unicorn/qemu/accel/tcg/cpu-exec.c
Emilio G. Cota 66fa401871
exec-all: rename tb_free to tb_remove
We don't really free anything in this function anymore; we just remove
the TB from the binary search tree.

Backports commit be1e01171b556807198c84feac7cf4bca0d904c2 from qemu
2018-03-13 16:20:41 -04:00

605 lines
20 KiB
C

/*
* emulator main execution loop
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg.h"
#include "qemu/atomic.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "exec/tb-hash.h"
#include "exec/tb-lookup.h"
#include "uc_priv.h"
/* Execute a TB, and fix up the CPU state afterwards if necessary */
static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
{
CPUArchState *env = cpu->env_ptr;
TCGContext *tcg_ctx = env->uc->tcg_ctx;
uintptr_t ret;
TranslationBlock *last_tb;
int tb_exit;
uint8_t *tb_ptr = itb->tc.ptr;
// Unicorn: commented out
//qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
// "Trace %p [" TARGET_FMT_lx "] %s\n",
// itb->tc.ptr, itb->pc, lookup_symbol(itb->pc));
ret = tcg_qemu_tb_exec(env, tb_ptr);
last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
tb_exit = ret & TB_EXIT_MASK;
//trace_exec_tb_exit(last_tb, tb_exit);
if (tb_exit > TB_EXIT_IDX1) {
/* We didn't start executing this TB (eg because the instruction
* counter hit zero); we must restore the guest PC to the address
* of the start of the TB.
*/
CPUClass *cc = CPU_GET_CLASS(env->uc, cpu);
// Unicorn: commented out
//qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
// "Stopped execution of TB chain before %p ["
// TARGET_FMT_lx "] %s\n",
// last_tb->tc.ptr, last_tb->pc,
// lookup_symbol(last_tb->pc));
if (cc->synchronize_from_tb) {
// avoid sync twice when helper_uc_tracecode() already did this.
if (env->uc->emu_counter <= env->uc->emu_count &&
!env->uc->stop_request && !env->uc->quit_request) {
cc->synchronize_from_tb(cpu, last_tb);
}
} else {
assert(cc->set_pc);
// avoid sync twice when helper_uc_tracecode() already did this.
if (env->uc->emu_counter <= env->uc->emu_count && !env->uc->quit_request) {
cc->set_pc(cpu, last_tb->pc);
}
}
}
if (tb_exit == TB_EXIT_REQUESTED) {
/* We were asked to stop executing TBs (probably a pending
* interrupt. We've now stopped, so clear the flag.
*/
atomic_set(&cpu->tcg_exit_req, 0);
}
return ret;
}
/* Execute the code without caching the generated code. An interpreter
could be used if available. */
static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
TranslationBlock *orig_tb, bool ignore_icount)
{
TranslationBlock *tb;
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
uint32_t cflags = curr_cflags(cpu->uc) | CF_NOCACHE;
if (ignore_icount) {
cflags &= ~CF_USE_ICOUNT;
}
/* Should never happen.
We only end up here when an existing TB is too long. */
cflags |= MIN(max_cycles, CF_COUNT_MASK);
tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
orig_tb->flags, cflags);
tb->orig_tb = orig_tb;
/* execute the generated code */
// Unicorn: commented out
//trace_exec_tb_nocache(tb, tb->pc);
cpu_tb_exec(cpu, tb);
tb_phys_invalidate(env->uc, tb, -1);
tb_remove(env->uc, tb);
}
struct tb_desc {
target_ulong pc;
target_ulong cs_base;
CPUArchState *env;
tb_page_addr_t phys_page1;
uint32_t flags;
uint32_t cf_mask;
uint32_t trace_vcpu_dstate;
};
static bool tb_cmp(const void *p, const void *d)
{
const TranslationBlock *tb = p;
const struct tb_desc *desc = d;
if (tb->pc == desc->pc &&
tb->page_addr[0] == desc->phys_page1 &&
tb->cs_base == desc->cs_base &&
tb->flags == desc->flags &&
tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
(tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
/* check next page if needed */
if (tb->page_addr[1] == -1) {
return true;
} else {
tb_page_addr_t phys_page2;
target_ulong virt_page2;
virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
phys_page2 = get_page_addr_code(desc->env, virt_page2);
if (tb->page_addr[1] == phys_page2) {
return true;
}
}
}
return false;
}
TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
target_ulong cs_base, uint32_t flags,
uint32_t cf_mask)
{
TCGContext *tcg_ctx = cpu->uc->tcg_ctx;
tb_page_addr_t phys_pc;
struct tb_desc desc;
uint32_t h;
/* find translated block using physical mappings */
desc.env = (CPUArchState *)cpu->env_ptr;
desc.cs_base = cs_base;
desc.flags = flags;
desc.cf_mask = cf_mask;
desc.trace_vcpu_dstate = 0;
desc.pc = pc;
phys_pc = get_page_addr_code(desc.env, pc);
desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
h = tb_hash_func(phys_pc, pc, flags, cf_mask, 0);
return qht_lookup(&tcg_ctx->tb_ctx.htable, tb_cmp, &desc, h);
}
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
{
if (TCG_TARGET_HAS_direct_jump) {
uintptr_t offset = tb->jmp_target_arg[n];
uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
} else {
tb->jmp_target_arg[n] = addr;
}
}
/* Called with tb_lock held. */
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
assert(n < ARRAY_SIZE(tb->jmp_list_next));
if (tb->jmp_list_next[n]) {
/* Another thread has already done this while we were
* outside of the lock; nothing to do in this case */
return;
}
qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
"Linking TBs %p [" TARGET_FMT_lx
"] index %d -> %p [" TARGET_FMT_lx "]\n",
tb->tc.ptr, tb->pc, n,
tb_next->tc.ptr, tb_next->pc);
/* patch the native jump address */
tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
/* add in TB jmp circular list */
tb->jmp_list_next[n] = tb_next->jmp_list_first;
tb_next->jmp_list_first = (uintptr_t)tb | n;
}
static inline TranslationBlock *tb_find(CPUState *cpu,
TranslationBlock *last_tb,
int tb_exit, uint32_t cf_mask)
{
TranslationBlock *tb;
target_ulong cs_base, pc;
uint32_t flags;
bool acquired_tb_lock = false;
tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
if (tb == NULL) {
/* mmap_lock is needed by tb_gen_code, and mmap_lock must be
* taken outside tb_lock. As system emulation is currently
* single threaded the locks are NOPs.
*/
mmap_lock();
//tb_lock();
acquired_tb_lock = true;
/* There's a chance that our desired tb has been translated while
* taking the locks so we check again inside the lock.
*/
tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
if (likely(tb == NULL)) {
/* if no translated code available, then translate it now */
tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
}
mmap_unlock();
/* We add the TB in the virtual pc hash table for the fast lookup */
atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
}
#ifndef CONFIG_USER_ONLY
/* We don't take care of direct jumps when address mapping changes in
* system emulation. So it's not safe to make a direct jump to a TB
* spanning two pages because the mapping for the second page can change.
*/
if (tb->page_addr[1] != -1) {
last_tb = NULL;
}
#endif
/* See if we can patch the calling TB. */
if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
if (!acquired_tb_lock) {
// Unicorn: commented out
//tb_lock();
acquired_tb_lock = true;
}
/* Check if translation buffer has been flushed */
if (cpu->tb_flushed) {
cpu->tb_flushed = false;
} else if (!(tb->cflags & CF_INVALID)) {
tb_add_jump(last_tb, tb_exit, tb);
}
}
if (acquired_tb_lock) {
// Unicorn: commented out
//tb_unlock();
}
return tb;
}
static inline bool cpu_handle_halt(CPUState *cpu)
{
if (cpu->halted) {
if (!cpu_has_work(cpu)) {
return true;
}
cpu->halted = 0;
}
return false;
}
static inline void cpu_handle_debug_exception(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu->uc, cpu);
CPUWatchpoint *wp;
if (!cpu->watchpoint_hit) {
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
wp->flags &= ~BP_WATCHPOINT_HIT;
}
}
cc->debug_excp_handler(cpu);
}
static inline bool cpu_handle_exception(struct uc_struct *uc, CPUState *cpu, int *ret)
{
struct hook *hook;
if (cpu->exception_index >= 0) {
if (uc->stop_interrupt && uc->stop_interrupt(cpu->exception_index)) {
cpu->halted = 1;
uc->invalid_error = UC_ERR_INSN_INVALID;
*ret = EXCP_HLT;
return true;
}
if (cpu->exception_index >= EXCP_INTERRUPT) {
/* exit request from the cpu execution loop */
*ret = cpu->exception_index;
if (*ret == EXCP_DEBUG) {
cpu_handle_debug_exception(cpu);
}
cpu->exception_index = -1;
return true;
} else {
#if defined(CONFIG_USER_ONLY)
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
#if defined(TARGET_I386)
CPUClass *cc = CPU_GET_CLASS(uc, cpu);
cc->do_interrupt(cpu);
#endif
*ret = cpu->exception_index;
cpu->exception_index = -1;
return true;
#else
bool catched = false;
// Unicorn: call registered interrupt callbacks
HOOK_FOREACH_VAR_DECLARE;
HOOK_FOREACH(uc, hook, UC_HOOK_INTR) {
((uc_cb_hookintr_t)hook->callback)(uc, cpu->exception_index, hook->user_data);
catched = true;
}
// Unicorn: If un-catched interrupt, stop executions.
if (!catched) {
cpu->halted = 1;
uc->invalid_error = UC_ERR_EXCEPTION;
*ret = EXCP_HLT;
return true;
}
cpu->exception_index = -1;
#endif
}
}
return false;
}
static inline bool cpu_handle_interrupt(CPUState *cpu,
TranslationBlock **last_tb)
{
CPUClass *cc = CPU_GET_CLASS(cpu->uc, cpu);
int interrupt_request = cpu->interrupt_request;
if (unlikely(interrupt_request)) {
if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
/* Mask out external interrupts for this step. */
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
}
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
cpu->exception_index = EXCP_DEBUG;
return true;
}
if (interrupt_request & CPU_INTERRUPT_HALT) {
cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
cpu->halted = 1;
cpu->exception_index = EXCP_HLT;
return true;
}
#if defined(TARGET_I386)
else if (interrupt_request & CPU_INTERRUPT_INIT) {
X86CPU *x86_cpu = X86_CPU(cpu->uc, cpu);
CPUArchState *env = &x86_cpu->env;
cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
do_cpu_init(x86_cpu);
cpu->exception_index = EXCP_HALTED;
return true;
}
#else
else if (interrupt_request & CPU_INTERRUPT_RESET) {
cpu_reset(cpu);
}
#endif
else {
/* The target hook has 3 exit conditions:
False when the interrupt isn't processed,
True when it is, and we should restart on a new TB,
and via longjmp via cpu_loop_exit. */
if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
*last_tb = NULL;
}
/* The target hook may have updated the 'cpu->interrupt_request';
* reload the 'interrupt_request' value */
interrupt_request = cpu->interrupt_request;
}
if (interrupt_request & CPU_INTERRUPT_EXITTB) {
cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
/* ensure that no TB jump will be modified as
the program flow was changed */
*last_tb = NULL;
}
}
if (unlikely(cpu->exit_request)) {
cpu->exit_request = 0;
cpu->exception_index = EXCP_INTERRUPT;
return true;
}
return false;
}
static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
TranslationBlock **last_tb, int *tb_exit)
{
uintptr_t ret;
/* execute the generated code */
ret = cpu_tb_exec(cpu, tb);
tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
*tb_exit = ret & TB_EXIT_MASK;
switch (*tb_exit) {
case TB_EXIT_REQUESTED:
/* Something asked us to stop executing chained TBs; just
* continue round the main loop. Whatever requested the exit
* will also have set something else (eg interrupt_request)
* which we will handle next time around the loop. But we
* need to ensure the tcg_exit_req read in generated code
* comes before the next read of cpu->exit_request or
* cpu->interrupt_request.
*/
smp_mb();
*last_tb = NULL;
break;
case TB_EXIT_ICOUNT_EXPIRED:
{
/* Instruction counter expired. */
#ifdef CONFIG_USER_ONLY
abort();
#else
int insns_left = cpu->icount_decr.u32;
*last_tb = NULL;
if (cpu->icount_extra && insns_left >= 0) {
/* Refill decrementer and continue execution. */
cpu->icount_extra += insns_left;
insns_left = MIN(0xffff, cpu->icount_extra);
cpu->icount_extra -= insns_left;
cpu->icount_decr.u16.low = insns_left;
} else {
if (insns_left > 0) {
/* Execute remaining instructions. */
cpu_exec_nocache(cpu, insns_left, tb, false);
// Unicorn: commented out
//align_clocks(sc, cpu);
}
cpu->exception_index = EXCP_INTERRUPT;
cpu_loop_exit(cpu);
}
break;
#endif
}
default:
*last_tb = tb;
break;
}
}
void cpu_exec_step_atomic(struct uc_struct *uc, CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(uc, cpu);
TranslationBlock *tb;
target_ulong cs_base, pc;
uint32_t flags;
uint32_t cflags = 1;
uint32_t cf_mask = cflags & CF_HASH_MASK;
if (sigsetjmp(cpu->jmp_env, 0) == 0) {
tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
if (tb == NULL) {
mmap_lock();
//tb_lock();
tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
if (likely(tb == NULL)) {
tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
}
//tb_unlock();
mmap_unlock();
}
// Unicorn: commented out
//start_exclusive();
/* Since we got here, we know that parallel_cpus must be true. */
uc->parallel_cpus = false;
cc->cpu_exec_enter(cpu);
/* execute the generated code */
cpu_tb_exec(cpu, tb);
cc->cpu_exec_exit(cpu);
uc->parallel_cpus = true;
// Unicorn: commented out
//end_exclusive()
} else {
/* We may have exited due to another problem here, so we need
* to reset any tb_locks we may have taken but didn't release.
* The mmap_lock is dropped by tb_gen_code if it runs out of
* memory.
*/
#ifndef CONFIG_SOFTMMU
// Unicorn: Commented out
//tcg_debug_assert(!have_mmap_lock());
#endif
// Unicorn: commented out
//tb_lock_reset();
}
}
/* main execution loop */
int cpu_exec(struct uc_struct *uc, CPUState *cpu)
{
CPUArchState *env = cpu->env_ptr;
CPUClass *cc = CPU_GET_CLASS(uc, cpu);
int ret;
if (cpu_handle_halt(cpu)) {
return EXCP_HALTED;
}
atomic_mb_set(&uc->current_cpu, cpu);
atomic_mb_set(&uc->tcg_current_rr_cpu, cpu);
cc->cpu_exec_enter(cpu);
cpu->exception_index = -1;
env->invalid_error = UC_ERR_OK;
/* prepare setjmp context for exception handling */
if (sigsetjmp(cpu->jmp_env, 0) != 0) {
#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
/* Some compilers wrongly smash all local variables after
* siglongjmp. There were bug reports for gcc 4.5.0 and clang.
* Reload essential local variables here for those compilers.
* Newer versions of gcc would complain about this code (-Wclobbered). */
cpu = uc->current_cpu;
env = cpu->env_ptr;
cc = CPU_GET_CLASS(uc, cpu);
#else /* buggy compiler */
/* Assert that the compiler does not smash local variables. */
g_assert(cpu == uc->current_cpu);
g_assert(cc == CPU_GET_CLASS(uc, cpu));
#endif /* buggy compiler */
cpu->can_do_io = 1;
// Unicorn: commented out
//tb_lock_reset();
}
/* if an exception is pending, we execute it here */
while (!cpu_handle_exception(uc, cpu, &ret)) {
TranslationBlock *last_tb = NULL;
int tb_exit = 0;
while (!cpu_handle_interrupt(cpu, &last_tb)) {
uint32_t cflags = cpu->cflags_next_tb;
TranslationBlock *tb;
/* When requested, use an exact setting for cflags for the next
execution. This is used for icount, precise smc, and stop-
after-access watchpoints. Since this request should never
have CF_INVALID set, -1 is a convenient invalid value that
does not require tcg headers for cpu_common_reset. */
if (cflags == -1) {
cflags = curr_cflags(cpu->uc);
} else {
cpu->cflags_next_tb = -1;
}
tb = tb_find(cpu, last_tb, tb_exit, cflags);
if (!tb) { // invalid TB due to invalid code?
uc->invalid_error = UC_ERR_FETCH_UNMAPPED;
ret = EXCP_HLT;
break;
}
cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
}
}
cc->cpu_exec_exit(cpu);
// Unicorn: flush JIT cache to because emulation might stop in
// the middle of translation, thus generate incomplete code.
// TODO: optimize this for better performance
tb_flush(cpu);
return ret;
}