfp.zregs[rd];
|
|
void *vn = &env->vfp.zregs[rn];
|
|
void *vm = &env->vfp.zregs[rm];
|
|
void *va = &env->vfp.zregs[ra];
|
|
uint64_t *g = vg;
|
|
|
|
do {
|
|
uint64_t pg = g[(i - 1) >> 6];
|
|
do {
|
|
i -= 8;
|
|
if (likely((pg >> (i & 63)) & 1)) {
|
|
float64 e1, e2, e3, r;
|
|
|
|
e1 = *(uint64_t *)(vn + i) ^ neg1;
|
|
e2 = *(uint64_t *)(vm + i);
|
|
e3 = *(uint64_t *)(va + i) ^ neg3;
|
|
r = float64_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
|
|
*(uint64_t *)(vd + i) = r;
|
|
}
|
|
} while (i & 63);
|
|
} while (i != 0);
|
|
}
|
|
|
|
void HELPER(sve_fmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_d(env, vg, desc, 0, 0);
|
|
}
|
|
|
|
void HELPER(sve_fmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, 0);
|
|
}
|
|
|
|
void HELPER(sve_fnmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, INT64_MIN);
|
|
}
|
|
|
|
void HELPER(sve_fnmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
|
|
{
|
|
do_fmla_zpzzz_d(env, vg, desc, 0, INT64_MIN);
|
|
}
|
|
|
|
/*
|
|
* Load contiguous data, protected by a governing predicate.
|
|
*/
|
|
#define DO_LD1(NAME, FN, TYPEE, TYPEM, H) \
|
|
static void do_##NAME(CPUARMState *env, void *vd, void *vg, \
|
|
target_ulong addr, intptr_t oprsz, \
|
|
uintptr_t ra) \
|
|
{ \
|
|
intptr_t i = 0; \
|
|
do { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
TYPEM m = 0; \
|
|
if (pg & 1) { \
|
|
m = FN(env, addr, ra); \
|
|
} \
|
|
*(TYPEE *)(vd + H(i)) = m; \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} while (i < oprsz); \
|
|
} \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
do_##NAME(env, &env->vfp.zregs[simd_data(desc)], vg, \
|
|
addr, simd_oprsz(desc), GETPC()); \
|
|
}
|
|
|
|
#define DO_LD2(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
TYPEM m1 = 0, m2 = 0; \
|
|
if (pg & 1) { \
|
|
m1 = FN(env, addr, ra); \
|
|
m2 = FN(env, addr + sizeof(TYPEM), ra); \
|
|
} \
|
|
*(TYPEE *)(d1 + H(i)) = m1; \
|
|
*(TYPEE *)(d2 + H(i)) = m2; \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 2 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_LD3(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
TYPEM m1 = 0, m2 = 0, m3 = 0; \
|
|
if (pg & 1) { \
|
|
m1 = FN(env, addr, ra); \
|
|
m2 = FN(env, addr + sizeof(TYPEM), ra); \
|
|
m3 = FN(env, addr + 2 * sizeof(TYPEM), ra); \
|
|
} \
|
|
*(TYPEE *)(d1 + H(i)) = m1; \
|
|
*(TYPEE *)(d2 + H(i)) = m2; \
|
|
*(TYPEE *)(d3 + H(i)) = m3; \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 3 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_LD4(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
|
|
void *d4 = &env->vfp.zregs[(rd + 3) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
TYPEM m1 = 0, m2 = 0, m3 = 0, m4 = 0; \
|
|
if (pg & 1) { \
|
|
m1 = FN(env, addr, ra); \
|
|
m2 = FN(env, addr + sizeof(TYPEM), ra); \
|
|
m3 = FN(env, addr + 2 * sizeof(TYPEM), ra); \
|
|
m4 = FN(env, addr + 3 * sizeof(TYPEM), ra); \
|
|
} \
|
|
*(TYPEE *)(d1 + H(i)) = m1; \
|
|
*(TYPEE *)(d2 + H(i)) = m2; \
|
|
*(TYPEE *)(d3 + H(i)) = m3; \
|
|
*(TYPEE *)(d4 + H(i)) = m4; \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 4 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
DO_LD1(sve_ld1bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
|
|
DO_LD1(sve_ld1bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
|
|
DO_LD1(sve_ld1bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
|
|
DO_LD1(sve_ld1bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
|
|
DO_LD1(sve_ld1bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
|
|
DO_LD1(sve_ld1bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
|
|
|
|
DO_LD1(sve_ld1hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
|
|
DO_LD1(sve_ld1hss_r, cpu_ldsw_data_ra, uint32_t, int8_t, H1_4)
|
|
DO_LD1(sve_ld1hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
|
|
DO_LD1(sve_ld1hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
|
|
|
|
DO_LD1(sve_ld1sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
|
|
DO_LD1(sve_ld1sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
|
|
|
|
DO_LD1(sve_ld1bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
|
|
DO_LD2(sve_ld2bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
|
|
DO_LD3(sve_ld3bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
|
|
DO_LD4(sve_ld4bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
|
|
|
|
DO_LD1(sve_ld1hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_LD2(sve_ld2hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_LD3(sve_ld3hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_LD4(sve_ld4hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
|
|
|
|
DO_LD1(sve_ld1ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_LD2(sve_ld2ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_LD3(sve_ld3ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_LD4(sve_ld4ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
|
|
|
|
DO_LD1(sve_ld1dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
|
|
DO_LD2(sve_ld2dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
|
|
DO_LD3(sve_ld3dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
|
|
DO_LD4(sve_ld4dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
|
|
|
|
#undef DO_LD1
|
|
#undef DO_LD2
|
|
#undef DO_LD3
|
|
#undef DO_LD4
|
|
|
|
/*
|
|
* Load contiguous data, first-fault and no-fault.
|
|
*/
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
/* Fault on byte I. All bits in FFR from I are cleared. The vector
|
|
* result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
|
|
* option, which leaves subsequent data unchanged.
|
|
*/
|
|
static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
|
|
{
|
|
uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
|
|
|
|
if (i & 63) {
|
|
ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
|
|
i = ROUND_UP(i, 64);
|
|
}
|
|
for (; i < oprsz; i += 64) {
|
|
ffr[i / 64] = 0;
|
|
}
|
|
}
|
|
|
|
/* Hold the mmap lock during the operation so that there is no race
|
|
* between page_check_range and the load operation. We expect the
|
|
* usual case to have no faults at all, so we check the whole range
|
|
* first and if successful defer to the normal load operation.
|
|
*
|
|
* TODO: Change mmap_lock to a rwlock so that multiple readers
|
|
* can run simultaneously. This will probably help other uses
|
|
* within QEMU as well.
|
|
*/
|
|
#define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
|
|
static void do_sve_ldff1##PART(CPUARMState *env, void *vd, void *vg, \
|
|
target_ulong addr, intptr_t oprsz, \
|
|
bool first, uintptr_t ra) \
|
|
{ \
|
|
intptr_t i = 0; \
|
|
do { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
TYPEM m = 0; \
|
|
if (pg & 1) { \
|
|
if (!first && \
|
|
unlikely(page_check_range(addr, sizeof(TYPEM), \
|
|
PAGE_READ))) { \
|
|
record_fault(env, i, oprsz); \
|
|
return; \
|
|
} \
|
|
m = FN(env, addr, ra); \
|
|
first = false; \
|
|
} \
|
|
*(TYPEE *)(vd + H(i)) = m; \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} while (i < oprsz); \
|
|
} \
|
|
void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t oprsz = simd_oprsz(desc); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *vd = &env->vfp.zregs[rd]; \
|
|
mmap_lock(); \
|
|
if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
|
|
do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
|
|
} else { \
|
|
do_sve_ldff1##PART(env, vd, vg, addr, oprsz, true, GETPC()); \
|
|
} \
|
|
mmap_unlock(); \
|
|
}
|
|
|
|
/* No-fault loads are like first-fault loads without the
|
|
* first faulting special case.
|
|
*/
|
|
#define DO_LDNF1(PART) \
|
|
void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t oprsz = simd_oprsz(desc); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *vd = &env->vfp.zregs[rd]; \
|
|
mmap_lock(); \
|
|
if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
|
|
do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
|
|
} else { \
|
|
do_sve_ldff1##PART(env, vd, vg, addr, oprsz, false, GETPC()); \
|
|
} \
|
|
mmap_unlock(); \
|
|
}
|
|
|
|
#else
|
|
|
|
/* TODO: System mode is not yet supported.
|
|
* This would probably use tlb_vaddr_to_host.
|
|
*/
|
|
#define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
g_assert_not_reached(); \
|
|
}
|
|
|
|
#define DO_LDNF1(PART) \
|
|
void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
g_assert_not_reached(); \
|
|
}
|
|
|
|
#endif
|
|
|
|
DO_LDFF1(bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
|
|
DO_LDFF1(bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
|
|
DO_LDFF1(bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
|
|
DO_LDFF1(bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
|
|
DO_LDFF1(bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
|
|
DO_LDFF1(bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
|
|
DO_LDFF1(bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
|
|
|
|
DO_LDFF1(hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_LDFF1(hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
|
|
DO_LDFF1(hss_r, cpu_ldsw_data_ra, uint32_t, int8_t, H1_4)
|
|
DO_LDFF1(hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
|
|
DO_LDFF1(hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
|
|
|
|
DO_LDFF1(ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_LDFF1(sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
|
|
DO_LDFF1(sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
|
|
|
|
DO_LDFF1(dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
|
|
|
|
#undef DO_LDFF1
|
|
|
|
DO_LDNF1(bb_r)
|
|
DO_LDNF1(bhu_r)
|
|
DO_LDNF1(bhs_r)
|
|
DO_LDNF1(bsu_r)
|
|
DO_LDNF1(bss_r)
|
|
DO_LDNF1(bdu_r)
|
|
DO_LDNF1(bds_r)
|
|
|
|
DO_LDNF1(hh_r)
|
|
DO_LDNF1(hsu_r)
|
|
DO_LDNF1(hss_r)
|
|
DO_LDNF1(hdu_r)
|
|
DO_LDNF1(hds_r)
|
|
|
|
DO_LDNF1(ss_r)
|
|
DO_LDNF1(sdu_r)
|
|
DO_LDNF1(sds_r)
|
|
|
|
DO_LDNF1(dd_r)
|
|
|
|
#undef DO_LDNF1
|
|
|
|
/*
|
|
* Store contiguous data, protected by a governing predicate.
|
|
*/
|
|
#define DO_ST1(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *vd = &env->vfp.zregs[rd]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPEM m = *(TYPEE *)(vd + H(i)); \
|
|
FN(env, addr, m, ra); \
|
|
} \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_ST1_D(NAME, FN, TYPEM) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc) / 8; \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
uint64_t *d = &env->vfp.zregs[rd].d[0]; \
|
|
uint8_t *pg = vg; \
|
|
for (i = 0; i < oprsz; i += 1) { \
|
|
if (pg[H1(i)] & 1) { \
|
|
FN(env, addr, d[i], ra); \
|
|
} \
|
|
addr += sizeof(TYPEM); \
|
|
} \
|
|
}
|
|
|
|
#define DO_ST2(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
|
|
TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
|
|
FN(env, addr, m1, ra); \
|
|
FN(env, addr + sizeof(TYPEM), m2, ra); \
|
|
} \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 2 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_ST3(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
|
|
TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
|
|
TYPEM m3 = *(TYPEE *)(d3 + H(i)); \
|
|
FN(env, addr, m1, ra); \
|
|
FN(env, addr + sizeof(TYPEM), m2, ra); \
|
|
FN(env, addr + 2 * sizeof(TYPEM), m3, ra); \
|
|
} \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 3 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_ST4(NAME, FN, TYPEE, TYPEM, H) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vg, \
|
|
target_ulong addr, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
intptr_t ra = GETPC(); \
|
|
unsigned rd = simd_data(desc); \
|
|
void *d1 = &env->vfp.zregs[rd]; \
|
|
void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
|
|
void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
|
|
void *d4 = &env->vfp.zregs[(rd + 3) & 31]; \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (pg & 1) { \
|
|
TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
|
|
TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
|
|
TYPEM m3 = *(TYPEE *)(d3 + H(i)); \
|
|
TYPEM m4 = *(TYPEE *)(d4 + H(i)); \
|
|
FN(env, addr, m1, ra); \
|
|
FN(env, addr + sizeof(TYPEM), m2, ra); \
|
|
FN(env, addr + 2 * sizeof(TYPEM), m3, ra); \
|
|
FN(env, addr + 3 * sizeof(TYPEM), m4, ra); \
|
|
} \
|
|
i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
|
|
addr += 4 * sizeof(TYPEM); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
DO_ST1(sve_st1bh_r, cpu_stb_data_ra, uint16_t, uint8_t, H1_2)
|
|
DO_ST1(sve_st1bs_r, cpu_stb_data_ra, uint32_t, uint8_t, H1_4)
|
|
DO_ST1_D(sve_st1bd_r, cpu_stb_data_ra, uint8_t)
|
|
|
|
DO_ST1(sve_st1hs_r, cpu_stw_data_ra, uint32_t, uint16_t, H1_4)
|
|
DO_ST1_D(sve_st1hd_r, cpu_stw_data_ra, uint16_t)
|
|
|
|
DO_ST1_D(sve_st1sd_r, cpu_stl_data_ra, uint32_t)
|
|
|
|
DO_ST1(sve_st1bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
|
|
DO_ST2(sve_st2bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
|
|
DO_ST3(sve_st3bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
|
|
DO_ST4(sve_st4bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
|
|
|
|
DO_ST1(sve_st1hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_ST2(sve_st2hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_ST3(sve_st3hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
|
|
DO_ST4(sve_st4hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
|
|
|
|
DO_ST1(sve_st1ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_ST2(sve_st2ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_ST3(sve_st3ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
|
|
DO_ST4(sve_st4ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
|
|
|
|
DO_ST1_D(sve_st1dd_r, cpu_stq_data_ra, uint64_t)
|
|
|
|
void HELPER(sve_st2dd_r)(CPUARMState *env, void *vg,
|
|
target_ulong addr, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc) / 8;
|
|
intptr_t ra = GETPC();
|
|
unsigned rd = simd_data(desc);
|
|
uint64_t *d1 = &env->vfp.zregs[rd].d[0];
|
|
uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < oprsz; i += 1) {
|
|
if (pg[H1(i)] & 1) {
|
|
cpu_stq_data_ra(env, addr, d1[i], ra);
|
|
cpu_stq_data_ra(env, addr + 8, d2[i], ra);
|
|
}
|
|
addr += 2 * 8;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_st3dd_r)(CPUARMState *env, void *vg,
|
|
target_ulong addr, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc) / 8;
|
|
intptr_t ra = GETPC();
|
|
unsigned rd = simd_data(desc);
|
|
uint64_t *d1 = &env->vfp.zregs[rd].d[0];
|
|
uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
|
|
uint64_t *d3 = &env->vfp.zregs[(rd + 2) & 31].d[0];
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < oprsz; i += 1) {
|
|
if (pg[H1(i)] & 1) {
|
|
cpu_stq_data_ra(env, addr, d1[i], ra);
|
|
cpu_stq_data_ra(env, addr + 8, d2[i], ra);
|
|
cpu_stq_data_ra(env, addr + 16, d3[i], ra);
|
|
}
|
|
addr += 3 * 8;
|
|
}
|
|
}
|
|
|
|
void HELPER(sve_st4dd_r)(CPUARMState *env, void *vg,
|
|
target_ulong addr, uint32_t desc)
|
|
{
|
|
intptr_t i, oprsz = simd_oprsz(desc) / 8;
|
|
intptr_t ra = GETPC();
|
|
unsigned rd = simd_data(desc);
|
|
uint64_t *d1 = &env->vfp.zregs[rd].d[0];
|
|
uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
|
|
uint64_t *d3 = &env->vfp.zregs[(rd + 2) & 31].d[0];
|
|
uint64_t *d4 = &env->vfp.zregs[(rd + 3) & 31].d[0];
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < oprsz; i += 1) {
|
|
if (pg[H1(i)] & 1) {
|
|
cpu_stq_data_ra(env, addr, d1[i], ra);
|
|
cpu_stq_data_ra(env, addr + 8, d2[i], ra);
|
|
cpu_stq_data_ra(env, addr + 16, d3[i], ra);
|
|
cpu_stq_data_ra(env, addr + 24, d4[i], ra);
|
|
}
|
|
addr += 4 * 8;
|
|
}
|
|
}
|
|
|
|
uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
|
|
void *status, uint32_t desc)
|
|
{
|
|
intptr_t i = 0, opr_sz = simd_oprsz(desc);
|
|
float16 result = nn;
|
|
|
|
do {
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
|
|
do {
|
|
if (pg & 1) {
|
|
float16 mm = *(float16 *)(vm + H1_2(i));
|
|
result = float16_add(result, mm, status);
|
|
}
|
|
i += sizeof(float16), pg >>= sizeof(float16);
|
|
} while (i & 15);
|
|
} while (i < opr_sz);
|
|
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
|
|
void *status, uint32_t desc)
|
|
{
|
|
intptr_t i = 0, opr_sz = simd_oprsz(desc);
|
|
float32 result = nn;
|
|
|
|
do {
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
|
|
do {
|
|
if (pg & 1) {
|
|
float32 mm = *(float32 *)(vm + H1_2(i));
|
|
result = float32_add(result, mm, status);
|
|
}
|
|
i += sizeof(float32), pg >>= sizeof(float32);
|
|
} while (i & 15);
|
|
} while (i < opr_sz);
|
|
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
|
|
void *status, uint32_t desc)
|
|
{
|
|
intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
|
|
uint64_t *m = vm;
|
|
uint8_t *pg = vg;
|
|
|
|
for (i = 0; i < opr_sz; i++) {
|
|
if (pg[H1(i)] & 1) {
|
|
nn = float64_add(nn, m[i], status);
|
|
}
|
|
}
|
|
|
|
return nn;
|
|
}
|
|
|
|
/* Fully general three-operand expander, controlled by a predicate,
|
|
* With the extra float_status parameter.
|
|
*/
|
|
#define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
|
|
void *status, uint32_t desc) \
|
|
{ \
|
|
intptr_t i = simd_oprsz(desc); \
|
|
uint64_t *g = vg; \
|
|
do { \
|
|
uint64_t pg = g[(i - 1) >> 6]; \
|
|
do { \
|
|
i -= sizeof(TYPE); \
|
|
if (likely((pg >> (i & 63)) & 1)) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
TYPE mm = *(TYPE *)(vm + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
|
|
} \
|
|
} while (i & 63); \
|
|
} while (i != 0); \
|
|
}
|
|
|
|
DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
|
|
DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
|
|
DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add)
|
|
|
|
DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
|
|
DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
|
|
DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub)
|
|
|
|
DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
|
|
DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
|
|
DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul)
|
|
|
|
DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
|
|
DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
|
|
DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div)
|
|
|
|
DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
|
|
DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
|
|
DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min)
|
|
|
|
DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
|
|
DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
|
|
DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max)
|
|
|
|
DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
|
|
DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
|
|
DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum)
|
|
|
|
DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
|
|
DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
|
|
DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum)
|
|
|
|
static inline float16 abd_h(float16 a, float16 b, float_status *s)
|
|
{
|
|
return float16_abs(float16_sub(a, b, s));
|
|
}
|
|
|
|
static inline float32 abd_s(float32 a, float32 b, float_status *s)
|
|
{
|
|
return float32_abs(float32_sub(a, b, s));
|
|
}
|
|
|
|
static inline float64 abd_d(float64 a, float64 b, float_status *s)
|
|
{
|
|
return float64_abs(float64_sub(a, b, s));
|
|
}
|
|
|
|
DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
|
|
DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
|
|
DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d)
|
|
|
|
static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
|
|
{
|
|
int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
|
|
return float64_scalbn(a, b_int, s);
|
|
}
|
|
|
|
DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
|
|
DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
|
|
DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d)
|
|
|
|
DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
|
|
DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
|
|
DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd)
|
|
|
|
#undef DO_ZPZZ_FP
|
|
|
|
/* Fully general two-operand expander, controlled by a predicate,
|
|
* With the extra float_status parameter.
|
|
*/
|
|
#define DO_ZPZ_FP(NAME, TYPE, H, OP) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
|
|
{ \
|
|
intptr_t i = simd_oprsz(desc); \
|
|
uint64_t *g = vg; \
|
|
do { \
|
|
uint64_t pg = g[(i - 1) >> 6]; \
|
|
do { \
|
|
i -= sizeof(TYPE); \
|
|
if (likely((pg >> (i & 63)) & 1)) { \
|
|
TYPE nn = *(TYPE *)(vn + H(i)); \
|
|
*(TYPE *)(vd + H(i)) = OP(nn, status); \
|
|
} \
|
|
} while (i & 63); \
|
|
} while (i != 0); \
|
|
}
|
|
|
|
DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
|
|
DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
|
|
DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
|
|
DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64)
|
|
DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16)
|
|
DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32)
|
|
DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64)
|
|
|
|
DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
|
|
DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
|
|
DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
|
|
DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64)
|
|
DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16)
|
|
DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32)
|
|
DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64)
|
|
|
|
#undef DO_ZPZ_FP
|
|
|
|
/* Stores with a vector index. */
|
|
|
|
#define DO_ST1_ZPZ_S(NAME, TYPEI, FN) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
|
|
target_ulong base, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
unsigned scale = simd_data(desc); \
|
|
uintptr_t ra = GETPC(); \
|
|
for (i = 0; i < oprsz; ) { \
|
|
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
|
|
do { \
|
|
if (likely(pg & 1)) { \
|
|
target_ulong off = *(TYPEI *)(vm + H1_4(i)); \
|
|
uint32_t d = *(uint32_t *)(vd + H1_4(i)); \
|
|
FN(env, base + (off << scale), d, ra); \
|
|
} \
|
|
i += sizeof(uint32_t), pg >>= sizeof(uint32_t); \
|
|
} while (i & 15); \
|
|
} \
|
|
}
|
|
|
|
#define DO_ST1_ZPZ_D(NAME, TYPEI, FN) \
|
|
void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
|
|
target_ulong base, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc) / 8; \
|
|
unsigned scale = simd_data(desc); \
|
|
uintptr_t ra = GETPC(); \
|
|
uint64_t *d = vd, *m = vm; uint8_t *pg = vg; \
|
|
for (i = 0; i < oprsz; i++) { \
|
|
if (likely(pg[H1(i)] & 1)) { \
|
|
target_ulong off = (target_ulong)(TYPEI)m[i] << scale; \
|
|
FN(env, base + off, d[i], ra); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DO_ST1_ZPZ_S(sve_stbs_zsu, uint32_t, cpu_stb_data_ra)
|
|
DO_ST1_ZPZ_S(sve_sths_zsu, uint32_t, cpu_stw_data_ra)
|
|
DO_ST1_ZPZ_S(sve_stss_zsu, uint32_t, cpu_stl_data_ra)
|
|
|
|
DO_ST1_ZPZ_S(sve_stbs_zss, int32_t, cpu_stb_data_ra)
|
|
DO_ST1_ZPZ_S(sve_sths_zss, int32_t, cpu_stw_data_ra)
|
|
DO_ST1_ZPZ_S(sve_stss_zss, int32_t, cpu_stl_data_ra)
|
|
|
|
DO_ST1_ZPZ_D(sve_stbd_zsu, uint32_t, cpu_stb_data_ra)
|
|
DO_ST1_ZPZ_D(sve_sthd_zsu, uint32_t, cpu_stw_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stsd_zsu, uint32_t, cpu_stl_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stdd_zsu, uint32_t, cpu_stq_data_ra)
|
|
|
|
DO_ST1_ZPZ_D(sve_stbd_zss, int32_t, cpu_stb_data_ra)
|
|
DO_ST1_ZPZ_D(sve_sthd_zss, int32_t, cpu_stw_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stsd_zss, int32_t, cpu_stl_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stdd_zss, int32_t, cpu_stq_data_ra)
|
|
|
|
DO_ST1_ZPZ_D(sve_stbd_zd, uint64_t, cpu_stb_data_ra)
|
|
DO_ST1_ZPZ_D(sve_sthd_zd, uint64_t, cpu_stw_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stsd_zd, uint64_t, cpu_stl_data_ra)
|
|
DO_ST1_ZPZ_D(sve_stdd_zd, uint64_t, cpu_stq_data_ra)
|