mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-12 17:55:33 +00:00
d343f8ac0f
Backports commit 16fcfdc7325649b187ac489f3ae0b0d2a20b6230 from qemu
770 lines
25 KiB
C
770 lines
25 KiB
C
/*
|
|
* ARM AdvSIMD / SVE Vector Operations
|
|
*
|
|
* Copyright (c) 2018 Linaro
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
|
|
/* Note that vector data is stored in host-endian 64-bit chunks,
|
|
so addressing units smaller than that needs a host-endian fixup. */
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define H1(x) ((x) ^ 7)
|
|
#define H2(x) ((x) ^ 3)
|
|
#define H4(x) ((x) ^ 1)
|
|
#else
|
|
#define H1(x) (x)
|
|
#define H2(x) (x)
|
|
#define H4(x) (x)
|
|
#endif
|
|
|
|
#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
|
|
|
|
static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
|
|
{
|
|
uint64_t *d = vd + opr_sz;
|
|
uintptr_t i;
|
|
|
|
for (i = opr_sz; i < max_sz; i += 8) {
|
|
*d++ = 0;
|
|
}
|
|
}
|
|
|
|
/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
|
|
static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
|
|
int16_t src2, int16_t src3)
|
|
{
|
|
/* Simplify:
|
|
* = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
|
|
* = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
|
|
*/
|
|
int32_t ret = (int32_t)src1 * src2;
|
|
ret = ((int32_t)src3 << 15) + ret + (1 << 14);
|
|
ret >>= 15;
|
|
if (ret != (int16_t)ret) {
|
|
SET_QC();
|
|
ret = (ret < 0 ? -0x8000 : 0x7fff);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
|
|
uint32_t src2, uint32_t src3)
|
|
{
|
|
uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
|
|
uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
|
|
return deposit32(e1, 16, 16, e2);
|
|
}
|
|
|
|
void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
|
|
void *ve, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
int16_t *d = vd;
|
|
int16_t *n = vn;
|
|
int16_t *m = vm;
|
|
CPUARMState *env = ve;
|
|
uintptr_t i;
|
|
|
|
for (i = 0; i < opr_sz / 2; ++i) {
|
|
d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
/* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
|
|
static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
|
|
int16_t src2, int16_t src3)
|
|
{
|
|
/* Similarly, using subtraction:
|
|
* = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
|
|
* = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
|
|
*/
|
|
int32_t ret = (int32_t)src1 * src2;
|
|
ret = ((int32_t)src3 << 15) - ret + (1 << 14);
|
|
ret >>= 15;
|
|
if (ret != (int16_t)ret) {
|
|
SET_QC();
|
|
ret = (ret < 0 ? -0x8000 : 0x7fff);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
|
|
uint32_t src2, uint32_t src3)
|
|
{
|
|
uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
|
|
uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
|
|
return deposit32(e1, 16, 16, e2);
|
|
}
|
|
|
|
void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
|
|
void *ve, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
int16_t *d = vd;
|
|
int16_t *n = vn;
|
|
int16_t *m = vm;
|
|
CPUARMState *env = ve;
|
|
uintptr_t i;
|
|
|
|
for (i = 0; i < opr_sz / 2; ++i) {
|
|
d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
|
|
uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
|
|
int32_t src2, int32_t src3)
|
|
{
|
|
/* Simplify similarly to int_qrdmlah_s16 above. */
|
|
int64_t ret = (int64_t)src1 * src2;
|
|
ret = ((int64_t)src3 << 31) + ret + (1 << 30);
|
|
ret >>= 31;
|
|
if (ret != (int32_t)ret) {
|
|
SET_QC();
|
|
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
|
|
void *ve, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
int32_t *d = vd;
|
|
int32_t *n = vn;
|
|
int32_t *m = vm;
|
|
CPUARMState *env = ve;
|
|
uintptr_t i;
|
|
|
|
for (i = 0; i < opr_sz / 4; ++i) {
|
|
d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
/* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
|
|
uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
|
|
int32_t src2, int32_t src3)
|
|
{
|
|
/* Simplify similarly to int_qrdmlsh_s16 above. */
|
|
int64_t ret = (int64_t)src1 * src2;
|
|
ret = ((int64_t)src3 << 31) - ret + (1 << 30);
|
|
ret >>= 31;
|
|
if (ret != (int32_t)ret) {
|
|
SET_QC();
|
|
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
|
|
void *ve, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
int32_t *d = vd;
|
|
int32_t *n = vn;
|
|
int32_t *m = vm;
|
|
CPUARMState *env = ve;
|
|
uintptr_t i;
|
|
|
|
for (i = 0; i < opr_sz / 4; ++i) {
|
|
d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
/* Integer 8 and 16-bit dot-product.
|
|
*
|
|
* Note that for the loops herein, host endianness does not matter
|
|
* with respect to the ordering of data within the 64-bit lanes.
|
|
* All elements are treated equally, no matter where they are.
|
|
*/
|
|
|
|
void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc);
|
|
uint32_t *d = vd;
|
|
int8_t *n = vn, *m = vm;
|
|
|
|
for (i = 0; i < opr_sz / 4; ++i) {
|
|
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
|
|
+ n[i * 4 + 1] * m[i * 4 + 1]
|
|
+ n[i * 4 + 2] * m[i * 4 + 2]
|
|
+ n[i * 4 + 3] * m[i * 4 + 3];
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc);
|
|
uint32_t *d = vd;
|
|
uint8_t *n = vn, *m = vm;
|
|
|
|
for (i = 0; i < opr_sz / 4; ++i) {
|
|
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
|
|
+ n[i * 4 + 1] * m[i * 4 + 1]
|
|
+ n[i * 4 + 2] * m[i * 4 + 2]
|
|
+ n[i * 4 + 3] * m[i * 4 + 3];
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc);
|
|
uint64_t *d = vd;
|
|
int16_t *n = vn, *m = vm;
|
|
|
|
for (i = 0; i < opr_sz / 8; ++i) {
|
|
d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
|
|
+ (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
|
|
+ (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
|
|
+ (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc);
|
|
uint64_t *d = vd;
|
|
uint16_t *n = vn, *m = vm;
|
|
|
|
for (i = 0; i < opr_sz / 8; ++i) {
|
|
d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
|
|
+ (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
|
|
+ (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
|
|
+ (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
|
|
intptr_t index = simd_data(desc);
|
|
uint32_t *d = vd;
|
|
int8_t *n = vn;
|
|
int8_t *m_indexed = (int8_t *)vm + index * 4;
|
|
|
|
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
|
|
* Otherwise opr_sz is a multiple of 16.
|
|
*/
|
|
segend = MIN(4, opr_sz_4);
|
|
i = 0;
|
|
do {
|
|
int8_t m0 = m_indexed[i * 4 + 0];
|
|
int8_t m1 = m_indexed[i * 4 + 1];
|
|
int8_t m2 = m_indexed[i * 4 + 2];
|
|
int8_t m3 = m_indexed[i * 4 + 3];
|
|
|
|
do {
|
|
d[i] += n[i * 4 + 0] * m0
|
|
+ n[i * 4 + 1] * m1
|
|
+ n[i * 4 + 2] * m2
|
|
+ n[i * 4 + 3] * m3;
|
|
} while (++i < segend);
|
|
segend = i + 4;
|
|
} while (i < opr_sz_4);
|
|
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
|
|
intptr_t index = simd_data(desc);
|
|
uint32_t *d = vd;
|
|
uint8_t *n = vn;
|
|
uint8_t *m_indexed = (uint8_t *)vm + index * 4;
|
|
|
|
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
|
|
* Otherwise opr_sz is a multiple of 16.
|
|
*/
|
|
segend = MIN(4, opr_sz_4);
|
|
i = 0;
|
|
do {
|
|
uint8_t m0 = m_indexed[i * 4 + 0];
|
|
uint8_t m1 = m_indexed[i * 4 + 1];
|
|
uint8_t m2 = m_indexed[i * 4 + 2];
|
|
uint8_t m3 = m_indexed[i * 4 + 3];
|
|
|
|
do {
|
|
d[i] += n[i * 4 + 0] * m0
|
|
+ n[i * 4 + 1] * m1
|
|
+ n[i * 4 + 2] * m2
|
|
+ n[i * 4 + 3] * m3;
|
|
} while (++i < segend);
|
|
segend = i + 4;
|
|
} while (i < opr_sz_4);
|
|
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
|
|
intptr_t index = simd_data(desc);
|
|
uint64_t *d = vd;
|
|
int16_t *n = vn;
|
|
int16_t *m_indexed = (int16_t *)vm + index * 4;
|
|
|
|
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
|
|
* Process the entire segment all at once, writing back the results
|
|
* only after we've consumed all of the inputs.
|
|
*/
|
|
for (i = 0; i < opr_sz_8 ; i += 2) {
|
|
uint64_t d0, d1;
|
|
|
|
d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
|
|
d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
|
|
d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
|
|
d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
|
|
d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
|
|
d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
|
|
d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
|
|
d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
|
|
|
|
d[i + 0] += d0;
|
|
d[i + 1] += d1;
|
|
}
|
|
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
|
|
{
|
|
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
|
|
intptr_t index = simd_data(desc);
|
|
uint64_t *d = vd;
|
|
uint16_t *n = vn;
|
|
uint16_t *m_indexed = (uint16_t *)vm + index * 4;
|
|
|
|
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
|
|
* Process the entire segment all at once, writing back the results
|
|
* only after we've consumed all of the inputs.
|
|
*/
|
|
for (i = 0; i < opr_sz_8 ; i += 2) {
|
|
uint64_t d0, d1;
|
|
|
|
d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
|
|
d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
|
|
d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
|
|
d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
|
|
d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
|
|
d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
|
|
d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
|
|
d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
|
|
|
|
d[i + 0] += d0;
|
|
d[i + 1] += d1;
|
|
}
|
|
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float16 *d = vd;
|
|
float16 *n = vn;
|
|
float16 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = neg_real ^ 1;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 15;
|
|
neg_imag <<= 15;
|
|
|
|
for (i = 0; i < opr_sz / 2; i += 2) {
|
|
float16 e0 = n[H2(i)];
|
|
float16 e1 = m[H2(i + 1)] ^ neg_imag;
|
|
float16 e2 = n[H2(i + 1)];
|
|
float16 e3 = m[H2(i)] ^ neg_real;
|
|
|
|
d[H2(i)] = float16_add(e0, e1, fpst);
|
|
d[H2(i + 1)] = float16_add(e2, e3, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float32 *d = vd;
|
|
float32 *n = vn;
|
|
float32 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = neg_real ^ 1;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 31;
|
|
neg_imag <<= 31;
|
|
|
|
for (i = 0; i < opr_sz / 4; i += 2) {
|
|
float32 e0 = n[H4(i)];
|
|
float32 e1 = m[H4(i + 1)] ^ neg_imag;
|
|
float32 e2 = n[H4(i + 1)];
|
|
float32 e3 = m[H4(i)] ^ neg_real;
|
|
|
|
d[H4(i)] = float32_add(e0, e1, fpst);
|
|
d[H4(i + 1)] = float32_add(e2, e3, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float64 *d = vd;
|
|
float64 *n = vn;
|
|
float64 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
|
|
uint64_t neg_imag = neg_real ^ 1;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 63;
|
|
neg_imag <<= 63;
|
|
|
|
for (i = 0; i < opr_sz / 8; i += 2) {
|
|
float64 e0 = n[i];
|
|
float64 e1 = m[i + 1] ^ neg_imag;
|
|
float64 e2 = n[i + 1];
|
|
float64 e3 = m[i] ^ neg_real;
|
|
|
|
d[i] = float64_add(e0, e1, fpst);
|
|
d[i + 1] = float64_add(e2, e3, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float16 *d = vd;
|
|
float16 *n = vn;
|
|
float16 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
|
|
uint32_t neg_real = flip ^ neg_imag;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 15;
|
|
neg_imag <<= 15;
|
|
|
|
for (i = 0; i < opr_sz / 2; i += 2) {
|
|
float16 e2 = n[H2(i + flip)];
|
|
float16 e1 = m[H2(i + flip)] ^ neg_real;
|
|
float16 e4 = e2;
|
|
float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
|
|
|
|
d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
|
|
d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float16 *d = vd;
|
|
float16 *n = vn;
|
|
float16 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
|
|
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
|
|
uint32_t neg_real = flip ^ neg_imag;
|
|
intptr_t elements = opr_sz / sizeof(float16);
|
|
intptr_t eltspersegment = 16 / sizeof(float16);
|
|
intptr_t i, j;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 15;
|
|
neg_imag <<= 15;
|
|
|
|
for (i = 0; i < elements; i += eltspersegment) {
|
|
float16 mr = m[H2(i + 2 * index + 0)];
|
|
float16 mi = m[H2(i + 2 * index + 1)];
|
|
float16 e1 = neg_real ^ (flip ? mi : mr);
|
|
float16 e3 = neg_imag ^ (flip ? mr : mi);
|
|
|
|
for (j = i; j < i + eltspersegment; j += 2) {
|
|
float16 e2 = n[H2(j + flip)];
|
|
float16 e4 = e2;
|
|
|
|
d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
|
|
d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
|
|
}
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float32 *d = vd;
|
|
float32 *n = vn;
|
|
float32 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
|
|
uint32_t neg_real = flip ^ neg_imag;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 31;
|
|
neg_imag <<= 31;
|
|
|
|
for (i = 0; i < opr_sz / 4; i += 2) {
|
|
float32 e2 = n[H4(i + flip)];
|
|
float32 e1 = m[H4(i + flip)] ^ neg_real;
|
|
float32 e4 = e2;
|
|
float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
|
|
|
|
d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
|
|
d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float32 *d = vd;
|
|
float32 *n = vn;
|
|
float32 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
|
|
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
|
|
uint32_t neg_real = flip ^ neg_imag;
|
|
intptr_t elements = opr_sz / sizeof(float32);
|
|
intptr_t eltspersegment = 16 / sizeof(float32);
|
|
intptr_t i, j;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 31;
|
|
neg_imag <<= 31;
|
|
|
|
for (i = 0; i < elements; i += eltspersegment) {
|
|
float32 mr = m[H4(i + 2 * index + 0)];
|
|
float32 mi = m[H4(i + 2 * index + 1)];
|
|
float32 e1 = neg_real ^ (flip ? mi : mr);
|
|
float32 e3 = neg_imag ^ (flip ? mr : mi);
|
|
|
|
for (j = i; j < i + eltspersegment; j += 2) {
|
|
float32 e2 = n[H4(j + flip)];
|
|
float32 e4 = e2;
|
|
|
|
d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
|
|
d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
|
|
}
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
|
|
void *vfpst, uint32_t desc)
|
|
{
|
|
uintptr_t opr_sz = simd_oprsz(desc);
|
|
float64 *d = vd;
|
|
float64 *n = vn;
|
|
float64 *m = vm;
|
|
float_status *fpst = vfpst;
|
|
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
|
|
uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
|
|
uint64_t neg_real = flip ^ neg_imag;
|
|
uintptr_t i;
|
|
|
|
/* Shift boolean to the sign bit so we can xor to negate. */
|
|
neg_real <<= 63;
|
|
neg_imag <<= 63;
|
|
|
|
for (i = 0; i < opr_sz / 8; i += 2) {
|
|
float64 e2 = n[i + flip];
|
|
float64 e1 = m[i + flip] ^ neg_real;
|
|
float64 e4 = e2;
|
|
float64 e3 = m[i + 1 - flip] ^ neg_imag;
|
|
|
|
d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
|
|
d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
|
|
}
|
|
clear_tail(d, opr_sz, simd_maxsz(desc));
|
|
}
|
|
|
|
#define DO_2OP(NAME, FUNC, TYPE) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
TYPE *d = vd, *n = vn; \
|
|
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
|
|
d[i] = FUNC(n[i], stat); \
|
|
} \
|
|
}
|
|
|
|
DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
|
|
DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
|
|
DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
|
|
|
|
DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
|
|
DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
|
|
DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
|
|
|
|
#undef DO_2OP
|
|
|
|
/* Floating-point trigonometric starting value.
|
|
* See the ARM ARM pseudocode function FPTrigSMul.
|
|
*/
|
|
static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
|
|
{
|
|
float16 result = float16_mul(op1, op1, stat);
|
|
if (!float16_is_any_nan(result)) {
|
|
result = float16_set_sign(result, op2 & 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
|
|
{
|
|
float32 result = float32_mul(op1, op1, stat);
|
|
if (!float32_is_any_nan(result)) {
|
|
result = float32_set_sign(result, op2 & 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
|
|
{
|
|
float64 result = float64_mul(op1, op1, stat);
|
|
if (!float64_is_any_nan(result)) {
|
|
result = float64_set_sign(result, op2 & 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define DO_3OP(NAME, FUNC, TYPE) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, oprsz = simd_oprsz(desc); \
|
|
TYPE *d = vd, *n = vn, *m = vm; \
|
|
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
|
|
d[i] = FUNC(n[i], m[i], stat); \
|
|
} \
|
|
}
|
|
|
|
DO_3OP(gvec_fadd_h, float16_add, float16)
|
|
DO_3OP(gvec_fadd_s, float32_add, float32)
|
|
DO_3OP(gvec_fadd_d, float64_add, float64)
|
|
|
|
DO_3OP(gvec_fsub_h, float16_sub, float16)
|
|
DO_3OP(gvec_fsub_s, float32_sub, float32)
|
|
DO_3OP(gvec_fsub_d, float64_sub, float64)
|
|
|
|
DO_3OP(gvec_fmul_h, float16_mul, float16)
|
|
DO_3OP(gvec_fmul_s, float32_mul, float32)
|
|
DO_3OP(gvec_fmul_d, float64_mul, float64)
|
|
|
|
DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
|
|
DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
|
|
DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
|
|
|
|
#ifdef TARGET_AARCH64
|
|
|
|
DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
|
|
DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
|
|
DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
|
|
|
|
DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
|
|
DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
|
|
DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
|
|
|
|
#endif
|
|
#undef DO_3OP
|
|
|
|
/* For the indexed ops, SVE applies the index per 128-bit vector segment.
|
|
* For AdvSIMD, there is of course only one such vector segment.
|
|
*/
|
|
|
|
#define DO_MUL_IDX(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
|
|
intptr_t idx = simd_data(desc); \
|
|
TYPE *d = vd, *n = vn, *m = vm; \
|
|
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
|
|
TYPE mm = m[H(i + idx)]; \
|
|
for (j = 0; j < segment; j++) { \
|
|
d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
|
|
DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
|
|
DO_MUL_IDX(gvec_fmul_idx_d, float64, )
|
|
|
|
#undef DO_MUL_IDX
|
|
|
|
#define DO_FMLA_IDX(NAME, TYPE, H) \
|
|
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
|
|
void *stat, uint32_t desc) \
|
|
{ \
|
|
intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
|
|
TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
|
|
intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
|
|
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
|
|
op1_neg <<= (8 * sizeof(TYPE) - 1); \
|
|
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
|
|
TYPE mm = m[H(i + idx)]; \
|
|
for (j = 0; j < segment; j++) { \
|
|
d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
|
|
mm, a[i + j], 0, stat); \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
|
|
DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
|
|
DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
|
|
|
|
#undef DO_FMLA_IDX
|