mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-22 19:10:57 +00:00
20994eca53
flatview_add_to_dispatch() registers page based on the condition of *section*, which may looks like this: |s|PPPPPPP|s| where s stands for subpage and P for page. The procedure of this function could be described as: - register first subpage - register page - register last subpage This means the procedure could be simplified into these three steps instead of a loop iteration. This patch refactors the function into three corresponding steps and adds some comment to clarify it. Backports commit 494d199727ba248c96326b4e1c97f86eb11a5ec7 from qemu
2521 lines
71 KiB
C
2521 lines
71 KiB
C
/*
|
|
* Virtual page mapping
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#ifndef _WIN32
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "qemu/cutils.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/qdev.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/timer.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include "qemu.h"
|
|
#endif
|
|
#include "exec/cpu-all.h"
|
|
|
|
#include "translate-all.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
|
|
#include "qemu/range.h"
|
|
#ifndef _WIN32
|
|
#include "qemu/mmap-alloc.h"
|
|
#endif
|
|
|
|
#include "uc_priv.h"
|
|
|
|
//#define DEBUG_SUBPAGE
|
|
|
|
bool set_preferred_target_page_bits(struct uc_struct *uc, int bits)
|
|
{
|
|
/* The target page size is the lowest common denominator for all
|
|
* the CPUs in the system, so we can only make it smaller, never
|
|
* larger. And we can't make it smaller once we've committed to
|
|
* a particular size.
|
|
*/
|
|
#ifdef TARGET_PAGE_BITS_VARY
|
|
assert(bits >= TARGET_PAGE_BITS_MIN);
|
|
if (uc->target_page_bits == 0 || uc->target_page_bits > bits) {
|
|
if (uc->target_page_bits_decided) {
|
|
return false;
|
|
}
|
|
uc->target_page_bits = bits;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* current CPU in the current thread. It is only valid inside
|
|
cpu_exec() */
|
|
//DEFINE_TLS(CPUState *, current_cpu);
|
|
|
|
static void finalize_target_page_bits(struct uc_struct *uc)
|
|
{
|
|
#ifdef TARGET_PAGE_BITS_VARY
|
|
if (uc->target_page_bits == 0) {
|
|
uc->target_page_bits = TARGET_PAGE_BITS_MIN;
|
|
}
|
|
uc->target_page_bits_decided = true;
|
|
#endif
|
|
}
|
|
|
|
typedef struct PhysPageEntry PhysPageEntry;
|
|
|
|
struct PhysPageEntry {
|
|
/* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
|
|
uint32_t skip : 6;
|
|
/* index into phys_sections (!skip) or phys_map_nodes (skip) */
|
|
uint32_t ptr : 26;
|
|
};
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
|
|
|
|
/* Size of the L2 (and L3, etc) page tables. */
|
|
#define ADDR_SPACE_BITS 64
|
|
|
|
#define P_L2_BITS 9
|
|
#define P_L2_SIZE (1 << P_L2_BITS)
|
|
|
|
#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
|
|
|
|
typedef PhysPageEntry Node[P_L2_SIZE];
|
|
|
|
typedef struct PhysPageMap {
|
|
unsigned sections_nb;
|
|
unsigned sections_nb_alloc;
|
|
unsigned nodes_nb;
|
|
unsigned nodes_nb_alloc;
|
|
Node *nodes;
|
|
MemoryRegionSection *sections;
|
|
} PhysPageMap;
|
|
|
|
struct AddressSpaceDispatch {
|
|
MemoryRegionSection *mru_section;
|
|
/* This is a multi-level map on the physical address space.
|
|
* The bottom level has pointers to MemoryRegionSections.
|
|
*/
|
|
PhysPageEntry phys_map;
|
|
PhysPageMap map;
|
|
struct uc_struct *uc;
|
|
};
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
FlatView *fv;
|
|
hwaddr base;
|
|
uint16_t sub_section[];
|
|
} subpage_t;
|
|
|
|
#define PHYS_SECTION_UNASSIGNED 0
|
|
#define PHYS_SECTION_NOTDIRTY 1
|
|
#define PHYS_SECTION_ROM 2
|
|
#define PHYS_SECTION_WATCH 3
|
|
|
|
static void memory_map_init(struct uc_struct *uc);
|
|
static void tcg_commit(MemoryListener *listener);
|
|
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void phys_map_node_reserve(struct uc_struct *uc, PhysPageMap *map, unsigned nodes)
|
|
{
|
|
if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, uc->phys_map_node_alloc_hint);
|
|
map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
|
|
map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
|
|
uc->phys_map_node_alloc_hint = map->nodes_nb_alloc;
|
|
}
|
|
}
|
|
|
|
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
|
|
{
|
|
unsigned i;
|
|
uint32_t ret;
|
|
PhysPageEntry e;
|
|
PhysPageEntry *p;
|
|
|
|
ret = map->nodes_nb++;
|
|
p = map->nodes[ret];
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != map->nodes_nb_alloc);
|
|
|
|
e.skip = leaf ? 0 : 1;
|
|
e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
|
|
for (i = 0; i < P_L2_SIZE; ++i) {
|
|
memcpy(&p[i], &e, sizeof(e));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
|
|
hwaddr *index, hwaddr *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
|
|
|
|
if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc(map, level == 0);
|
|
}
|
|
p = map->nodes[lp->ptr];
|
|
lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[P_L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->skip = 0;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(map, lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(AddressSpaceDispatch *d,
|
|
hwaddr index, hwaddr nb,
|
|
uint16_t leaf)
|
|
{
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(d->uc, &d->map, 3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
|
|
* and update our entry so we can skip it and go directly to the destination.
|
|
*/
|
|
static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
|
|
{
|
|
unsigned valid_ptr = P_L2_SIZE;
|
|
int valid = 0;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = nodes[lp->ptr];
|
|
for (i = 0; i < P_L2_SIZE; i++) {
|
|
if (p[i].ptr == PHYS_MAP_NODE_NIL) {
|
|
continue;
|
|
}
|
|
|
|
valid_ptr = i;
|
|
valid++;
|
|
if (p[i].skip) {
|
|
phys_page_compact(&p[i], nodes, compacted);
|
|
}
|
|
}
|
|
|
|
/* We can only compress if there's only one child. */
|
|
if (valid != 1) {
|
|
return;
|
|
}
|
|
|
|
assert(valid_ptr < P_L2_SIZE);
|
|
|
|
/* Don't compress if it won't fit in the # of bits we have. */
|
|
if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
|
|
return;
|
|
}
|
|
|
|
lp->ptr = p[valid_ptr].ptr;
|
|
if (!p[valid_ptr].skip) {
|
|
/* If our only child is a leaf, make this a leaf. */
|
|
/* By design, we should have made this node a leaf to begin with so we
|
|
* should never reach here.
|
|
* But since it's so simple to handle this, let's do it just in case we
|
|
* change this rule.
|
|
*/
|
|
lp->skip = 0;
|
|
} else {
|
|
lp->skip += p[valid_ptr].skip;
|
|
}
|
|
}
|
|
|
|
void address_space_dispatch_compact(AddressSpaceDispatch *d)
|
|
{
|
|
//DECLARE_BITMAP(compacted, nodes_nb);
|
|
// this isnt actually used
|
|
unsigned long* compacted = NULL;
|
|
|
|
if (d->phys_map.skip) {
|
|
phys_page_compact(&d->phys_map, d->map.nodes, compacted);
|
|
}
|
|
}
|
|
|
|
static inline bool section_covers_addr(const MemoryRegionSection *section,
|
|
hwaddr addr)
|
|
{
|
|
/* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
|
|
* the section must cover the entire address space.
|
|
*/
|
|
return int128_gethi(section->size) ||
|
|
range_covers_byte(section->offset_within_address_space,
|
|
int128_getlo(section->size), addr);
|
|
}
|
|
|
|
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
|
|
{
|
|
PhysPageEntry lp = d->phys_map, *p;
|
|
Node *nodes = d->map.nodes;
|
|
MemoryRegionSection *sections = d->map.sections;
|
|
hwaddr index = addr >> TARGET_PAGE_BITS;
|
|
int i;
|
|
|
|
for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
p = nodes[lp.ptr];
|
|
lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
|
|
}
|
|
|
|
if (section_covers_addr(§ions[lp.ptr], addr)) {
|
|
return §ions[lp.ptr];
|
|
} else {
|
|
return §ions[PHYS_SECTION_UNASSIGNED];
|
|
}
|
|
}
|
|
|
|
bool memory_region_is_unassigned(struct uc_struct* uc, MemoryRegion *mr)
|
|
{
|
|
return mr != &uc->io_mem_rom && mr != &uc->io_mem_notdirty &&
|
|
!mr->rom_device && mr != &uc->io_mem_watch;
|
|
}
|
|
|
|
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
|
|
hwaddr addr,
|
|
bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section = atomic_read(&d->mru_section);
|
|
subpage_t *subpage;
|
|
bool update;
|
|
|
|
if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
|
|
section_covers_addr(section, addr)) {
|
|
update = false;
|
|
} else {
|
|
section = phys_page_find(d, addr);
|
|
update = true;
|
|
}
|
|
if (resolve_subpage && section->mr->subpage) {
|
|
subpage = container_of(section->mr, subpage_t, iomem);
|
|
section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
|
|
}
|
|
if (update) {
|
|
atomic_set(&d->mru_section, section);
|
|
}
|
|
return section;
|
|
}
|
|
|
|
static MemoryRegionSection *
|
|
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool resolve_subpage)
|
|
{
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
Int128 diff;
|
|
|
|
section = address_space_lookup_region(d, addr, resolve_subpage);
|
|
/* Compute offset within MemoryRegionSection */
|
|
addr -= section->offset_within_address_space;
|
|
|
|
/* Compute offset within MemoryRegion */
|
|
*xlat = addr + section->offset_within_region;
|
|
|
|
mr = section->mr;
|
|
|
|
/* MMIO registers can be expected to perform full-width accesses based only
|
|
* on their address, without considering adjacent registers that could
|
|
* decode to completely different MemoryRegions. When such registers
|
|
* exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
|
|
* regions overlap wildly. For this reason we cannot clamp the accesses
|
|
* here.
|
|
*
|
|
* If the length is small (as is the case for address_space_ldl/stl),
|
|
* everything works fine. If the incoming length is large, however,
|
|
* the caller really has to do the clamping through memory_access_size.
|
|
*/
|
|
if (memory_region_is_ram(mr)) {
|
|
diff = int128_sub(section->size, int128_make64(addr));
|
|
*plen = int128_get64(int128_min(diff, int128_make64(*plen)));
|
|
}
|
|
return section;
|
|
}
|
|
|
|
static MemoryRegionSection flatview_do_translate(FlatView *fv,
|
|
hwaddr addr,
|
|
hwaddr *xlat,
|
|
hwaddr *plen,
|
|
bool is_write,
|
|
bool is_mmio,
|
|
AddressSpace **target_as)
|
|
{
|
|
IOMMUTLBEntry iotlb;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
MemoryRegionSection failure_section = {0};
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
|
|
for (;;) {
|
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
|
section = address_space_translate_internal(
|
|
flatview_to_dispatch(fv), addr, &addr,
|
|
plen, is_mmio);
|
|
mr = section->mr;
|
|
|
|
if (!mr->iommu_ops) {
|
|
break;
|
|
}
|
|
|
|
iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
|
|
IOMMU_WO : IOMMU_RO);
|
|
addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
|
|
| (addr & iotlb.addr_mask));
|
|
*plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
|
|
if (!(iotlb.perm & (1 << is_write))) {
|
|
goto translate_fail;
|
|
}
|
|
|
|
fv = address_space_to_flatview(iotlb.target_as);
|
|
*target_as = iotlb.target_as;
|
|
}
|
|
|
|
*xlat = addr;
|
|
|
|
return *section;
|
|
|
|
translate_fail:
|
|
failure_section.mr = &d->uc->io_mem_unassigned;
|
|
return failure_section;
|
|
}
|
|
|
|
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
|
|
bool is_write)
|
|
{
|
|
MemoryRegionSection section;
|
|
hwaddr xlat, plen;
|
|
IOMMUTLBEntry result = {0};
|
|
|
|
/* Try to get maximum page mask during translation. */
|
|
plen = (hwaddr)-1;
|
|
|
|
/* This can never be MMIO. */
|
|
section = flatview_do_translate(address_space_to_flatview(as), addr,
|
|
&xlat, &plen, is_write, false, &as);
|
|
|
|
/* Illegal translation */
|
|
if (section.mr == &as->uc->io_mem_unassigned) {
|
|
goto iotlb_fail;
|
|
}
|
|
|
|
/* Convert memory region offset into address space offset */
|
|
xlat += section.offset_within_address_space -
|
|
section.offset_within_region;
|
|
|
|
if (plen == (hwaddr)-1) {
|
|
/*
|
|
* We use default page size here. Logically it only happens
|
|
* for identity mappings.
|
|
*/
|
|
plen = TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
/* Convert to address mask */
|
|
plen -= 1;
|
|
|
|
result.target_as = as;
|
|
result.iova = addr & ~plen;
|
|
result.translated_addr = xlat & ~plen;
|
|
result.addr_mask = plen;
|
|
/* IOTLBs are for DMAs, and DMA only allows on RAMs. */
|
|
result.perm = IOMMU_RW;
|
|
return result;
|
|
|
|
iotlb_fail:
|
|
return result;
|
|
}
|
|
|
|
/* Called from RCU critical section */
|
|
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
|
|
hwaddr *plen, bool is_write)
|
|
{
|
|
MemoryRegion *mr;
|
|
MemoryRegionSection section;
|
|
AddressSpace *as = NULL;
|
|
|
|
/* This can be MMIO, so setup MMIO bit. */
|
|
section = flatview_do_translate(fv, addr, xlat, plen, is_write, true, &as);
|
|
mr = section.mr;
|
|
|
|
// Unicorn: if'd out
|
|
#if 0
|
|
if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
|
|
hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
|
|
*plen = MIN(page, *plen);
|
|
}
|
|
#endif
|
|
|
|
return mr;
|
|
}
|
|
|
|
MemoryRegionSection *
|
|
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
|
|
hwaddr *xlat, hwaddr *plen,
|
|
MemTxAttrs attrs, int *prot)
|
|
{
|
|
MemoryRegionSection *section;
|
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
|
AddressSpaceDispatch *d = atomic_read(&cpu->cpu_ases[asidx].memory_dispatch);
|
|
|
|
section = address_space_translate_internal(d, addr, xlat, plen, false);
|
|
|
|
assert(!section->mr->iommu_ops);
|
|
return section;
|
|
}
|
|
#endif
|
|
|
|
CPUState *qemu_get_cpu(struct uc_struct *uc, int index)
|
|
{
|
|
CPUState *cpu = uc->cpu;
|
|
if (cpu->cpu_index == index) {
|
|
return cpu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void cpu_address_space_init(CPUState *cpu, int asidx,
|
|
const char *prefix, MemoryRegion *mr)
|
|
{
|
|
CPUAddressSpace *newas;
|
|
AddressSpace *as = g_new0(AddressSpace, 1);
|
|
char *as_name;
|
|
|
|
assert(mr);
|
|
as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
|
|
address_space_init(cpu->uc, as, mr, as_name);
|
|
g_free(as_name);
|
|
|
|
/* Target code should have set num_ases before calling us */
|
|
assert(asidx < cpu->num_ases);
|
|
|
|
if (asidx == 0) {
|
|
/* address space 0 gets the convenience alias */
|
|
cpu->as = as;
|
|
}
|
|
|
|
/* KVM cannot currently support multiple address spaces. */
|
|
// Unicorn: commented out
|
|
//assert(asidx == 0 || !kvm_enabled());
|
|
|
|
if (!cpu->cpu_ases) {
|
|
cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
|
|
}
|
|
|
|
newas = &cpu->cpu_ases[asidx];
|
|
newas->cpu = cpu;
|
|
newas->as = as;
|
|
if (tcg_enabled(as->uc)) {
|
|
newas->tcg_as_listener.commit = tcg_commit;
|
|
memory_listener_register(as->uc, &newas->tcg_as_listener, as);
|
|
}
|
|
}
|
|
|
|
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
|
|
{
|
|
/* Return the AddressSpace corresponding to the specified index */
|
|
return cpu->cpu_ases[asidx].as;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static int cpu_get_free_index(Error **errp)
|
|
{
|
|
// Unicorn: if'd out
|
|
#if 0
|
|
int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
|
|
|
|
if (cpu >= MAX_CPUMASK_BITS) {
|
|
error_setg(errp, "Trying to use more CPUs than max of %d",
|
|
MAX_CPUMASK_BITS);
|
|
return -1;
|
|
}
|
|
|
|
bitmap_set(cpu_index_map, cpu, 1);
|
|
return cpu;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void cpu_exec_exit(CPUState *cpu)
|
|
{
|
|
if (cpu->cpu_index == -1) {
|
|
/* cpu_index was never allocated by this @cpu or was already freed. */
|
|
return;
|
|
}
|
|
|
|
// Unicorn: if'd out
|
|
#if 0
|
|
bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
|
|
#endif
|
|
cpu->cpu_index = -1;
|
|
}
|
|
#else
|
|
|
|
static int cpu_get_free_index(Error **errp)
|
|
{
|
|
// Unicorn: if'd out
|
|
#if 0
|
|
CPUState *some_cpu;
|
|
int cpu_index = 0;
|
|
|
|
CPU_FOREACH(some_cpu) {
|
|
cpu_index++;
|
|
}
|
|
return cpu_index;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void cpu_exec_exit(CPUState *cpu)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void cpu_exec_init(CPUState *cpu, Error **errp, void *opaque)
|
|
{
|
|
struct uc_struct *uc = opaque;
|
|
CPUClass *cc = CPU_GET_CLASS(uc, cpu);
|
|
CPUArchState *env = cpu->env_ptr;
|
|
Error *local_err = NULL;
|
|
|
|
cpu->as = NULL;
|
|
cpu->num_ases = 0;
|
|
cpu->uc = uc;
|
|
env->uc = uc;
|
|
|
|
cpu->cpu_index = cpu_get_free_index(&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
// TODO: assert uc does not already have a cpu?
|
|
uc->cpu = cpu;
|
|
|
|
// Unicorn: Required to clean-slate TLB state
|
|
tlb_flush(cpu);
|
|
|
|
if (tcg_enabled(uc) && !cc->tcg_initialized) {
|
|
cc->tcg_initialized = true;
|
|
cc->tcg_initialize(uc);
|
|
}
|
|
tlb_init(cpu);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
// Unicorn: commented out
|
|
/* This is a softmmu CPU object, so create a property for it
|
|
* so users can wire up its memory. (This can't go in qom/cpu.c
|
|
* because that file is compiled only once for both user-mode
|
|
* and system builds.) The default if no link is set up is to use
|
|
* the system address space.
|
|
*/
|
|
/*object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
|
|
(Object **)&cpu->memory,
|
|
qdev_prop_allow_set_link_before_realize,
|
|
OBJ_PROP_LINK_UNREF_ON_RELEASE,
|
|
&error_abort);*/
|
|
cpu->memory = uc->system_memory;
|
|
// Unicorn: commented out
|
|
/*object_ref(OBJECT(cpu->memory)); */
|
|
#endif
|
|
}
|
|
|
|
const char *parse_cpu_model(struct uc_struct *uc, const char *cpu_model)
|
|
{
|
|
ObjectClass *oc;
|
|
CPUClass *cc;
|
|
gchar **model_pieces;
|
|
const char *cpu_type;
|
|
|
|
model_pieces = g_strsplit(cpu_model, ",", 2);
|
|
|
|
oc = cpu_class_by_name(uc, CPU_RESOLVING_TYPE, model_pieces[0]);
|
|
if (oc == NULL) {
|
|
fprintf(stderr, "unable to find CPU model '%s'", model_pieces[0]);
|
|
g_strfreev(model_pieces);
|
|
return NULL;
|
|
}
|
|
|
|
cpu_type = object_class_get_name(oc);
|
|
cc = CPU_CLASS(uc, oc);
|
|
cc->parse_features(uc, cpu_type, model_pieces[1], &error_fatal);
|
|
g_strfreev(model_pieces);
|
|
return cpu_type;
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
/* Flush the whole TB as this will not have race conditions
|
|
* even if we don't have proper locking yet.
|
|
* Ideally we would just invalidate the TBs for the
|
|
* specified PC.
|
|
*/
|
|
tb_flush(cpu);
|
|
}
|
|
#else
|
|
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
|
|
{
|
|
MemTxAttrs attrs;
|
|
hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
if (phys != -1) {
|
|
/* Locks grabbed by tb_invalidate_phys_addr */
|
|
tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
|
|
phys | (pc & ~TARGET_PAGE_MASK));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#else
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
/* forbid ranges which are empty or run off the end of the address space */
|
|
if (len == 0 || (addr + len - 1) < addr) {
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len = len;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
|
|
}
|
|
|
|
tlb_flush_page(cpu, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint. */
|
|
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
|
|
int flags)
|
|
{
|
|
CPUWatchpoint *wp;
|
|
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (addr == wp->vaddr && len == wp->len
|
|
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(cpu, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
|
|
if (wp->flags & mask) {
|
|
cpu_watchpoint_remove_by_ref(cpu, wp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true if this watchpoint address matches the specified
|
|
* access (ie the address range covered by the watchpoint overlaps
|
|
* partially or completely with the address range covered by the
|
|
* access).
|
|
*/
|
|
static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
|
|
vaddr addr,
|
|
vaddr len)
|
|
{
|
|
/* We know the lengths are non-zero, but a little caution is
|
|
* required to avoid errors in the case where the range ends
|
|
* exactly at the top of the address space and so addr + len
|
|
* wraps round to zero.
|
|
*/
|
|
vaddr wpend = wp->vaddr + wp->len - 1;
|
|
vaddr addrend = addr + len - 1;
|
|
|
|
return !(addr > wpend || wp->vaddr > addrend);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB) {
|
|
QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
|
|
}
|
|
|
|
breakpoint_invalidate(cpu, pc);
|
|
|
|
if (breakpoint) {
|
|
*breakpoint = bp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
|
|
{
|
|
QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(cpu, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
|
|
{
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
|
|
if (bp->flags & mask) {
|
|
cpu_breakpoint_remove_by_ref(cpu, bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
|
|
CPU loop after each instruction */
|
|
void cpu_single_step(CPUState *cpu, int enabled)
|
|
{
|
|
if (cpu->singlestep_enabled != enabled) {
|
|
cpu->singlestep_enabled = enabled;
|
|
/* must flush all the translated code to avoid inconsistencies */
|
|
/* XXX: only flush what is necessary */
|
|
tb_flush(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_abort(CPUState *cpu, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap2;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
fprintf(stderr, "qemu: fatal: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
if (qemu_log_enabled()) {
|
|
qemu_log("qemu: fatal: ");
|
|
qemu_log_vprintf(fmt, ap2);
|
|
qemu_log("\n");
|
|
log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
qemu_log_flush();
|
|
qemu_log_close();
|
|
}
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
{
|
|
struct sigaction act;
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
act.sa_flags = 0;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
}
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static RAMBlock *qemu_get_ram_block(struct uc_struct *uc, ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* The list is protected by the iothread lock here. */
|
|
block = uc->ram_list.mru_block;
|
|
if (block && addr - block->offset < block->max_length) {
|
|
return block;
|
|
}
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
if (addr - block->offset < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
found:
|
|
uc->ram_list.mru_block = block;
|
|
return block;
|
|
}
|
|
|
|
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
hwaddr paddr, hwaddr xlat,
|
|
int prot,
|
|
target_ulong *address)
|
|
{
|
|
hwaddr iotlb;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (memory_region_is_ram(section->mr)) {
|
|
/* Normal RAM. */
|
|
iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ xlat;
|
|
if (!section->readonly) {
|
|
iotlb |= PHYS_SECTION_NOTDIRTY;
|
|
} else {
|
|
iotlb |= PHYS_SECTION_ROM;
|
|
}
|
|
} else {
|
|
AddressSpaceDispatch *d;
|
|
|
|
d = flatview_to_dispatch(section->fv);
|
|
iotlb = section - d->map.sections;
|
|
iotlb += xlat;
|
|
}
|
|
|
|
/* Make accesses to pages with watchpoints go via the
|
|
watchpoint trap routines. */
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
|
|
/* Avoid trapping reads of pages with a write breakpoint. */
|
|
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
|
iotlb = PHYS_SECTION_WATCH + paddr;
|
|
*address |= TLB_MMIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
|
|
|
|
static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
|
|
qemu_anon_ram_alloc;
|
|
|
|
/*
|
|
* Set a custom physical guest memory alloator.
|
|
* Accelerators with unusual needs may need this. Hopefully, we can
|
|
* get rid of it eventually.
|
|
*/
|
|
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
|
|
{
|
|
phys_mem_alloc = alloc;
|
|
}
|
|
|
|
static uint16_t phys_section_add(PhysPageMap *map,
|
|
MemoryRegionSection *section)
|
|
{
|
|
/* The physical section number is ORed with a page-aligned
|
|
* pointer to produce the iotlb entries. Thus it should
|
|
* never overflow into the page-aligned value.
|
|
*/
|
|
assert(map->sections_nb < TARGET_PAGE_SIZE);
|
|
|
|
if (map->sections_nb == map->sections_nb_alloc) {
|
|
map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
|
|
map->sections = g_renew(MemoryRegionSection, map->sections,
|
|
map->sections_nb_alloc);
|
|
}
|
|
map->sections[map->sections_nb] = *section;
|
|
memory_region_ref(section->mr);
|
|
return map->sections_nb++;
|
|
}
|
|
|
|
static void phys_section_destroy(MemoryRegion *mr)
|
|
{
|
|
bool have_sub_page = mr->subpage;
|
|
|
|
memory_region_unref(mr);
|
|
|
|
if (have_sub_page) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
object_unref(mr->uc, OBJECT(&subpage->iomem));
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void phys_sections_free(PhysPageMap *map)
|
|
{
|
|
while (map->sections_nb > 0) {
|
|
MemoryRegionSection *section = &map->sections[--map->sections_nb];
|
|
phys_section_destroy(section->mr);
|
|
}
|
|
g_free(map->sections);
|
|
g_free(map->nodes);
|
|
}
|
|
|
|
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
subpage_t *subpage;
|
|
hwaddr base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(d, base);
|
|
hwaddr start, end;
|
|
MemoryRegionSection subsection = MemoryRegionSection_make(NULL, NULL, 0, int128_make64(TARGET_PAGE_SIZE), base, false);
|
|
struct uc_struct *uc = d->uc;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &uc->io_mem_unassigned);
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(fv, base);
|
|
subsection.fv = fv;
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(&d->map, &subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + int128_get64(section->size) - 1;
|
|
subpage_register(subpage, start, end,
|
|
phys_section_add(&d->map, section));
|
|
//g_free(subpage);
|
|
}
|
|
|
|
|
|
static void register_multipage(FlatView *fv,
|
|
MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
uint16_t section_index = phys_section_add(&d->map, section);
|
|
uint64_t num_pages = int128_get64(int128_rshift(section->size,
|
|
TARGET_PAGE_BITS));
|
|
|
|
assert(num_pages);
|
|
phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
|
|
}
|
|
|
|
/*
|
|
* The range in *section* may look like this:
|
|
*
|
|
* |s|PPPPPPP|s|
|
|
*
|
|
* where s stands for subpage and P for page.
|
|
*/
|
|
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
|
|
{
|
|
MemoryRegionSection remain = *section;
|
|
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
|
|
|
|
/* register first subpage */
|
|
if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
|
|
uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
|
|
- remain.offset_within_address_space;
|
|
|
|
MemoryRegionSection now = remain;
|
|
now.size = int128_min(int128_make64(left), now.size);
|
|
register_subpage(fv, &now);
|
|
if (int128_eq(remain.size, now.size)) {
|
|
return;
|
|
}
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
}
|
|
|
|
/* register whole pages */
|
|
if (int128_ge(remain.size, page_size)) {
|
|
MemoryRegionSection now = remain;
|
|
now.size = int128_and(now.size, int128_neg(page_size));
|
|
register_multipage(fv, &now);
|
|
if (int128_eq(remain.size, now.size)) {
|
|
return;
|
|
}
|
|
remain.size = int128_sub(remain.size, now.size);
|
|
remain.offset_within_address_space += int128_get64(now.size);
|
|
remain.offset_within_region += int128_get64(now.size);
|
|
}
|
|
|
|
/* register last subpage */
|
|
register_subpage(fv, &remain);
|
|
}
|
|
|
|
#ifdef __linux__
|
|
|
|
#include <sys/vfs.h>
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
#endif
|
|
|
|
static ram_addr_t find_ram_offset(struct uc_struct *uc, ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
assert(size != 0); /* it would hand out same offset multiple times */
|
|
|
|
if (QLIST_EMPTY(&uc->ram_list.blocks)) {
|
|
return 0;
|
|
}
|
|
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
ram_addr_t end, next = RAM_ADDR_MAX;
|
|
|
|
end = block->offset + block->max_length;
|
|
|
|
QLIST_FOREACH(next_block, &uc->ram_list.blocks, next) {
|
|
if (next_block->offset >= end) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
if (next - end >= size && next - end < mingap) {
|
|
offset = end;
|
|
mingap = next - end;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
ram_addr_t last_ram_offset(struct uc_struct *uc)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t last = 0;
|
|
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
last = MAX(last, block->offset + block->max_length);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
|
|
{
|
|
}
|
|
|
|
const char *qemu_ram_get_idstr(RAMBlock *rb)
|
|
{
|
|
return rb->idstr;
|
|
}
|
|
|
|
bool qemu_ram_is_shared(RAMBlock *rb)
|
|
{
|
|
return rb->flags & RAM_SHARED;
|
|
}
|
|
|
|
void qemu_ram_unset_idstr(struct uc_struct *uc, RAMBlock *block)
|
|
{
|
|
if (block) {
|
|
memset(block->idstr, 0, sizeof(block->idstr));
|
|
}
|
|
}
|
|
|
|
static int memory_try_enable_merging(void *addr, size_t len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Only legal before guest might have detected the memory size: e.g. on
|
|
* incoming migration, or right after reset.
|
|
*
|
|
* As memory core doesn't know how is memory accessed, it is up to
|
|
* resize callback to update device state and/or add assertions to detect
|
|
* misuse, if necessary.
|
|
*/
|
|
int qemu_ram_resize(struct uc_struct *uc, RAMBlock *block, ram_addr_t newsize, Error **errp)
|
|
{
|
|
assert(block);
|
|
|
|
newsize = TARGET_PAGE_ALIGN(newsize);
|
|
|
|
if (block->used_length == newsize) {
|
|
return 0;
|
|
}
|
|
|
|
if (!(block->flags & RAM_RESIZEABLE)) {
|
|
error_setg_errno(errp, EINVAL,
|
|
"Length mismatch: %s: 0x" RAM_ADDR_FMT
|
|
" in != 0x" RAM_ADDR_FMT, block->idstr,
|
|
newsize, block->used_length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (block->max_length < newsize) {
|
|
error_setg_errno(errp, EINVAL,
|
|
"Length too large: %s: 0x" RAM_ADDR_FMT
|
|
" > 0x" RAM_ADDR_FMT, block->idstr,
|
|
newsize, block->max_length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
block->used_length = newsize;
|
|
|
|
memory_region_set_size(block->mr, newsize);
|
|
if (block->resized) {
|
|
block->resized(block->idstr, newsize, block->host);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ram_block_add(struct uc_struct *uc, RAMBlock *new_block, Error **errp)
|
|
{
|
|
RAMBlock *block;
|
|
RAMBlock *last_block = NULL;
|
|
ram_addr_t old_ram_size, new_ram_size;
|
|
|
|
old_ram_size = last_ram_offset(uc) >> TARGET_PAGE_BITS;
|
|
|
|
new_block->offset = find_ram_offset(uc, new_block->max_length);
|
|
|
|
if (!new_block->host) {
|
|
new_block->host = phys_mem_alloc(new_block->max_length,
|
|
&new_block->mr->align);
|
|
if (!new_block->host) {
|
|
error_setg_errno(errp, errno,
|
|
"cannot set up guest memory '%s'",
|
|
memory_region_name(new_block->mr));
|
|
return;
|
|
}
|
|
memory_try_enable_merging(new_block->host, new_block->max_length);
|
|
}
|
|
|
|
new_ram_size = MAX(old_ram_size,
|
|
(new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
|
|
|
|
/* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
|
|
* QLIST (which has an RCU-friendly variant) does not have insertion at
|
|
* tail, so save the last element in last_block.
|
|
*/
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
last_block = block;
|
|
if (block->max_length < new_block->max_length) {
|
|
break;
|
|
}
|
|
}
|
|
if (block) {
|
|
QLIST_INSERT_BEFORE(block, new_block, next);
|
|
} else if (last_block) {
|
|
QLIST_INSERT_AFTER(last_block, new_block, next);
|
|
} else { /* list is empty */
|
|
QLIST_INSERT_HEAD(&uc->ram_list.blocks, new_block, next);
|
|
}
|
|
uc->ram_list.mru_block = NULL;
|
|
|
|
/* Write list before version */
|
|
smp_wmb();
|
|
uc->ram_list.version++;
|
|
|
|
if (new_block->host) {
|
|
qemu_ram_setup_dump(new_block->host, new_block->max_length);
|
|
// Unicorn: commented out
|
|
//qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
|
|
//qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
|
|
//if (kvm_enabled()) {
|
|
// kvm_setup_guest_memory(new_block->host, new_block->max_length);
|
|
//}
|
|
}
|
|
}
|
|
|
|
static
|
|
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
void *host, bool resizeable,
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
RAMBlock *new_block;
|
|
Error *local_err = NULL;
|
|
|
|
size = TARGET_PAGE_ALIGN(size);
|
|
max_size = TARGET_PAGE_ALIGN(max_size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
if (new_block == NULL) {
|
|
return NULL;
|
|
}
|
|
new_block->mr = mr;
|
|
new_block->resized = resized;
|
|
new_block->used_length = size;
|
|
new_block->max_length = max_size;
|
|
assert(max_size >= size);
|
|
new_block->fd = -1;
|
|
new_block->host = host;
|
|
if (host) {
|
|
new_block->flags |= RAM_PREALLOC;
|
|
}
|
|
if (resizeable) {
|
|
new_block->flags |= RAM_RESIZEABLE;
|
|
}
|
|
ram_block_add(mr->uc, new_block, &local_err);
|
|
if (local_err) {
|
|
g_free(new_block);
|
|
error_propagate(errp, local_err);
|
|
return NULL;
|
|
}
|
|
return new_block;
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
|
|
}
|
|
|
|
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
|
|
}
|
|
|
|
static void reclaim_ramblock(RAMBlock *block)
|
|
{
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
#ifndef _WIN32
|
|
} else if (block->fd >= 0) {
|
|
munmap(block->host, block->max_length);
|
|
close(block->fd);
|
|
#endif
|
|
} else {
|
|
qemu_anon_ram_free(block->host, block->max_length);
|
|
}
|
|
g_free(block);
|
|
}
|
|
|
|
void qemu_ram_free(struct uc_struct *uc, ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QLIST_REMOVE(block, next);
|
|
uc->ram_list.mru_block = NULL;
|
|
/* Write list before version */
|
|
smp_wmb();
|
|
uc->ram_list.version++;
|
|
// Unicorn: call directly instead of via call_rcu
|
|
reclaim_ramblock(block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
void qemu_ram_remap(struct uc_struct *uc, ram_addr_t addr, ram_addr_t length)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
int flags;
|
|
void *area, *vaddr;
|
|
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
offset = addr - block->offset;
|
|
if (offset < block->max_length) {
|
|
vaddr = ramblock_ptr(block, offset);
|
|
if (block->flags & RAM_PREALLOC) {
|
|
;
|
|
} else {
|
|
flags = MAP_FIXED;
|
|
if (block->fd >= 0) {
|
|
flags |= (block->flags & RAM_SHARED ?
|
|
MAP_SHARED : MAP_PRIVATE);
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, block->fd, offset);
|
|
} else {
|
|
/*
|
|
* Remap needs to match alloc. Accelerators that
|
|
* set phys_mem_alloc never remap. If they did,
|
|
* we'd need a remap hook here.
|
|
*/
|
|
assert(phys_mem_alloc == qemu_anon_ram_alloc);
|
|
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
}
|
|
if (area != vaddr) {
|
|
fprintf(stderr, "Could not remap addr: "
|
|
RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
|
|
length, addr);
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(vaddr, length);
|
|
qemu_ram_setup_dump(vaddr, length);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* !_WIN32 */
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
With the exception of the softmmu code in this file, this should
|
|
only be used for local memory (e.g. video ram) that the device owns,
|
|
and knows it isn't going to access beyond the end of the block.
|
|
|
|
It should not be used for general purpose DMA.
|
|
Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
|
*/
|
|
void *qemu_map_ram_ptr(struct uc_struct *uc, RAMBlock *ram_block,
|
|
ram_addr_t addr)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(uc, addr);
|
|
addr -= block->offset;
|
|
}
|
|
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
|
|
* but takes a size argument */
|
|
static void *qemu_ram_ptr_length(struct uc_struct *uc, RAMBlock *ram_block,
|
|
ram_addr_t addr, hwaddr *size, bool lock)
|
|
{
|
|
RAMBlock *block = ram_block;
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (block == NULL) {
|
|
block = qemu_get_ram_block(uc, addr);
|
|
addr -= block->offset;
|
|
}
|
|
*size = MIN(*size, block->max_length - addr);
|
|
|
|
// Unicorn: Commented out
|
|
//if (xen_enabled() && block->host == NULL) {
|
|
// /* We need to check if the requested address is in the RAM
|
|
// * because we don't want to map the entire memory in QEMU.
|
|
// * In that case just map the requested area.
|
|
// */
|
|
// if (block->offset == 0) {
|
|
// return xen_map_cache(addr, *size, 1);
|
|
// }
|
|
//
|
|
// block->host = xen_map_cache(block->offset, block->max_length, 1);
|
|
//}
|
|
|
|
return ramblock_ptr(block, addr);
|
|
}
|
|
|
|
/*
|
|
* Translates a host ptr back to a RAMBlock, a ram_addr and an offset
|
|
* in that RAMBlock.
|
|
*
|
|
* ptr: Host pointer to look up
|
|
* round_offset: If true round the result offset down to a page boundary
|
|
* *ram_addr: set to result ram_addr
|
|
* *offset: set to result offset within the RAMBlock
|
|
*
|
|
* Returns: RAMBlock (or NULL if not found)
|
|
*
|
|
*
|
|
* By the time this function returns, the returned pointer is not protected
|
|
* by RCU anymore. If the caller is not within an RCU critical section and
|
|
* does not hold the iothread lock, it must have other means of protecting the
|
|
* pointer, such as a reference to the region that includes the incoming
|
|
* ram_addr_t.
|
|
*/
|
|
RAMBlock *qemu_ram_block_from_host(struct uc_struct* uc, void *ptr, bool round_offset,
|
|
ram_addr_t *offset)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
block = uc->ram_list.mru_block;
|
|
if (block && block->host && host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->max_length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
*offset = (host - block->host);
|
|
if (round_offset) {
|
|
*offset &= TARGET_PAGE_MASK;
|
|
}
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* Finds the named RAMBlock
|
|
*
|
|
* name: The name of RAMBlock to find
|
|
*
|
|
* Returns: RAMBlock (or NULL if not found)
|
|
*/
|
|
RAMBlock *qemu_ram_block_by_name(struct uc_struct* uc, const char *name)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
// Unicorn: Changed from QLIST_FOREACH_RCU to QLIST_FOREACH
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
if (!strcmp(name, block->idstr)) {
|
|
return block;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
ram_addr_t qemu_ram_addr_from_host(struct uc_struct* uc, void *ptr)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
|
|
block = qemu_ram_block_from_host(uc, ptr, false, &offset);
|
|
if (!block) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return block->offset + offset;
|
|
}
|
|
|
|
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
|
|
const uint8_t *buf, int len);
|
|
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
|
|
bool is_write);
|
|
|
|
static MemTxResult subpage_read(struct uc_struct* uc, void *opaque, hwaddr addr,
|
|
uint64_t *data, unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
MemTxResult res;
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
|
|
subpage, len, addr);
|
|
#endif
|
|
res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
*data = ldn_p(buf, len);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult subpage_write(struct uc_struct* uc, void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned len, MemTxAttrs attrs)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
uint8_t buf[8];
|
|
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %u addr " TARGET_FMT_plx
|
|
" value %"PRIx64"\n",
|
|
__func__, subpage, len, addr, value);
|
|
#endif
|
|
stn_p(buf, len, value);
|
|
return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
|
|
}
|
|
|
|
static bool subpage_accepts(void *opaque, hwaddr addr,
|
|
unsigned len, bool is_write)
|
|
{
|
|
subpage_t *subpage = opaque;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
|
|
__func__, subpage, is_write ? 'w' : 'r', len, addr);
|
|
#endif
|
|
|
|
return flatview_access_valid(subpage->fv, addr + subpage->base,
|
|
len, is_write);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
NULL,
|
|
NULL,
|
|
subpage_read,
|
|
subpage_write,
|
|
DEVICE_NATIVE_ENDIAN,
|
|
{
|
|
1, 8, false, subpage_accepts,
|
|
},
|
|
{
|
|
1, 8, false,
|
|
}
|
|
};
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
|
|
__func__, mmio, start, end, idx, eidx, section);
|
|
#endif
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void notdirty_mem_write(struct uc_struct* uc, void *opaque, hwaddr ram_addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(qemu_map_ram_ptr(uc, NULL, ram_addr), val);
|
|
break;
|
|
case 2:
|
|
stw_p(qemu_map_ram_ptr(uc, NULL, ram_addr), val);
|
|
break;
|
|
case 4:
|
|
stl_p(qemu_map_ram_ptr(uc, NULL, ram_addr), val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
|
|
unsigned size, bool is_write)
|
|
{
|
|
return is_write;
|
|
}
|
|
|
|
static const MemoryRegionOps notdirty_mem_ops = {
|
|
NULL,
|
|
notdirty_mem_write,
|
|
NULL,
|
|
NULL,
|
|
DEVICE_NATIVE_ENDIAN,
|
|
{
|
|
0, 0, false, notdirty_mem_accepts,
|
|
},
|
|
};
|
|
|
|
static void io_mem_init(struct uc_struct* uc)
|
|
{
|
|
memory_region_init_io(uc, &uc->io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
|
|
memory_region_init_io(uc, &uc->io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
memory_region_init_io(uc, &uc->io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
|
|
NULL, UINT64_MAX);
|
|
//memory_region_init_io(uc, &uc->io_mem_watch, NULL, &watch_mem_ops, NULL,
|
|
// NULL, UINT64_MAX);
|
|
}
|
|
|
|
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
|
|
{
|
|
AddressSpaceDispatch *d = flatview_to_dispatch(fv);
|
|
subpage_t *mmio;
|
|
|
|
mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
|
|
|
|
mmio->fv = fv;
|
|
mmio->base = base;
|
|
memory_region_init_io(d->uc, &mmio->iomem, NULL, &subpage_ops, mmio,
|
|
NULL, TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE);
|
|
#endif
|
|
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
|
|
{
|
|
MemoryRegionSection section = MemoryRegionSection_make(
|
|
mr, fv, 0,
|
|
int128_2_64(),
|
|
false,
|
|
0
|
|
);
|
|
|
|
assert(fv);
|
|
|
|
return phys_section_add(map, §ion);
|
|
}
|
|
|
|
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
|
|
hwaddr index, MemTxAttrs attrs)
|
|
|
|
{
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
|
|
// Unicorn: uses atomic_read instead of atomic_rcu_read
|
|
AddressSpaceDispatch *d = atomic_read(&cpuas->memory_dispatch);
|
|
MemoryRegionSection *sections = d->map.sections;
|
|
|
|
return §ions[index & ~TARGET_PAGE_MASK];
|
|
}
|
|
|
|
AddressSpaceDispatch *address_space_dispatch_new(struct uc_struct *uc, FlatView *fv)
|
|
{
|
|
AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
|
|
uint16_t n;
|
|
PhysPageEntry ppe = { 1, PHYS_MAP_NODE_NIL };
|
|
|
|
d->uc = uc;
|
|
|
|
n = dummy_section(&d->map, fv, &uc->io_mem_unassigned);
|
|
assert(n == PHYS_SECTION_UNASSIGNED);
|
|
n = dummy_section(&d->map, fv, &uc->io_mem_notdirty);
|
|
assert(n == PHYS_SECTION_NOTDIRTY);
|
|
n = dummy_section(&d->map, fv, &uc->io_mem_rom);
|
|
assert(n == PHYS_SECTION_ROM);
|
|
// n = dummy_section(&d->map, fv, &uc->io_mem_watch);
|
|
// assert(n == PHYS_SECTION_WATCH);
|
|
|
|
d->phys_map = ppe;
|
|
|
|
return d;
|
|
}
|
|
|
|
void address_space_dispatch_free(AddressSpaceDispatch *d)
|
|
{
|
|
phys_sections_free(&d->map);
|
|
g_free(d);
|
|
}
|
|
|
|
static void tcg_commit(MemoryListener *listener)
|
|
{
|
|
CPUAddressSpace *cpuas;
|
|
AddressSpaceDispatch *d;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
|
|
|
|
/* The CPU and TLB are protected by the iothread lock.
|
|
* We reload the dispatch pointer now because cpu_reloading_memory_map()
|
|
* may have split the RCU critical section.
|
|
*/
|
|
d = address_space_to_dispatch(cpuas->as);
|
|
// Unicorn: atomic_set used instead of atomic_rcu_set
|
|
atomic_set(&cpuas->memory_dispatch, d);
|
|
tlb_flush(cpuas->cpu);
|
|
}
|
|
|
|
static void memory_map_init(struct uc_struct *uc)
|
|
{
|
|
uc->system_memory = g_malloc(sizeof(*(uc->system_memory)));
|
|
|
|
memory_region_init(uc, uc->system_memory, NULL, "system", UINT64_MAX);
|
|
address_space_init(uc, &uc->as, uc->system_memory, "memory");
|
|
}
|
|
|
|
void cpu_exec_init_all(struct uc_struct *uc)
|
|
{
|
|
/* The data structures we set up here depend on knowing the page size,
|
|
* so no more changes can be made after this point.
|
|
* In an ideal world, nothing we did before we had finished the
|
|
* machine setup would care about the target page size, and we could
|
|
* do this much later, rather than requiring board models to state
|
|
* up front what their requirements are.
|
|
*/
|
|
finalize_target_page_bits(uc);
|
|
io_mem_init(uc);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
memory_map_init(uc);
|
|
#endif
|
|
}
|
|
|
|
MemoryRegion *get_system_memory(struct uc_struct *uc)
|
|
{
|
|
return uc->system_memory;
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l, flags;
|
|
target_ulong page;
|
|
void * p;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
flags = page_get_flags(page);
|
|
if (!(flags & PAGE_VALID))
|
|
return -1;
|
|
if (is_write) {
|
|
if (!(flags & PAGE_WRITE))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
|
return -1;
|
|
memcpy(p, buf, l);
|
|
unlock_user(p, addr, l);
|
|
} else {
|
|
if (!(flags & PAGE_READ))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
|
return -1;
|
|
memcpy(buf, p, l);
|
|
unlock_user(p, addr, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
|
|
{
|
|
unsigned access_size_max = mr->ops->valid.max_access_size;
|
|
|
|
/* Regions are assumed to support 1-4 byte accesses unless
|
|
otherwise specified. */
|
|
if (access_size_max == 0) {
|
|
access_size_max = 4;
|
|
}
|
|
|
|
/* Bound the maximum access by the alignment of the address. */
|
|
if (!mr->ops->impl.unaligned) {
|
|
unsigned align_size_max = addr & (0-addr);
|
|
if (align_size_max != 0 && align_size_max < access_size_max) {
|
|
access_size_max = align_size_max;
|
|
}
|
|
}
|
|
|
|
/* Don't attempt accesses larger than the maximum. */
|
|
if (l > access_size_max) {
|
|
l = access_size_max;
|
|
}
|
|
l = pow2floor(l);
|
|
|
|
return l;
|
|
}
|
|
|
|
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const uint8_t *buf,
|
|
int len, hwaddr addr1,
|
|
hwaddr l, MemoryRegion *mr)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
// Unicorn: commented out
|
|
//bool release_lock = false;
|
|
|
|
for (;;) {
|
|
if (!mr)
|
|
return true;
|
|
|
|
if (!memory_access_is_direct(mr, true)) {
|
|
// Unicorn: commented out
|
|
//release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
/* XXX: could force current_cpu to NULL to avoid
|
|
potential bugs */
|
|
val = ldn_p(buf, l);
|
|
result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, addr1);
|
|
memcpy(ptr, buf, l);
|
|
}
|
|
|
|
/* Unicorn: commented out
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
release_lock = false;
|
|
}*/
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &addr1, &l, true);
|
|
}
|
|
// Unicorn: commented out
|
|
//rcu_read_unlock();
|
|
|
|
return result;
|
|
}
|
|
|
|
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
MemTxResult result = MEMTX_OK;
|
|
|
|
if (len > 0) {
|
|
// Unicorn: commented out
|
|
//rcu_read_lock();
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &addr1, &l, true);
|
|
result = flatview_write_continue(fv, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
// Unicorn: commented out
|
|
//rcu_read_unlock();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
|
|
}
|
|
|
|
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs, uint8_t *buf,
|
|
int len, hwaddr addr1, hwaddr l,
|
|
MemoryRegion *mr)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemTxResult result = MEMTX_OK;
|
|
// Unicorn: commented out
|
|
//bool release_lock = false;
|
|
|
|
for (;;) {
|
|
if (!memory_access_is_direct(mr, false)) {
|
|
/* I/O case */
|
|
// Unicorn: commented out
|
|
//release_lock |= prepare_mmio_access(mr);
|
|
l = memory_access_size(mr, l, addr1);
|
|
result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
|
|
stn_p(buf, l, val);
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, addr1);
|
|
memcpy(buf, ptr, l);
|
|
}
|
|
|
|
/* Unicorn: Commented out
|
|
if (release_lock) {
|
|
qemu_mutex_unlock_iothread();
|
|
release_lock = false;
|
|
}*/
|
|
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
|
|
if (!len) {
|
|
break;
|
|
}
|
|
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &addr1, &l, false);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
|
|
MemTxAttrs attrs, uint8_t *buf, int len)
|
|
{
|
|
hwaddr l;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
MemTxResult result = MEMTX_OK;
|
|
|
|
if (len > 0) {
|
|
// Unicorn: commented out
|
|
//rcu_read_lock();
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &addr1, &l, false);
|
|
result = flatview_read_continue(fv, addr, attrs, buf, len,
|
|
addr1, l, mr);
|
|
// Unicorn: commented out
|
|
//rcu_read_unlock();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
|
|
uint8_t *buf, int len, bool is_write)
|
|
{
|
|
if (is_write) {
|
|
return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
|
|
} else {
|
|
return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
|
|
}
|
|
}
|
|
|
|
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
|
|
MemTxAttrs attrs, uint8_t *buf,
|
|
int len, bool is_write)
|
|
{
|
|
return flatview_rw(address_space_to_flatview(as),
|
|
addr, attrs, buf, len, is_write);
|
|
}
|
|
|
|
bool cpu_physical_memory_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
|
|
int len, int is_write)
|
|
{
|
|
return address_space_rw(as, addr, MEMTXATTRS_UNSPECIFIED,
|
|
buf, len, is_write) == MEMTX_OK;
|
|
}
|
|
|
|
enum write_rom_type {
|
|
WRITE_DATA,
|
|
FLUSH_CACHE,
|
|
};
|
|
|
|
static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
|
|
hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
|
|
{
|
|
hwaddr l;
|
|
uint8_t *ptr;
|
|
hwaddr addr1;
|
|
MemoryRegion *mr;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = address_space_translate(as, addr, &addr1, &l, true);
|
|
|
|
if (!(memory_region_is_ram(mr) ||
|
|
memory_region_is_romd(mr))) {
|
|
l = memory_access_size(mr, l, addr1);
|
|
} else {
|
|
/* ROM/RAM case */
|
|
ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, addr1);
|
|
switch (type) {
|
|
case WRITE_DATA:
|
|
memcpy(ptr, buf, l);
|
|
break;
|
|
case FLUSH_CACHE:
|
|
flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
|
|
break;
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
DEFAULT_VISIBILITY
|
|
void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
|
|
}
|
|
|
|
void cpu_flush_icache_range(AddressSpace *as, hwaddr start, int len)
|
|
{
|
|
/*
|
|
* This function should do the same thing as an icache flush that was
|
|
* triggered from within the guest. For TCG we are always cache coherent,
|
|
* so there is no need to flush anything. For KVM / Xen we need to flush
|
|
* the host's instruction cache at least.
|
|
*/
|
|
if (tcg_enabled(as->uc)) {
|
|
return;
|
|
}
|
|
|
|
cpu_physical_memory_write_rom_internal(as,
|
|
start, NULL, len, FLUSH_CACHE);
|
|
}
|
|
|
|
static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
|
|
bool is_write)
|
|
{
|
|
MemoryRegion *mr;
|
|
hwaddr l, xlat;
|
|
|
|
while (len > 0) {
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &xlat, &l, is_write);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
l = memory_access_size(mr, l, addr);
|
|
if (!memory_region_access_valid(mr, xlat, l, is_write)) {
|
|
// Unicorn: commented out
|
|
//rcu_read_unlock();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
|
|
int len, bool is_write)
|
|
{
|
|
return flatview_access_valid(address_space_to_flatview(as),
|
|
addr, len, is_write);
|
|
}
|
|
|
|
static hwaddr
|
|
flatview_extend_translation(FlatView *fv, hwaddr addr,
|
|
hwaddr target_len,
|
|
MemoryRegion *mr, hwaddr base, hwaddr len,
|
|
bool is_write)
|
|
{
|
|
hwaddr done = 0;
|
|
hwaddr xlat;
|
|
MemoryRegion *this_mr;
|
|
|
|
for (;;) {
|
|
target_len -= len;
|
|
addr += len;
|
|
done += len;
|
|
if (target_len == 0) {
|
|
return done;
|
|
}
|
|
|
|
len = target_len;
|
|
this_mr = flatview_translate(fv, addr, &xlat,
|
|
&len, is_write);
|
|
if (this_mr != mr || xlat != base + done) {
|
|
return done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *address_space_map(AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
hwaddr len = *plen;
|
|
hwaddr l, xlat;
|
|
MemoryRegion *mr;
|
|
void *ptr;
|
|
FlatView *fv = address_space_to_flatview(as);
|
|
|
|
if (len == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
l = len;
|
|
mr = flatview_translate(fv, addr, &xlat, &l, is_write);
|
|
if (!memory_access_is_direct(mr, is_write)) {
|
|
if (atomic_xchg(&as->uc->bounce.in_use, true)) {
|
|
return NULL;
|
|
}
|
|
/* Avoid unbounded allocations */
|
|
l = MIN(l, TARGET_PAGE_SIZE);
|
|
as->uc->bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
|
|
as->uc->bounce.addr = addr;
|
|
as->uc->bounce.len = l;
|
|
|
|
memory_region_ref(mr);
|
|
as->uc->bounce.mr = mr;
|
|
if (!is_write) {
|
|
flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
|
|
as->uc->bounce.buffer, l);
|
|
}
|
|
|
|
*plen = l;
|
|
return as->uc->bounce.buffer;
|
|
}
|
|
|
|
memory_region_ref(mr);
|
|
*plen = flatview_extend_translation(fv, addr, len, mr, xlat,
|
|
l, is_write);
|
|
ptr = qemu_ram_ptr_length(mr->uc, mr->ram_block, xlat, plen, true);
|
|
return ptr;
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by address_space_map().
|
|
* Will also mark the memory as dirty if is_write == 1. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
if (buffer != as->uc->bounce.buffer) {
|
|
MemoryRegion *mr;
|
|
ram_addr_t addr1;
|
|
|
|
mr = memory_region_from_host(as->uc, buffer, &addr1);
|
|
assert(mr != NULL);
|
|
memory_region_unref(mr);
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
address_space_write(as, as->uc->bounce.addr, MEMTXATTRS_UNSPECIFIED,
|
|
as->uc->bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(as->uc->bounce.buffer);
|
|
as->uc->bounce.buffer = NULL;
|
|
memory_region_unref(as->uc->bounce.mr);
|
|
atomic_mb_set(&as->uc->bounce.in_use, false);
|
|
}
|
|
|
|
void *cpu_physical_memory_map(AddressSpace *as, hwaddr addr,
|
|
hwaddr *plen,
|
|
int is_write)
|
|
{
|
|
return address_space_map(as, addr, plen, is_write);
|
|
}
|
|
|
|
void cpu_physical_memory_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
address_space_unmap(as, buffer, len, is_write, access_len);
|
|
}
|
|
|
|
#define ARG1_DECL AddressSpace *as
|
|
#define ARG1 as
|
|
#define SUFFIX
|
|
#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
|
|
#define INVALIDATE(mr, ofs, len)
|
|
#define RCU_READ_LOCK(...) rcu_read_lock()
|
|
#define RCU_READ_UNLOCK(...) rcu_read_unlock()
|
|
#include "memory_ldst.inc.c"
|
|
|
|
int64_t address_space_cache_init(MemoryRegionCache *cache,
|
|
AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr len,
|
|
bool is_write)
|
|
{
|
|
cache->len = len;
|
|
cache->as = as;
|
|
cache->xlat = addr;
|
|
return len;
|
|
}
|
|
|
|
void address_space_cache_invalidate(MemoryRegionCache *cache,
|
|
hwaddr addr,
|
|
hwaddr access_len)
|
|
{
|
|
}
|
|
|
|
void address_space_cache_destroy(MemoryRegionCache *cache)
|
|
{
|
|
// Unicorn: If'd out
|
|
#if 0
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(cache->ptr);
|
|
}
|
|
#endif
|
|
cache->as = NULL;
|
|
}
|
|
|
|
// Unicorn: Necessary due to the fantastic way duplicate
|
|
// symbol errors are avoided.
|
|
// When appending the "_cache" suffix, the preprocessor
|
|
// replaces the names in the glue macros with the target's
|
|
// equivalent, resulting in names like "address_space_ldl_be_aarch64_cached"
|
|
// which is incorrect. Therefore undef all the offending macros beforehand.
|
|
#undef address_space_ldl
|
|
#undef address_space_ldl_be
|
|
#undef address_space_ldl_le
|
|
#undef address_space_ldq
|
|
#undef address_space_ldq_be
|
|
#undef address_space_ldq_le
|
|
#undef address_space_ldub
|
|
#undef address_space_lduw
|
|
#undef address_space_lduw_be
|
|
#undef address_space_lduw_le
|
|
#undef address_space_stb
|
|
#undef address_space_stl
|
|
#undef address_space_stl_be
|
|
#undef address_space_stl_le
|
|
#undef address_space_stl_notdirty
|
|
#undef address_space_stq
|
|
#undef address_space_stq_be
|
|
#undef address_space_stq_le
|
|
#undef address_space_stw
|
|
#undef address_space_stw_be
|
|
#undef address_space_stw_le
|
|
#undef ldl_be_phys
|
|
#undef ldl_le_phys
|
|
#undef ldl_phys
|
|
#undef ldq_be_phys
|
|
#undef ldq_le_phys
|
|
#undef ldq_phys
|
|
#undef ldub_phys
|
|
#undef lduw_be_phys
|
|
#undef lduw_le_phys
|
|
#undef lduw_phys
|
|
#undef stb_phys
|
|
#undef stl_be_phys
|
|
#undef stl_le_phys
|
|
#undef stl_phys
|
|
#undef stl_phys_notdirty
|
|
#undef stq_be_phys
|
|
#undef stq_le_phys
|
|
#undef stq_phys
|
|
#undef stw_be_phys
|
|
#undef stw_le_phys
|
|
#undef stw_phys
|
|
|
|
#define ARG1_DECL MemoryRegionCache *cache
|
|
#define ARG1 cache
|
|
#define SUFFIX _cached
|
|
#define TRANSLATE(addr, ...) \
|
|
address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
|
|
#define IS_DIRECT(mr, is_write) true
|
|
#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->uc, (mr)->ram_block, ofs)
|
|
#define INVALIDATE(mr, ofs, len)
|
|
#define RCU_READ_LOCK() //rcu_read_lock()
|
|
#define RCU_READ_UNLOCK() //rcu_read_unlock()
|
|
#include "memory_ldst.inc.c"
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l;
|
|
hwaddr phys_addr;
|
|
target_ulong page;
|
|
|
|
while (len > 0) {
|
|
int asidx;
|
|
MemTxAttrs attrs;
|
|
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
|
|
asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write) {
|
|
cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
|
|
phys_addr, buf, l);
|
|
} else {
|
|
address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
|
|
attrs, buf, l, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A helper function for the _utterly broken_ virtio device model to find out if
|
|
* it's running on a big endian machine. Don't do this at home kids!
|
|
*/
|
|
bool target_words_bigendian(void);
|
|
bool target_words_bigendian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool cpu_physical_memory_is_io(AddressSpace *as, hwaddr phys_addr)
|
|
{
|
|
MemoryRegion*mr;
|
|
hwaddr l = 1;
|
|
|
|
mr = address_space_translate(as, phys_addr, &phys_addr, &l, false);
|
|
|
|
return !(memory_region_is_ram(mr) ||
|
|
memory_region_is_romd(mr));
|
|
}
|
|
|
|
int qemu_ram_foreach_block(struct uc_struct *uc, RAMBlockIterFunc func, void *opaque)
|
|
{
|
|
RAMBlock *block;
|
|
int ret = 0;
|
|
|
|
// Unicorn: commented out
|
|
//rcu_read_lock();
|
|
QLIST_FOREACH(block, &uc->ram_list.blocks, next) {
|
|
ret = func(block->idstr, block->host, block->offset,
|
|
block->used_length, opaque);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
}
|
|
// Unicorn: commented out
|
|
//rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
void page_size_init(struct uc_struct *uc)
|
|
{
|
|
/* NOTE: we can always suppose that qemu_host_page_size >=
|
|
TARGET_PAGE_SIZE */
|
|
uc->qemu_real_host_page_size = getpagesize();
|
|
uc->qemu_real_host_page_mask = -(intptr_t)uc->qemu_real_host_page_size;
|
|
if (uc->qemu_host_page_size == 0) {
|
|
uc->qemu_host_page_size = uc->qemu_real_host_page_size;
|
|
}
|
|
if (uc->qemu_host_page_size < TARGET_PAGE_SIZE) {
|
|
uc->qemu_host_page_size = TARGET_PAGE_SIZE;
|
|
}
|
|
uc->qemu_host_page_mask = -(intptr_t)uc->qemu_host_page_size;
|
|
}
|