unicorn/bindings/python/sample_x86.py
Stephen 75d90aff52 Make cleanup (#666)
* make cleanup

* Update .travis.yml
Update eflags_nosync.c
Update sigill2.c
Update ro_mem_test.c
Update ro_mem_test.c
Update nr_mem_test.c
Update mem_fuzz.c
Update mem_double_unmap.c
Update emu_stop_in_hook_overrun.c
Update eflags_nosync.c
remove unused
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update mem_64_c.c
Update mem_64_c.c
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update Makefile
Update .travis.yml
try android ndk build
Update unicorn.py
Update unicorn.py
Update Makefile
Update unicorn.py
Update unicorn.py
remove an untrue comment

if a dll/so/dylib gets loaded at runtime is dependent on many different factors, primarily the LD/DYLD paths. Those do not always include the current working directory
Update Makefile
Update .appveyor.yml
Update .travis.yml
Update Makefile
Update .appveyor.yml
Fix bad sample

* Update Makefile

* Update Makefile

* Update install-cmocka-linux.sh

* remove verbose option from tar

* add upgrade to pacman for cmake

* pacman double update, needed to get new packages

* enable cmocka unit testing

* rejigger commands to fail on any step

should get fails in msys builds for cmocka

* fix quote

* make cmocka in cygwin only

* add msys cache
2016-11-19 17:17:48 +08:00

648 lines
21 KiB
Python
Executable file

#!/usr/bin/env python
# Sample code for X86 of Unicorn. Nguyen Anh Quynh <aquynh@gmail.com>
from __future__ import print_function
from unicorn import *
from unicorn.x86_const import *
X86_CODE32 = b"\x41\x4a\x66\x0f\xef\xc1" # INC ecx; DEC edx; PXOR xmm0, xmm1
X86_CODE32_LOOP = b"\x41\x4a\xeb\xfe" # INC ecx; DEC edx; JMP self-loop
X86_CODE32_JUMP = b"\xeb\x02\x90\x90\x90\x90\x90\x90" # jmp 4; nop; nop; nop; nop; nop; nop
X86_CODE32_JMP_INVALID = b"\xe9\xe9\xee\xee\xee\x41\x4a" # JMP outside; INC ecx; DEC edx
X86_CODE32_MEM_READ = b"\x8B\x0D\xAA\xAA\xAA\xAA\x41\x4a" # mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx
X86_CODE32_MEM_WRITE = b"\x89\x0D\xAA\xAA\xAA\xAA\x41\x4a" # mov [0xaaaaaaaa], ecx; INC ecx; DEC edx
X86_CODE64 = b"\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59"
X86_CODE32_INOUT = b"\x41\xE4\x3F\x4a\xE6\x46\x43" # INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx
X86_CODE64_SYSCALL = b'\x0f\x05' # SYSCALL
X86_CODE16 = b'\x00\x00' # add byte ptr [bx + si], al
# memory address where emulation starts
ADDRESS = 0x1000000
# callback for tracing basic blocks
def hook_block(uc, address, size, user_data):
print(">>> Tracing basic block at 0x%x, block size = 0x%x" %(address, size))
# callback for tracing instructions
def hook_code(uc, address, size, user_data):
print(">>> Tracing instruction at 0x%x, instruction size = 0x%x" %(address, size))
eip = uc.reg_read(UC_X86_REG_EFLAGS)
print(">>> --- EFLAGS is 0x%x" %(eip))
def hook_code64(uc, address, size, user_data):
print(">>> Tracing instruction at 0x%x, instruction size = 0x%x" %(address, size))
rip = uc.reg_read(UC_X86_REG_RIP)
print(">>> RIP is 0x%x" %rip);
# callback for tracing invalid memory access (READ or WRITE)
def hook_mem_invalid(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE_UNMAPPED:
print(">>> Missing memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" \
%(address, size, value))
# map this memory in with 2MB in size
uc.mem_map(0xaaaa0000, 2 * 1024*1024)
# return True to indicate we want to continue emulation
return True
else:
# return False to indicate we want to stop emulation
return False
# callback for tracing memory access (READ or WRITE)
def hook_mem_access(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(">>> Memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" \
%(address, size, value))
else: # READ
print(">>> Memory is being READ at 0x%x, data size = %u" \
%(address, size))
# callback for IN instruction
def hook_in(uc, port, size, user_data):
eip = uc.reg_read(UC_X86_REG_EIP)
print("--- reading from port 0x%x, size: %u, address: 0x%x" %(port, size, eip))
if size == 1:
# read 1 byte to AL
return 0xf1
if size == 2:
# read 2 byte to AX
return 0xf2
if size == 4:
# read 4 byte to EAX
return 0xf4
# we should never reach here
return 0
# callback for OUT instruction
def hook_out(uc, port, size, value, user_data):
eip = uc.reg_read(UC_X86_REG_EIP)
print("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x" %(port, size, value, eip))
# confirm that value is indeed the value of AL/AX/EAX
v = 0
if size == 1:
# read 1 byte in AL
v = uc.reg_read(UC_X86_REG_AL)
if size == 2:
# read 2 bytes in AX
v = uc.reg_read(UC_X86_REG_AX)
if size == 4:
# read 4 bytes in EAX
v = uc.reg_read(UC_X86_REG_EAX)
print("--- register value = 0x%x" %v)
# Test X86 32 bit
def test_i386():
print("Emulate i386 code")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
mu.reg_write(UC_X86_REG_XMM0, 0x000102030405060708090a0b0c0d0e0f)
mu.reg_write(UC_X86_REG_XMM1, 0x00102030405060708090a0b0c0d0e0f0)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
r_xmm0 = mu.reg_read(UC_X86_REG_XMM0)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
print(">>> XMM0 = 0x%.32x" %r_xmm0)
# read from memory
tmp = mu.mem_read(ADDRESS, 4)
print(">>> Read 4 bytes from [0x%x] = 0x" %(ADDRESS), end="")
for i in reversed(tmp):
print("%x" %(i), end="")
print("")
except UcError as e:
print("ERROR: %s" % e)
def test_i386_map_ptr():
print("Emulate i386 code - use uc_mem_map_ptr()")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32), 2 * UC_SECOND_SCALE)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
# read from memory
tmp = mu.mem_read(ADDRESS, 4)
print(">>> Read 4 bytes from [0x%x] = 0x" %(ADDRESS), end="")
for i in reversed(tmp):
print("%x" %(i), end="")
print("")
except UcError as e:
print("ERROR: %s" % e)
def test_i386_invalid_mem_read():
print("Emulate i386 code that read from invalid memory")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_MEM_READ)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_MEM_READ))
except UcError as e:
print("Failed on uc_emu_start() with error returned 6: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
except UcError as e:
print("ERROR: %s" % e)
def test_i386_jump():
print("Emulate i386 code with jump")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_JUMP)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block, begin=ADDRESS, end=ADDRESS)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code, begin=ADDRESS, end=ADDRESS)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_JUMP))
except UcError as e:
print("ERROR: %s" % e)
print(">>> Emulation done. Below is the CPU context")
except UcError as e:
print("ERROR: %s" % e)
def test_i386_invalid_mem_write():
print("Emulate i386 code that write to invalid memory")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_MEM_WRITE)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# intercept invalid memory events
mu.hook_add(UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, hook_mem_invalid)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_MEM_WRITE))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
# read from memory
print(">>> Read 4 bytes from [0x%x] = 0x" %(0xaaaaaaaa), end="")
tmp = mu.mem_read(0xaaaaaaaa, 4)
for i in reversed(tmp):
if i != 0:
print("%x" %i, end="")
print("")
try:
tmp = mu.mem_read(0xffffffaa, 4)
print(">>> Read 4 bytes from [0x%x] = 0x" %(0xffffffaa), end="")
for i in reversed(tmp):
print("%x" %i, end="")
print("")
except UcError as e:
print(">>> Failed to read 4 bytes from [0xffffffaa]")
except UcError as e:
print("ERROR: %s" % e)
def test_i386_jump_invalid():
print("Emulate i386 code that jumps to invalid memory")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_JMP_INVALID)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
try:
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_JMP_INVALID))
except UcError as e:
print("Failed on uc_emu_start() with error returned 8: %s" %e)
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
except UcError as e:
print("ERROR %s" % e)
def test_i386_loop():
print("Emulate i386 code that loop forever")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_LOOP)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_LOOP), timeout=2*UC_SECOND_SCALE)
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
except UcError as e:
print("ERROR: %s" % e)
# Test X86 32 bit with IN/OUT instruction
def test_i386_inout():
print("Emulate i386 code with IN/OUT instructions")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_INOUT)
# initialize machine registers
mu.reg_write(UC_X86_REG_EAX, 0x1234)
mu.reg_write(UC_X86_REG_ECX, 0x6789)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# handle IN & OUT instruction
mu.hook_add(UC_HOOK_INSN, hook_in, None, 1, 0, UC_X86_INS_IN)
mu.hook_add(UC_HOOK_INSN, hook_out, None, 1, 0, UC_X86_INS_OUT)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_INOUT))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_eax = mu.reg_read(UC_X86_REG_EAX)
print(">>> EAX = 0x%x" %r_eax)
print(">>> ECX = 0x%x" %r_ecx)
except UcError as e:
print("ERROR: %s" % e)
def test_i386_context_save():
print("Save/restore CPU context in opaque blob")
address = 0
code = '\x40' # inc eax
try:
# Initialize emulator
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 8KB memory for this emulation
mu.mem_map(address, 8 * 1024, UC_PROT_ALL)
# write machine code to be emulated to memory
mu.mem_write(address, code)
# set eax to 1
mu.reg_write(UC_X86_REG_EAX, 1)
print(">>> Running emulation for the first time")
mu.emu_start(address, address+1)
print(">>> Emulation done. Below is the CPU context")
print(">>> EAX = 0x%x" %(mu.reg_read(UC_X86_REG_EAX)))
print(">>> Saving CPU context")
saved_context = mu.context_save()
print(">>> Running emulation for the second time")
mu.emu_start(address, address+1)
print(">>> Emulation done. Below is the CPU context")
print(">>> EAX = 0x%x" %(mu.reg_read(UC_X86_REG_EAX)))
print(">>> CPU context restored. Below is the CPU context")
mu.context_restore(saved_context)
print(">>> EAX = 0x%x" %(mu.reg_read(UC_X86_REG_EAX)))
except UcError as e:
print("ERROR: %s" % e)
def test_x86_64():
print("Emulate x86_64 code")
try:
# Initialize emulator in X86-64bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_64)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE64)
# initialize machine registers
mu.reg_write(UC_X86_REG_RAX, 0x71f3029efd49d41d)
mu.reg_write(UC_X86_REG_RBX, 0xd87b45277f133ddb)
mu.reg_write(UC_X86_REG_RCX, 0xab40d1ffd8afc461)
mu.reg_write(UC_X86_REG_RDX, 0x919317b4a733f01)
mu.reg_write(UC_X86_REG_RSI, 0x4c24e753a17ea358)
mu.reg_write(UC_X86_REG_RDI, 0xe509a57d2571ce96)
mu.reg_write(UC_X86_REG_R8, 0xea5b108cc2b9ab1f)
mu.reg_write(UC_X86_REG_R9, 0x19ec097c8eb618c1)
mu.reg_write(UC_X86_REG_R10, 0xec45774f00c5f682)
mu.reg_write(UC_X86_REG_R11, 0xe17e9dbec8c074aa)
mu.reg_write(UC_X86_REG_R12, 0x80f86a8dc0f6d457)
mu.reg_write(UC_X86_REG_R13, 0x48288ca5671c5492)
mu.reg_write(UC_X86_REG_R14, 0x595f72f6e4017f6e)
mu.reg_write(UC_X86_REG_R15, 0x1efd97aea331cccc)
# setup stack
mu.reg_write(UC_X86_REG_RSP, ADDRESS + 0x200000)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions in range [ADDRESS, ADDRESS+20]
mu.hook_add(UC_HOOK_CODE, hook_code64, None, ADDRESS, ADDRESS+20)
# tracing all memory READ & WRITE access
mu.hook_add(UC_HOOK_MEM_WRITE, hook_mem_access)
mu.hook_add(UC_HOOK_MEM_READ, hook_mem_access)
# actually you can also use READ_WRITE to trace all memory access
#mu.hook_add(UC_HOOK_MEM_READ | UC_HOOK_MEM_WRITE, hook_mem_access)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE64))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
rax = mu.reg_read(UC_X86_REG_RAX)
rbx = mu.reg_read(UC_X86_REG_RBX)
rcx = mu.reg_read(UC_X86_REG_RCX)
rdx = mu.reg_read(UC_X86_REG_RDX)
rsi = mu.reg_read(UC_X86_REG_RSI)
rdi = mu.reg_read(UC_X86_REG_RDI)
r8 = mu.reg_read(UC_X86_REG_R8)
r9 = mu.reg_read(UC_X86_REG_R9)
r10 = mu.reg_read(UC_X86_REG_R10)
r11 = mu.reg_read(UC_X86_REG_R11)
r12 = mu.reg_read(UC_X86_REG_R12)
r13 = mu.reg_read(UC_X86_REG_R13)
r14 = mu.reg_read(UC_X86_REG_R14)
r15 = mu.reg_read(UC_X86_REG_R15)
print(">>> RAX = 0x%x" %rax)
print(">>> RBX = 0x%x" %rbx)
print(">>> RCX = 0x%x" %rcx)
print(">>> RDX = 0x%x" %rdx)
print(">>> RSI = 0x%x" %rsi)
print(">>> RDI = 0x%x" %rdi)
print(">>> R8 = 0x%x" %r8)
print(">>> R9 = 0x%x" %r9)
print(">>> R10 = 0x%x" %r10)
print(">>> R11 = 0x%x" %r11)
print(">>> R12 = 0x%x" %r12)
print(">>> R13 = 0x%x" %r13)
print(">>> R14 = 0x%x" %r14)
print(">>> R15 = 0x%x" %r15)
except UcError as e:
print("ERROR: %s" % e)
def test_x86_64_syscall():
print("Emulate x86_64 code with 'syscall' instruction")
try:
# Initialize emulator in X86-64bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_64)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE64_SYSCALL)
def hook_syscall(mu, user_data):
rax = mu.reg_read(UC_X86_REG_RAX)
if rax == 0x100:
mu.reg_write(UC_X86_REG_RAX, 0x200)
else:
print('ERROR: was not expecting rax=%d in syscall' % rax)
# hook interrupts for syscall
mu.hook_add(UC_HOOK_INSN, hook_syscall, None, 1, 0, UC_X86_INS_SYSCALL)
# syscall handler is expecting rax=0x100
mu.reg_write(UC_X86_REG_RAX, 0x100)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE64_SYSCALL))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
rax = mu.reg_read(UC_X86_REG_RAX)
print(">>> RAX = 0x%x" % rax)
except UcError as e:
print("ERROR: %s" % e)
def test_x86_16():
print("Emulate x86 16-bit code")
try:
# Initialize emulator in X86-16bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_16)
# map 8KB memory for this emulation
mu.mem_map(0, 8 * 1024)
# set CPU registers
mu.reg_write(UC_X86_REG_EAX, 7)
mu.reg_write(UC_X86_REG_EBX, 5)
mu.reg_write(UC_X86_REG_ESI, 6)
# write machine code to be emulated to memory
mu.mem_write(0, X86_CODE16)
# emulate machine code in infinite time
mu.emu_start(0, len(X86_CODE16))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
tmp = mu.mem_read(11, 1)
print(">>> Read 1 bytes from [0x%x] = 0x%x" %(11, tmp[0]))
except UcError as e:
print("ERROR: %s" % e)
if __name__ == '__main__':
test_x86_16()
test_i386()
print("=" * 35)
test_i386_map_ptr()
print("=" * 35)
test_i386_inout()
print("=" * 35)
test_i386_context_save()
print("=" * 35)
test_i386_jump()
print("=" * 35)
test_i386_loop()
print("=" * 35)
test_i386_invalid_mem_read()
print("=" * 35)
test_i386_invalid_mem_write()
print("=" * 35)
test_i386_jump_invalid()
test_x86_64()
print("=" * 35)
test_x86_64_syscall()