mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2026-01-06 00:42:59 +00:00
By convention, on a 64-bit host TCG internally stores 32-bit constants as sign-extended. This is not the case in the optimizer when a 32-bit constant is folded. This doesn't seem to have more consequences than suboptimal code generation. For instance the x86 backend assumes sign-extended constants, and in some rare cases uses a 32-bit unsigned immediate 0xffffffff instead of a 8-bit signed immediate 0xff for the constant -1. This is with a ppc guest: before ------ ---- 0x9f29cc movi_i32 tmp1,$0xffffffff movi_i32 tmp2,$0x0 add2_i32 tmp0,CA,CA,tmp2,r6,tmp2 add2_i32 tmp0,CA,tmp0,CA,tmp1,tmp2 mov_i32 r10,tmp0 0x7fd8c7dfe90c: xor %ebp,%ebp 0x7fd8c7dfe90e: mov %ebp,%r11d 0x7fd8c7dfe911: mov 0x18(%r14),%r9d 0x7fd8c7dfe915: add %r9d,%r10d 0x7fd8c7dfe918: adc %ebp,%r11d 0x7fd8c7dfe91b: add $0xffffffff,%r10d 0x7fd8c7dfe922: adc %ebp,%r11d 0x7fd8c7dfe925: mov %r11d,0x134(%r14) 0x7fd8c7dfe92c: mov %r10d,0x28(%r14) after ----- ---- 0x9f29cc movi_i32 tmp1,$0xffffffffffffffff movi_i32 tmp2,$0x0 add2_i32 tmp0,CA,CA,tmp2,r6,tmp2 add2_i32 tmp0,CA,tmp0,CA,tmp1,tmp2 mov_i32 r10,tmp0 0x7f37010d490c: xor %ebp,%ebp 0x7f37010d490e: mov %ebp,%r11d 0x7f37010d4911: mov 0x18(%r14),%r9d 0x7f37010d4915: add %r9d,%r10d 0x7f37010d4918: adc %ebp,%r11d 0x7f37010d491b: add $0xffffffffffffffff,%r10d 0x7f37010d491f: adc %ebp,%r11d 0x7f37010d4922: mov %r11d,0x134(%r14) 0x7f37010d4929: mov %r10d,0x28(%r14) Backports commit 29f3ff8d6cbc28f79933aeaa25805408d0984a8f from qemu |
||
|---|---|---|
| bindings | ||
| docs | ||
| include | ||
| msvc | ||
| qemu | ||
| samples | ||
| tests | ||
| .appveyor.yml | ||
| .gitignore | ||
| .travis.yml | ||
| AUTHORS.TXT | ||
| Brewfile | ||
| ChangeLog | ||
| config.mk | ||
| COPYING | ||
| COPYING.LGPL2 | ||
| COPYING_GLIB | ||
| CREDITS.TXT | ||
| install-cmocka-linux.sh | ||
| list.c | ||
| make.sh | ||
| Makefile | ||
| msvc.bat | ||
| pkgconfig.mk | ||
| README.md | ||
| uc.c | ||
| windows_export.bat | ||
Unicorn Engine
Unicorn is a lightweight, multi-platform, multi-architecture CPU emulator framework based on QEMU.
Unicorn offers some unparalleled features:
- Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC, and X86 (16, 32, 64-bit)
- Clean/simple/lightweight/intuitive architecture-neutral API
- Implemented in pure C language, with bindings for Crystal, Clojure, Visual Basic, Perl, Rust, Ruby, Python, Java, .NET, Go, Delphi/Free Pascal and Haskell.
- Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)
- High performance via Just-In-Time compilation
- Support for fine-grained instrumentation at various levels
- Thread-safety by design
- Distributed under free software license GPLv2
Further information is available at http://www.unicorn-engine.org
License
This project is released under the GPL license.
Compilation & Docs
See docs/COMPILE.md file for how to compile and install Unicorn.
More documentation is available in docs/README.md.
Contact
Contact us via mailing list, email or twitter for any questions.
Contribute
If you want to contribute, please pick up something from our Github issues.
We also maintain a list of more challenged problems in a TODO list.
CREDITS.TXT records important contributors of our project.