mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-08 22:15:28 +00:00
1026 lines
36 KiB
C
1026 lines
36 KiB
C
/*
|
|
* Software MMU support
|
|
*
|
|
* Generate helpers used by TCG for qemu_ld/st ops and code load
|
|
* functions.
|
|
*
|
|
* Included from target op helpers and exec.c.
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/timer.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/memory.h"
|
|
#include "uc_priv.h"
|
|
|
|
#define DATA_SIZE (1 << SHIFT)
|
|
|
|
#if DATA_SIZE == 8
|
|
#define SUFFIX q
|
|
#define LSUFFIX q
|
|
#define SDATA_TYPE int64_t
|
|
#define DATA_TYPE uint64_t
|
|
#elif DATA_SIZE == 4
|
|
#define SUFFIX l
|
|
#define LSUFFIX l
|
|
#define SDATA_TYPE int32_t
|
|
#define DATA_TYPE uint32_t
|
|
#elif DATA_SIZE == 2
|
|
#define SUFFIX w
|
|
#define LSUFFIX uw
|
|
#define SDATA_TYPE int16_t
|
|
#define DATA_TYPE uint16_t
|
|
#elif DATA_SIZE == 1
|
|
#define SUFFIX b
|
|
#define LSUFFIX ub
|
|
#define SDATA_TYPE int8_t
|
|
#define DATA_TYPE uint8_t
|
|
#else
|
|
#error unsupported data size
|
|
#endif
|
|
|
|
|
|
/* For the benefit of TCG generated code, we want to avoid the complication
|
|
of ABI-specific return type promotion and always return a value extended
|
|
to the register size of the host. This is tcg_target_long, except in the
|
|
case of a 32-bit host and 64-bit data, and for that we always have
|
|
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
|
|
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
|
|
# define WORD_TYPE DATA_TYPE
|
|
# define USUFFIX SUFFIX
|
|
#else
|
|
# define WORD_TYPE tcg_target_ulong
|
|
# define USUFFIX glue(u, SUFFIX)
|
|
# define SSUFFIX glue(s, SUFFIX)
|
|
#endif
|
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
#define READ_ACCESS_TYPE MMU_INST_FETCH
|
|
#define ADDR_READ addr_code
|
|
#else
|
|
#define READ_ACCESS_TYPE MMU_DATA_LOAD
|
|
#define ADDR_READ addr_read
|
|
#endif
|
|
|
|
#if DATA_SIZE == 8
|
|
# define BSWAP(X) bswap64(X)
|
|
#elif DATA_SIZE == 4
|
|
# define BSWAP(X) bswap32(X)
|
|
#elif DATA_SIZE == 2
|
|
# define BSWAP(X) bswap16(X)
|
|
#else
|
|
# define BSWAP(X) (X)
|
|
#endif
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
# define TGT_BE(X) (X)
|
|
# define TGT_LE(X) BSWAP(X)
|
|
#else
|
|
# define TGT_BE(X) BSWAP(X)
|
|
# define TGT_LE(X) (X)
|
|
#endif
|
|
|
|
#if DATA_SIZE == 1
|
|
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_be_ld_name helper_le_ld_name
|
|
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_be_lds_name helper_le_lds_name
|
|
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
|
|
# define helper_be_st_name helper_le_st_name
|
|
#else
|
|
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
|
|
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
|
|
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
|
|
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
|
|
#endif
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
# define helper_te_ld_name helper_be_ld_name
|
|
# define helper_te_st_name helper_be_st_name
|
|
#else
|
|
# define helper_te_ld_name helper_le_ld_name
|
|
# define helper_te_st_name helper_le_st_name
|
|
#endif
|
|
|
|
/* macro to check the victim tlb */
|
|
#define VICTIM_TLB_HIT(ty) \
|
|
/* we are about to do a page table walk. our last hope is the \
|
|
* victim tlb. try to refill from the victim tlb before walking the \
|
|
* page table. */ \
|
|
int vidx; \
|
|
hwaddr tmpiotlb; \
|
|
CPUTLBEntry tmptlb; \
|
|
for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
|
|
if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
|
|
/* found entry in victim tlb, swap tlb and iotlb */ \
|
|
tmptlb = env->tlb_table[mmu_idx][index]; \
|
|
env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
|
|
env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
|
|
tmpiotlb = env->iotlb[mmu_idx][index]; \
|
|
env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
|
|
env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
|
|
break; \
|
|
} \
|
|
} \
|
|
/* return true when there is a vtlb hit, i.e. vidx >=0 */ \
|
|
return (vidx >= 0)
|
|
|
|
#ifndef victim_tlb_hit_funcs
|
|
#define victim_tlb_hit_funcs
|
|
static inline bool victim_tlb_hit_read(CPUArchState *env, target_ulong addr, int mmu_idx, int index)
|
|
{
|
|
VICTIM_TLB_HIT(ADDR_READ);
|
|
}
|
|
|
|
static inline bool victim_tlb_hit_write(CPUArchState *env, target_ulong addr, int mmu_idx, int index)
|
|
{
|
|
VICTIM_TLB_HIT(addr_write);
|
|
}
|
|
#endif // victim_tlb_hit_funcs
|
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
|
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
|
|
hwaddr physaddr,
|
|
target_ulong addr,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint64_t val;
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
|
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
if (mr != &(cpu->uc->io_mem_rom) && mr != &(cpu->uc->io_mem_notdirty)
|
|
&& !cpu_can_do_io(cpu)) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
io_mem_read(mr, physaddr, &val, 1 << SHIFT);
|
|
return (DATA_TYPE)val;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
static QEMU_UNUSED_FUNC
|
|
#endif
|
|
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
uintptr_t haddr;
|
|
DATA_TYPE res;
|
|
int error_code;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// memory might be still unmapped while reading or fetching
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
error_code = UC_ERR_FETCH_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
#else
|
|
error_code = UC_ERR_READ_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
#endif
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = error_code;
|
|
// printf("***** Invalid fetch (unmapped memory) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
// Unicorn: callback on fetch from NX
|
|
if (mr != NULL && !(mr->perms & UC_PROT_EXEC)) { // non-executable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_PROT, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_PROT;
|
|
// printf("***** Invalid fetch (non-executable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Unicorn: callback on memory read
|
|
// NOTE: this happens before the actual read, so we cannot tell
|
|
// the callback if read access is succesful, or not.
|
|
// See UC_HOOK_MEM_READ_AFTER & UC_MEM_READ_AFTER if you only care
|
|
// about successful read
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ, addr, DATA_SIZE, 0, hook->user_data);
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-readable memory
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD && mr != NULL && !(mr->perms & UC_PROT_READ)) { //non-readable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_PROT, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_READ_PROT;
|
|
// printf("***** Invalid memory read (non-readable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (!victim_tlb_hit_read(env, addr, mmu_idx, index)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
hwaddr ioaddr;
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
if (ioaddr == 0) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_READ_UNMAPPED;
|
|
// printf("Invalid memory read at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(env->uc->current_cpu);
|
|
return 0;
|
|
} else {
|
|
env->invalid_error = UC_ERR_OK;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
|
|
res = TGT_LE(res);
|
|
goto _out;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
DATA_TYPE res1, res2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
#ifdef ALIGNED_ONLY
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
#endif
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
addr2 = addr1 + DATA_SIZE;
|
|
/* Note the adjustment at the beginning of the function.
|
|
Undo that for the recursion. */
|
|
res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
|
|
res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
|
|
|
/* Little-endian combine. */
|
|
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
|
|
goto _out;
|
|
}
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
haddr = (uintptr_t)(addr + env->tlb_table[mmu_idx][index].addend);
|
|
#if DATA_SIZE == 1
|
|
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
|
|
#else
|
|
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
|
|
#endif
|
|
|
|
_out:
|
|
// Unicorn: callback on successful read
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_AFTER) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ_AFTER, addr, DATA_SIZE, res, hook->user_data);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
#if DATA_SIZE > 1
|
|
#ifdef SOFTMMU_CODE_ACCESS
|
|
static QEMU_UNUSED_FUNC
|
|
#endif
|
|
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
uintptr_t haddr;
|
|
DATA_TYPE res;
|
|
int error_code;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// memory can be unmapped while reading or fetching
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
error_code = UC_ERR_FETCH_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
#else
|
|
error_code = UC_ERR_READ_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_UNMAPPED, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
#endif
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = error_code;
|
|
// printf("***** Invalid fetch (unmapped memory) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
// Unicorn: callback on fetch from NX
|
|
if (mr != NULL && !(mr->perms & UC_PROT_EXEC)) { // non-executable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_PROT, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_PROT;
|
|
// printf("***** Invalid fetch (non-executable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Unicorn: callback on memory read
|
|
// NOTE: this happens before the actual read, so we cannot tell
|
|
// the callback if read access is succesful, or not.
|
|
// See UC_HOOK_MEM_READ_AFTER & UC_MEM_READ_AFTER if you only care
|
|
// about successful read
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ, addr, DATA_SIZE, 0, hook->user_data);
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-readable memory
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD && mr != NULL && !(mr->perms & UC_PROT_READ)) { //non-readable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_PROT, addr, DATA_SIZE, 0, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_READ_PROT;
|
|
// printf("***** Invalid memory read (non-readable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (!victim_tlb_hit_read(env, addr, mmu_idx, index)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
hwaddr ioaddr;
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
|
|
if (ioaddr == 0) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_READ_UNMAPPED;
|
|
// printf("Invalid memory read at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(env->uc->current_cpu);
|
|
return 0;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
|
|
res = TGT_BE(res);
|
|
goto _out;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
DATA_TYPE res1, res2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
#ifdef ALIGNED_ONLY
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
#endif
|
|
addr1 = addr & ~(DATA_SIZE - 1);
|
|
addr2 = addr1 + DATA_SIZE;
|
|
/* Note the adjustment at the beginning of the function.
|
|
Undo that for the recursion. */
|
|
res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
|
|
res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
|
|
shift = (addr & (DATA_SIZE - 1)) * 8;
|
|
|
|
/* Big-endian combine. */
|
|
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
|
|
goto _out;
|
|
}
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
#if defined(SOFTMMU_CODE_ACCESS)
|
|
env->invalid_error = UC_ERR_FETCH_UNALIGNED;
|
|
#else
|
|
env->invalid_error = UC_ERR_READ_UNALIGNED;
|
|
#endif
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
haddr = (uintptr_t)(addr + env->tlb_table[mmu_idx][index].addend);
|
|
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
|
|
|
|
_out:
|
|
// Unicorn: callback on successful read
|
|
if (READ_ACCESS_TYPE == MMU_DATA_LOAD) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_AFTER) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ_AFTER, addr, DATA_SIZE, res, hook->user_data);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
#endif /* DATA_SIZE > 1 */
|
|
|
|
DATA_TYPE
|
|
glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
|
|
int mmu_idx)
|
|
{
|
|
return helper_te_ld_name (env, addr, mmu_idx, GETRA());
|
|
}
|
|
|
|
#ifndef SOFTMMU_CODE_ACCESS
|
|
|
|
/* Provide signed versions of the load routines as well. We can of course
|
|
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
|
|
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
|
|
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
|
|
}
|
|
|
|
# if DATA_SIZE > 1
|
|
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
|
|
hwaddr physaddr,
|
|
DATA_TYPE val,
|
|
target_ulong addr,
|
|
uintptr_t retaddr)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
|
|
|
|
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
|
|
if (mr != &(cpu->uc->io_mem_rom) && mr != &(cpu->uc->io_mem_notdirty)
|
|
&& !cpu_can_do_io(cpu)) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
io_mem_write(mr, physaddr, val, 1 << SHIFT);
|
|
}
|
|
|
|
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
uintptr_t haddr;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// Unicorn: callback on memory write
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(uc, UC_MEM_WRITE, addr, DATA_SIZE, val, hook->user_data);
|
|
}
|
|
|
|
// Unicorn: callback on invalid memory
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_UNMAPPED, addr, DATA_SIZE, val, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (!handled) {
|
|
// save error & quit
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNMAPPED;
|
|
// printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
} else {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-writable memory
|
|
if (mr != NULL && !(mr->perms & UC_PROT_WRITE)) { //non-writable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_PROT, addr, DATA_SIZE, val, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_PROT;
|
|
// printf("***** Invalid memory write (ro) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
//cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
// mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
#endif
|
|
if (!victim_tlb_hit_write(env, addr, mmu_idx, index)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
hwaddr ioaddr;
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
if (ioaddr == 0) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNMAPPED;
|
|
// printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(env->uc->current_cpu);
|
|
return;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
val = TGT_LE(val);
|
|
glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i;
|
|
do_unaligned_access:
|
|
#ifdef ALIGNED_ONLY
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
#endif
|
|
/* XXX: not efficient, but simple */
|
|
/* Note: relies on the fact that tlb_fill() does not remove the
|
|
* previous page from the TLB cache. */
|
|
for (i = DATA_SIZE - 1; i >= 0; i--) {
|
|
/* Little-endian extract. */
|
|
uint8_t val8 = (uint8_t)(val >> (i * 8));
|
|
/* Note the adjustment at the beginning of the function.
|
|
Undo that for the recursion. */
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
|
mmu_idx, retaddr + GETPC_ADJ);
|
|
if (env->invalid_error != UC_ERR_OK)
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
haddr = (uintptr_t)(addr + env->tlb_table[mmu_idx][index].addend);
|
|
#if DATA_SIZE == 1
|
|
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
|
|
#else
|
|
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
|
|
#endif
|
|
}
|
|
|
|
#if DATA_SIZE > 1
|
|
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
uintptr_t haddr;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// Unicorn: callback on memory write
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
((uc_cb_hookmem_t)hook->callback)(uc, UC_MEM_WRITE, addr, DATA_SIZE, val, hook->user_data);
|
|
}
|
|
|
|
// Unicorn: callback on invalid memory
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_UNMAPPED, addr, DATA_SIZE, val, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (!handled) {
|
|
// save error & quit
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNMAPPED;
|
|
// printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
} else {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-writable memory
|
|
if (mr != NULL && !(mr->perms & UC_PROT_WRITE)) { //non-writable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr))
|
|
continue;
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_PROT, addr, DATA_SIZE, val, hook->user_data)))
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_PROT;
|
|
// printf("***** Invalid memory write (ro) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if ((addr & TARGET_PAGE_MASK)
|
|
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
#endif
|
|
if (!victim_tlb_hit_write(env, addr, mmu_idx, index)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
|
|
}
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
hwaddr ioaddr;
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
ioaddr = env->iotlb[mmu_idx][index];
|
|
if (ioaddr == 0) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNMAPPED;
|
|
// printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(env->uc->current_cpu);
|
|
return;
|
|
}
|
|
|
|
/* ??? Note that the io helpers always read data in the target
|
|
byte ordering. We should push the LE/BE request down into io. */
|
|
val = TGT_BE(val);
|
|
glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (DATA_SIZE > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i;
|
|
do_unaligned_access:
|
|
#ifdef ALIGNED_ONLY
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
#endif
|
|
/* XXX: not efficient, but simple */
|
|
/* Note: relies on the fact that tlb_fill() does not remove the
|
|
* previous page from the TLB cache. */
|
|
for (i = DATA_SIZE - 1; i >= 0; i--) {
|
|
/* Big-endian extract. */
|
|
uint8_t val8 = (uint8_t)(val >> (((DATA_SIZE - 1) * 8) - (i * 8)));
|
|
/* Note the adjustment at the beginning of the function.
|
|
Undo that for the recursion. */
|
|
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
|
|
mmu_idx, retaddr + GETPC_ADJ);
|
|
if (env->invalid_error != UC_ERR_OK)
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle aligned access or unaligned access in the same page. */
|
|
#ifdef ALIGNED_ONLY
|
|
if ((addr & (DATA_SIZE - 1)) != 0) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNALIGNED;
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
haddr = (uintptr_t)(addr + env->tlb_table[mmu_idx][index].addend);
|
|
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
|
|
}
|
|
#endif /* DATA_SIZE > 1 */
|
|
|
|
void
|
|
glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
|
|
DATA_TYPE val, int mmu_idx)
|
|
{
|
|
helper_te_st_name(env, addr, val, mmu_idx, GETRA());
|
|
}
|
|
|
|
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
|
|
|
|
#undef READ_ACCESS_TYPE
|
|
#undef SHIFT
|
|
#undef DATA_TYPE
|
|
#undef SUFFIX
|
|
#undef LSUFFIX
|
|
#undef DATA_SIZE
|
|
#undef ADDR_READ
|
|
#undef WORD_TYPE
|
|
#undef SDATA_TYPE
|
|
#undef USUFFIX
|
|
#undef SSUFFIX
|
|
#undef BSWAP
|
|
#undef TGT_BE
|
|
#undef TGT_LE
|
|
#undef CPU_BE
|
|
#undef CPU_LE
|
|
#undef helper_le_ld_name
|
|
#undef helper_be_ld_name
|
|
#undef helper_le_lds_name
|
|
#undef helper_be_lds_name
|
|
#undef helper_le_st_name
|
|
#undef helper_be_st_name
|
|
#undef helper_te_ld_name
|
|
#undef helper_te_st_name
|