Unicorn CPU emulator framework (ARM, AArch64, M68K, Mips, Sparc, X86)
Find a file
Emilio G. Cota 6bc05eeee4
tb hash: track translated blocks with qht
Having a fixed-size hash table for keeping track of all translation blocks
is suboptimal: some workloads are just too big or too small to get maximum
performance from the hash table. The MRU promotion policy helps improve
performance when the hash table is a little undersized, but it cannot
make up for severely undersized hash tables.

Furthermore, frequent MRU promotions result in writes that are a scalability
bottleneck. For scalability, lookups should only perform reads, not writes.
This is not a big deal for now, but it will become one once MTTCG matures.

The appended fixes these issues by using qht as the implementation of
the TB hash table. This solution is superior to other alternatives considered,
namely:

- master: implementation in QEMU before this patchset
- xxhash: before this patch, i.e. fixed buckets + xxhash hashing + MRU.
- xxhash-rcu: fixed buckets + xxhash + RCU list + MRU.
MRU is implemented here by adding an intermediate struct
that contains the u32 hash and a pointer to the TB; this
allows us, on an MRU promotion, to copy said struct (that is not
at the head), and put this new copy at the head. After a grace
period, the original non-head struct can be eliminated, and
after another grace period, freed.
- qht-fixed-nomru: fixed buckets + xxhash + qht without auto-resize +
no MRU for lookups; MRU for inserts.
The appended solution is the following:
- qht-dyn-nomru: dynamic number of buckets + xxhash + qht w/ auto-resize +
no MRU for lookups; MRU for inserts.

The plots below compare the considered solutions. The Y axis shows the
boot time (in seconds) of a debian jessie image with arm-softmmu; the X axis
sweeps the number of buckets (or initial number of buckets for qht-autoresize).
The plots in PNG format (and with errorbars) can be seen here:
http://imgur.com/a/Awgnq

Each test runs 5 times, and the entire QEMU process is pinned to a
single core for repeatability of results.

Host: Intel Xeon E5-2690

28 ++------------+-------------+-------------+-------------+------------++
A***** + + + master **A*** +
27 ++ * xxhash ##B###++
| A******A****** xxhash-rcu $$C$$$ |
26 C$$ A******A****** qht-fixed-nomru*%%D%%%++
D%%$$ A******A******A*qht-dyn-mru A*E****A
25 ++ %%$$ qht-dyn-nomru &&F&&&++
B#####% |
24 ++ #C$$$$$ ++
| B### $ |
| ## C$$$$$$ |
23 ++ # C$$$$$$ ++
| B###### C$$$$$$ %%%D
22 ++ %B###### C$$$$$$C$$$$$$C$$$$$$C$$$$$$C$$$$$$C
| D%%%%%%B###### @E@@@@@@ %%%D%%%@@@E@@@@@@E
21 E@@@@@@E@@@@@@F&&&@@@E@@@&&&D%%%%%%B######B######B######B######B######B
+ E@@@ F&&& + E@ + F&&& + +
20 ++------------+-------------+-------------+-------------+------------++
14 16 18 20 22 24
log2 number of buckets

Host: Intel i7-4790K

14.5 ++------------+------------+-------------+------------+------------++
A** + + + master **A*** +
14 ++ ** xxhash ##B###++
13.5 ++ ** xxhash-rcu $$C$$$++
| qht-fixed-nomru %%D%%% |
13 ++ A****** qht-dyn-mru @@E@@@++
| A*****A******A****** qht-dyn-nomru &&F&&& |
12.5 C$$ A******A******A*****A****** ***A
12 ++ $$ A*** ++
D%%% $$ |
11.5 ++ %% ++
B### %C$$$$$$ |
11 ++ ## D%%%%% C$$$$$ ++
| # % C$$$$$$ |
10.5 F&&&&&&B######D%%%%% C$$$$$$C$$$$$$C$$$$$$C$$$$$C$$$$$$ $$$C
10 E@@@@@@E@@@@@@B#####B######B######E@@@@@@E@@@%%%D%%%%%D%%%###B######B
+ F&& D%%%%%%B######B######B#####B###@@@D%%% +
9.5 ++------------+------------+-------------+------------+------------++
14 16 18 20 22 24
log2 number of buckets

Note that the original point before this patch series is X=15 for "master";
the little sensitivity to the increased number of buckets is due to the
poor hashing function in master.

xxhash-rcu has significant overhead due to the constant churn of allocating
and deallocating intermediate structs for implementing MRU. An alternative
would be do consider failed lookups as "maybe not there", and then
acquire the external lock (tb_lock in this case) to really confirm that
there was indeed a failed lookup. This, however, would not be enough
to implement dynamic resizing--this is more complex: see
"Resizable, Scalable, Concurrent Hash Tables via Relativistic
Programming" by Triplett, McKenney and Walpole. This solution was
discarded due to the very coarse RCU read critical sections that we have
in MTTCG; resizing requires waiting for readers after every pointer update,
and resizes require many pointer updates, so this would quickly become
prohibitive.

qht-fixed-nomru shows that MRU promotion is advisable for undersized
hash tables.

However, qht-dyn-mru shows that MRU promotion is not important if the
hash table is properly sized: there is virtually no difference in
performance between qht-dyn-nomru and qht-dyn-mru.

Before this patch, we're at X=15 on "xxhash"; after this patch, we're at
X=15 @ qht-dyn-nomru. This patch thus matches the best performance that we
can achieve with optimum sizing of the hash table, while keeping the hash
table scalable for readers.

The improvement we get before and after this patch for booting debian jessie
with arm-softmmu is:

- Intel Xeon E5-2690: 10.5% less time
- Intel i7-4790K: 5.2% less time

We could get this same improvement _for this particular workload_ by
statically increasing the size of the hash table. But this would hurt
workloads that do not need a large hash table. The dynamic (upward)
resizing allows us to start small and enlarge the hash table as needed.

A quick note on downsizing: the table is resized back to 2**15 buckets
on every tb_flush; this makes sense because it is not guaranteed that the
table will reach the same number of TBs later on (e.g. most bootup code is
thrown away after boot); it makes sense to grow the hash table as
more code blocks are translated. This also avoids the complication of
having to build downsizing hysteresis logic into qht.

Backports commit 909eaac9bbc2ed4f3a82ce38e905b87d478a3e00 from qemu
2018-03-13 14:16:26 -04:00
bindings link to Crystal binding 2017-12-23 00:26:40 +08:00
docs Added note about installing tests dependencies on Mac OS X. Added note about tests failing when required architecture support is disabled in build. (#908) 2017-10-12 19:56:00 +08:00
include memory: Share special empty FlatView 2018-03-11 22:34:28 -04:00
msvc tcg: move tcg backend files into accel/tcg/ 2018-03-13 11:48:15 -04:00
qemu tb hash: track translated blocks with qht 2018-03-13 14:16:26 -04:00
samples Fixed register mistake in comments (#894) 2017-09-17 16:40:01 +07:00
tests add 64-bit test demonstrating setting MSRs and FS/GS segments (#901) 2017-09-29 04:26:23 +08:00
.appveyor.yml MSYS test (#852) 2017-06-25 10:11:35 +08:00
.gitignore qapi: Move qapi-schema.json to qapi/, rename generated files 2018-03-09 11:35:11 -05:00
.travis.yml use new travis osx image and brew (#935) 2018-01-05 10:29:49 +08:00
AUTHORS.TXT import 2015-08-21 15:04:50 +08:00
Brewfile Update Brewfile 2017-09-30 17:36:44 +07:00
ChangeLog update ChangeLog 2017-04-20 13:28:02 +08:00
config.mk Fix document file extension 2016-08-08 17:33:49 +09:00
COPYING import 2015-08-21 15:04:50 +08:00
COPYING.LGPL2 LGPL2 for all header files under include/unicorn/ 2017-12-16 10:08:42 +08:00
COPYING_GLIB glib_compat: add COPYING_GLIB 2016-12-27 10:15:08 +08:00
CREDITS.TXT update CREDITS.TXT 2017-04-25 12:56:47 +08:00
install-cmocka-linux.sh Start moving examples in S files (#851) 2017-06-25 10:14:22 +08:00
list.c callback to count number of instructions in uc_emu_start() should be executed first. fix #727 2017-06-16 13:22:38 +08:00
make.sh Added MSVC support for arm64eb. 2017-04-25 14:23:58 +10:00
Makefile crypto: introduce new module for computing hash digests 2018-02-17 15:23:17 -05:00
msvc.bat add msvc.bat 2017-04-21 15:35:40 +08:00
pkgconfig.mk bump extra version to 2 2017-04-21 15:30:40 +08:00
README.md add Clojure 2017-12-23 00:32:33 +08:00
uc.c exec: Drop unnecessary code for unicorn 2018-03-12 10:11:46 -04:00
windows_export.bat Make the call out to visual studio extremely resilient 2017-01-02 03:32:48 -08:00

Unicorn Engine

Join the chat at https://gitter.im/unicorn-engine/chat

Build Status Build status

Unicorn is a lightweight, multi-platform, multi-architecture CPU emulator framework based on QEMU.

Unicorn offers some unparalleled features:

  • Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC, and X86 (16, 32, 64-bit)
  • Clean/simple/lightweight/intuitive architecture-neutral API
  • Implemented in pure C language, with bindings for Crystal, Clojure, Visual Basic, Perl, Rust, Ruby, Python, Java, .NET, Go, Delphi/Free Pascal and Haskell.
  • Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)
  • High performance via Just-In-Time compilation
  • Support for fine-grained instrumentation at various levels
  • Thread-safety by design
  • Distributed under free software license GPLv2

Further information is available at http://www.unicorn-engine.org

License

This project is released under the GPL license.

Compilation & Docs

See docs/COMPILE.md file for how to compile and install Unicorn.

More documentation is available in docs/README.md.

Contact

Contact us via mailing list, email or twitter for any questions.

Contribute

If you want to contribute, please pick up something from our Github issues.

We also maintain a list of more challenged problems in a TODO list.

CREDITS.TXT records important contributors of our project.