unicorn/qemu/target/m68k/op_helper.c

1101 lines
30 KiB
C

/*
* M68K helper routines
*
* Copyright (c) 2007 CodeSourcery
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#if defined(CONFIG_USER_ONLY)
void m68k_cpu_do_interrupt(CPUState *cs)
{
cs->exception_index = -1;
}
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
}
#else
extern int semihosting_enabled;
/* Try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
void tlb_fill(CPUState *cs, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
int ret;
ret = m68k_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
if (unlikely(ret)) {
/* now we have a real cpu fault */
cpu_loop_exit_restore(cs, retaddr);
}
}
static void cf_rte(CPUM68KState *env)
{
uint32_t sp;
uint32_t fmt;
sp = env->aregs[7];
fmt = cpu_ldl_kernel(env, sp);
env->pc = cpu_ldl_kernel(env, sp + 4);
sp |= (fmt >> 28) & 3;
env->aregs[7] = sp + 8;
cpu_m68k_set_sr(env, fmt);
}
static void m68k_rte(CPUM68KState *env)
{
uint32_t sp;
uint16_t fmt;
uint16_t sr;
sp = env->aregs[7];
throwaway:
sr = cpu_lduw_kernel(env, sp);
sp += 2;
env->pc = cpu_ldl_kernel(env, sp);
sp += 4;
if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
/* all except 68000 */
fmt = cpu_lduw_kernel(env, sp);
sp += 2;
switch (fmt >> 12) {
case 0:
break;
case 1:
env->aregs[7] = sp;
cpu_m68k_set_sr(env, sr);
goto throwaway;
case 2:
case 3:
sp += 4;
break;
case 4:
sp += 8;
break;
case 7:
sp += 52;
break;
}
}
env->aregs[7] = sp;
cpu_m68k_set_sr(env, sr);
}
static const char *m68k_exception_name(int index)
{
switch (index) {
case EXCP_ACCESS:
return "Access Fault";
case EXCP_ADDRESS:
return "Address Error";
case EXCP_ILLEGAL:
return "Illegal Instruction";
case EXCP_DIV0:
return "Divide by Zero";
case EXCP_CHK:
return "CHK/CHK2";
case EXCP_TRAPCC:
return "FTRAPcc, TRAPcc, TRAPV";
case EXCP_PRIVILEGE:
return "Privilege Violation";
case EXCP_TRACE:
return "Trace";
case EXCP_LINEA:
return "A-Line";
case EXCP_LINEF:
return "F-Line";
case EXCP_DEBEGBP: /* 68020/030 only */
return "Copro Protocol Violation";
case EXCP_FORMAT:
return "Format Error";
case EXCP_UNINITIALIZED:
return "Unitialized Interruot";
case EXCP_SPURIOUS:
return "Spurious Interrupt";
case EXCP_INT_LEVEL_1:
return "Level 1 Interrupt";
case EXCP_INT_LEVEL_1 + 1:
return "Level 2 Interrupt";
case EXCP_INT_LEVEL_1 + 2:
return "Level 3 Interrupt";
case EXCP_INT_LEVEL_1 + 3:
return "Level 4 Interrupt";
case EXCP_INT_LEVEL_1 + 4:
return "Level 5 Interrupt";
case EXCP_INT_LEVEL_1 + 5:
return "Level 6 Interrupt";
case EXCP_INT_LEVEL_1 + 6:
return "Level 7 Interrupt";
case EXCP_TRAP0:
return "TRAP #0";
case EXCP_TRAP0 + 1:
return "TRAP #1";
case EXCP_TRAP0 + 2:
return "TRAP #2";
case EXCP_TRAP0 + 3:
return "TRAP #3";
case EXCP_TRAP0 + 4:
return "TRAP #4";
case EXCP_TRAP0 + 5:
return "TRAP #5";
case EXCP_TRAP0 + 6:
return "TRAP #6";
case EXCP_TRAP0 + 7:
return "TRAP #7";
case EXCP_TRAP0 + 8:
return "TRAP #8";
case EXCP_TRAP0 + 9:
return "TRAP #9";
case EXCP_TRAP0 + 10:
return "TRAP #10";
case EXCP_TRAP0 + 11:
return "TRAP #11";
case EXCP_TRAP0 + 12:
return "TRAP #12";
case EXCP_TRAP0 + 13:
return "TRAP #13";
case EXCP_TRAP0 + 14:
return "TRAP #14";
case EXCP_TRAP0 + 15:
return "TRAP #15";
case EXCP_FP_BSUN:
return "FP Branch/Set on unordered condition";
case EXCP_FP_INEX:
return "FP Inexact Result";
case EXCP_FP_DZ:
return "FP Divide by Zero";
case EXCP_FP_UNFL:
return "FP Underflow";
case EXCP_FP_OPERR:
return "FP Operand Error";
case EXCP_FP_OVFL:
return "FP Overflow";
case EXCP_FP_SNAN:
return "FP Signaling NAN";
case EXCP_FP_UNIMP:
return "FP Unimplemented Data Type";
case EXCP_MMU_CONF: /* 68030/68851 only */
return "MMU Configuration Error";
case EXCP_MMU_ILLEGAL: /* 68851 only */
return "MMU Illegal Operation";
case EXCP_MMU_ACCESS: /* 68851 only */
return "MMU Access Level Violation";
}
if (index >= 64 && index <= 255) {
return "User Defined Vector";
}
return "Unassigned";
}
static void cf_interrupt_all(CPUM68KState *env, int is_hw)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
uint32_t sp;
uint32_t sr;
uint32_t fmt;
uint32_t retaddr;
uint32_t vector;
fmt = 0;
retaddr = env->pc;
if (!is_hw) {
switch (cs->exception_index) {
case EXCP_RTE:
/* Return from an exception. */
cf_rte(env);
return;
case EXCP_HALT_INSN:
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cpu_loop_exit(cs);
return;
}
if (cs->exception_index >= EXCP_TRAP0
&& cs->exception_index <= EXCP_TRAP15) {
/* Move the PC after the trap instruction. */
retaddr += 2;
}
}
vector = cs->exception_index << 2;
sr = env->sr | cpu_m68k_get_ccr(env);
if (qemu_loglevel_mask(CPU_LOG_INT)) {
qemu_log("INT: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
m68k_exception_name(cs->exception_index),
vector, env->pc, env->aregs[7], sr);
}
fmt |= 0x40000000;
fmt |= vector << 16;
fmt |= sr;
env->sr |= SR_S;
if (is_hw) {
env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
env->sr &= ~SR_M;
}
m68k_switch_sp(env);
sp = env->aregs[7];
fmt |= (sp & 3) << 28;
/* ??? This could cause MMU faults. */
sp &= ~3;
sp -= 4;
cpu_stl_kernel(env, sp, retaddr);
sp -= 4;
cpu_stl_kernel(env, sp, fmt);
env->aregs[7] = sp;
/* Jump to vector. */
env->pc = cpu_ldl_kernel(env, env->vbr + vector);
}
static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
uint16_t format, uint16_t sr,
uint32_t addr, uint32_t retaddr)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
switch (format) {
case 4:
*sp -= 4;
cpu_stl_kernel(env, *sp, env->pc);
*sp -= 4;
cpu_stl_kernel(env, *sp, addr);
break;
case 3:
case 2:
*sp -= 4;
cpu_stl_kernel(env, *sp, addr);
break;
}
*sp -= 2;
cpu_stw_kernel(env, *sp, (format << 12) + (cs->exception_index << 2));
*sp -= 4;
cpu_stl_kernel(env, *sp, retaddr);
*sp -= 2;
cpu_stw_kernel(env, *sp, sr);
}
static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
uint32_t sp;
uint32_t retaddr;
uint32_t vector;
uint16_t sr, oldsr;
retaddr = env->pc;
if (!is_hw) {
switch (cs->exception_index) {
case EXCP_RTE:
/* Return from an exception. */
m68k_rte(env);
return;
case EXCP_TRAP0:
case 33:
case 34:
case 35:
case 36:
case 37:
case 38:
case 39:
case 40:
case 41:
case 42:
case 43:
case 44:
case 45:
case 46:
case EXCP_TRAP15:
/* Move the PC after the trap instruction. */
retaddr += 2;
break;
}
}
vector = cs->exception_index << 2;
sr = env->sr | cpu_m68k_get_ccr(env);
if (qemu_loglevel_mask(CPU_LOG_INT)) {
qemu_log("INT: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
m68k_exception_name(cs->exception_index),
vector, env->pc, env->aregs[7], sr);
}
/*
* MC68040UM/AD, chapter 9.3.10
*/
/* "the processor first make an internal copy" */
oldsr = sr;
/* "set the mode to supervisor" */
sr |= SR_S;
/* "suppress tracing" */
sr &= ~SR_T;
/* "sets the processor interrupt mask" */
if (is_hw) {
sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
}
cpu_m68k_set_sr(env, sr);
sp = env->aregs[7];
sp &= ~1;
if (cs->exception_index == EXCP_ACCESS) {
if (env->mmu.fault) {
cpu_abort(cs, "DOUBLE MMU FAULT\n");
}
env->mmu.fault = true;
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* push data 3 */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* push data 2 */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* push data 1 */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* write back 1 / push data 0 */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* write back 1 address */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* write back 2 data */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* write back 2 address */
sp -= 4;
cpu_stl_kernel(env, sp, 0); /* write back 3 data */
sp -= 4;
cpu_stl_kernel(env, sp, env->mmu.ar); /* write back 3 address */
sp -= 4;
cpu_stl_kernel(env, sp, env->mmu.ar); /* fault address */
sp -= 2;
cpu_stw_kernel(env, sp, 0); /* write back 1 status */
sp -= 2;
cpu_stw_kernel(env, sp, 0); /* write back 2 status */
sp -= 2;
cpu_stw_kernel(env, sp, 0); /* write back 3 status */
sp -= 2;
cpu_stw_kernel(env, sp, env->mmu.ssw); /* special status word */
sp -= 4;
cpu_stl_kernel(env, sp, env->mmu.ar); /* effective address */
do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
env->mmu.fault = false;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
qemu_log(" "
"ssw: %08x ea: %08x sfc: %d dfc: %d\n",
env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
}
} else if (cs->exception_index == EXCP_ADDRESS) {
do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
} else if (cs->exception_index == EXCP_ILLEGAL ||
cs->exception_index == EXCP_DIV0 ||
cs->exception_index == EXCP_CHK ||
cs->exception_index == EXCP_TRAPCC ||
cs->exception_index == EXCP_TRACE) {
/* FIXME: addr is not only env->pc */
do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
} else if (is_hw && oldsr & SR_M &&
cs->exception_index >= EXCP_SPURIOUS &&
cs->exception_index <= EXCP_INT_LEVEL_7) {
do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
oldsr = sr;
env->aregs[7] = sp;
cpu_m68k_set_sr(env, sr &= ~SR_M);
sp = env->aregs[7] & ~1;
do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
} else {
do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
}
env->aregs[7] = sp;
/* Jump to vector. */
env->pc = cpu_ldl_kernel(env, env->vbr + vector);
}
static void do_interrupt_all(CPUM68KState *env, int is_hw)
{
if (m68k_feature(env, M68K_FEATURE_M68000)) {
m68k_interrupt_all(env, is_hw);
return;
}
cf_interrupt_all(env, is_hw);
}
void m68k_cpu_do_interrupt(CPUState *cs)
{
M68kCPU *cpu = M68K_CPU(cs->uc, cs);
CPUM68KState *env = &cpu->env;
do_interrupt_all(env, 0);
}
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
do_interrupt_all(env, 1);
}
void m68k_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
bool is_exec, int is_asi, unsigned size)
{
M68kCPU *cpu = M68K_CPU(cs->uc, cs);
CPUM68KState *env = &cpu->env;
#ifdef DEBUG_UNASSIGNED
qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
addr, is_write, is_exec);
#endif
if (env == NULL) {
/* when called from gdb, env is NULL */
return;
}
if (m68k_feature(env, M68K_FEATURE_M68040)) {
env->mmu.mmusr = 0;
env->mmu.ssw |= M68K_ATC_040;
/* FIXME: manage MMU table access error */
env->mmu.ssw &= ~M68K_TM_040;
if (env->sr & SR_S) { /* SUPERVISOR */
env->mmu.ssw |= M68K_TM_040_SUPER;
}
if (is_exec) { /* instruction or data */
env->mmu.ssw |= M68K_TM_040_CODE;
} else {
env->mmu.ssw |= M68K_TM_040_DATA;
}
env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
switch (size) {
case 1:
env->mmu.ssw |= M68K_BA_SIZE_BYTE;
break;
case 2:
env->mmu.ssw |= M68K_BA_SIZE_WORD;
break;
case 4:
env->mmu.ssw |= M68K_BA_SIZE_LONG;
break;
}
if (!is_write) {
env->mmu.ssw |= M68K_RW_040;
}
env->mmu.ar = addr;
cs->exception_index = EXCP_ACCESS;
cpu_loop_exit(cs);
}
}
#endif
bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
M68kCPU *cpu = M68K_CPU(cs->uc, cs);
CPUM68KState *env = &cpu->env;
if (interrupt_request & CPU_INTERRUPT_HARD
&& ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
/* Real hardware gets the interrupt vector via an IACK cycle
at this point. Current emulated hardware doesn't rely on
this, so we provide/save the vector when the interrupt is
first signalled. */
cs->exception_index = env->pending_vector;
do_interrupt_m68k_hardirq(env);
return true;
}
return false;
}
static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
cs->exception_index = tt;
cpu_loop_exit_restore(cs, raddr);
}
static void raise_exception(CPUM68KState *env, int tt)
{
raise_exception_ra(env, tt, 0);
}
void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
{
raise_exception(env, tt);
}
void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
{
uint32_t num = env->dregs[destr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot > 0xffff) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->dregs[destr] = deposit32(quot, 16, 16, rem);
env->cc_z = (int16_t)quot;
env->cc_n = (int16_t)quot;
env->cc_v = 0;
}
void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
{
int32_t num = env->dregs[destr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot != (int16_t)quot) {
env->cc_v = -1;
/* nothing else is modified */
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->dregs[destr] = deposit32(quot, 16, 16, rem);
env->cc_z = (int16_t)quot;
env->cc_n = (int16_t)quot;
env->cc_v = 0;
}
void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
uint32_t num = env->dregs[numr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0;
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
if (numr == regr) {
env->dregs[numr] = quot;
} else {
env->dregs[regr] = rem;
}
} else {
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
}
void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
{
int32_t num = env->dregs[numr];
int32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0;
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
if (numr == regr) {
env->dregs[numr] = quot;
} else {
env->dregs[regr] = rem;
}
} else {
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
}
void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
uint64_t quot;
uint32_t rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot > 0xffffffffULL) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
/*
* If Dq and Dr are the same, the quotient is returned.
* therefore we set Dq last.
*/
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
{
int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
int64_t quot;
int32_t rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot != (int32_t)quot) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
/*
* If Dq and Dr are the same, the quotient is returned.
* therefore we set Dq last.
*/
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
uint32_t Dc1 = extract32(regs, 9, 3);
uint32_t Dc2 = extract32(regs, 6, 3);
uint32_t Du1 = extract32(regs, 3, 3);
uint32_t Du2 = extract32(regs, 0, 3);
int16_t c1 = env->dregs[Dc1];
int16_t c2 = env->dregs[Dc2];
int16_t u1 = env->dregs[Du1];
int16_t u2 = env->dregs[Du2];
int16_t l1, l2;
uintptr_t ra = GETPC();
if (env->uc->parallel_cpus) {
/* Tell the main loop we need to serialize this insn. */
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
} else {
/* We're executing in a serial context -- no need to be atomic. */
l1 = cpu_lduw_data_ra(env, a1, ra);
l2 = cpu_lduw_data_ra(env, a2, ra);
if (l1 == c1 && l2 == c2) {
cpu_stw_data_ra(env, a1, u1, ra);
cpu_stw_data_ra(env, a2, u2, ra);
}
}
if (c1 != l1) {
env->cc_n = l1;
env->cc_v = c1;
} else {
env->cc_n = l2;
env->cc_v = c2;
}
env->cc_op = CC_OP_CMPW;
env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
}
void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
uint32_t Dc1 = extract32(regs, 9, 3);
uint32_t Dc2 = extract32(regs, 6, 3);
uint32_t Du1 = extract32(regs, 3, 3);
uint32_t Du2 = extract32(regs, 0, 3);
uint32_t c1 = env->dregs[Dc1];
uint32_t c2 = env->dregs[Dc2];
uint32_t u1 = env->dregs[Du1];
uint32_t u2 = env->dregs[Du2];
uint32_t l1, l2;
uintptr_t ra = GETPC();
#if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
int mmu_idx = cpu_mmu_index(env, 0);
TCGMemOpIdx oi;
#endif
if (env->uc->parallel_cpus) {
/* We're executing in a parallel context -- must be atomic. */
#ifdef CONFIG_ATOMIC64
uint64_t c, u, l;
if ((a1 & 7) == 0 && a2 == a1 + 4) {
c = deposit64(c2, 32, 32, c1);
u = deposit64(u2, 32, 32, u1);
#ifdef CONFIG_USER_ONLY
l = helper_atomic_cmpxchgq_be(env, a1, c, u);
#else
oi = make_memop_idx(MO_BEQ, mmu_idx);
l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
#endif
l1 = l >> 32;
l2 = l;
} else if ((a2 & 7) == 0 && a1 == a2 + 4) {
c = deposit64(c1, 32, 32, c2);
u = deposit64(u1, 32, 32, u2);
#ifdef CONFIG_USER_ONLY
l = helper_atomic_cmpxchgq_be(env, a2, c, u);
#else
oi = make_memop_idx(MO_BEQ, mmu_idx);
l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
#endif
l2 = l >> 32;
l1 = l;
} else
#endif
{
/* Tell the main loop we need to serialize this insn. */
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
}
} else {
/* We're executing in a serial context -- no need to be atomic. */
l1 = cpu_ldl_data_ra(env, a1, ra);
l2 = cpu_ldl_data_ra(env, a2, ra);
if (l1 == c1 && l2 == c2) {
cpu_stl_data_ra(env, a1, u1, ra);
cpu_stl_data_ra(env, a2, u2, ra);
}
}
if (c1 != l1) {
env->cc_n = l1;
env->cc_v = c1;
} else {
env->cc_n = l2;
env->cc_v = c2;
}
env->cc_op = CC_OP_CMPL;
env->dregs[Dc1] = l1;
env->dregs[Dc2] = l2;
}
struct bf_data {
uint32_t addr;
uint32_t bofs;
uint32_t blen;
uint32_t len;
};
static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
{
int bofs, blen;
struct bf_data result;
/* Bound length; map 0 to 32. */
len = ((len - 1) & 31) + 1;
/* Note that ofs is signed. */
addr += ofs / 8;
bofs = ofs % 8;
if (bofs < 0) {
bofs += 8;
addr -= 1;
}
/* Compute the number of bytes required (minus one) to
satisfy the bitfield. */
blen = (bofs + len - 1) / 8;
/* Canonicalize the bit offset for data loaded into a 64-bit big-endian
word. For the cases where BLEN is not a power of 2, adjust ADDR so
that we can use the next power of two sized load without crossing a
page boundary, unless the field itself crosses the boundary. */
switch (blen) {
case 0:
bofs += 56;
break;
case 1:
bofs += 48;
break;
case 2:
if (addr & 1) {
bofs += 8;
addr -= 1;
}
/* fallthru */
case 3:
bofs += 32;
break;
case 4:
if (addr & 3) {
bofs += 8 * (addr & 3);
addr &= -4;
}
break;
default:
g_assert_not_reached();
}
result.addr = addr;
result.bofs = bofs;
result.blen = blen;
result.len = len;
return result;
}
static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
uintptr_t ra)
{
switch (blen) {
case 0:
return cpu_ldub_data_ra(env, addr, ra);
case 1:
return cpu_lduw_data_ra(env, addr, ra);
case 2:
case 3:
return cpu_ldl_data_ra(env, addr, ra);
case 4:
return cpu_ldq_data_ra(env, addr, ra);
default:
g_assert_not_reached();
}
}
static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
uint64_t data, uintptr_t ra)
{
switch (blen) {
case 0:
cpu_stb_data_ra(env, addr, data, ra);
break;
case 1:
cpu_stw_data_ra(env, addr, data, ra);
break;
case 2:
case 3:
cpu_stl_data_ra(env, addr, data, ra);
break;
case 4:
cpu_stq_data_ra(env, addr, data, ra);
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
return (int64_t)(data << d.bofs) >> (64 - d.len);
}
uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
/* Put CC_N at the top of the high word; put the zero-extended value
at the bottom of the low word. */
data <<= d.bofs;
data >>= 64 - d.len;
data |= data << (64 - d.len);
return data;
}
uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
bf_store(env, d.addr, d.blen, data, ra);
/* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
return val << (32 - d.len);
}
uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data ^ mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data & ~mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data | mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
{
return (n ? clz32(n) : len) + ofs;
}
uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
uint64_t n = (data & mask) << d.bofs;
uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
/* Return FFO in the low word and N in the high word.
Note that because of MASK and the shift, the low word
is already zero. */
return n | ffo;
}
void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
{
/* From the specs:
* X: Not affected, C,V,Z: Undefined,
* N: Set if val < 0; cleared if val > ub, undefined otherwise
* We implement here values found from a real MC68040:
* X,V,Z: Not affected
* N: Set if val < 0; cleared if val >= 0
* C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
* if 0 > ub: set if val > ub and val < 0, cleared otherwise
*/
env->cc_n = val;
env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
if (val < 0 || val > ub) {
CPUState *cs = CPU(m68k_env_get_cpu(env));
/* Recover PC and CC_OP for the beginning of the insn. */
cpu_restore_state(cs, GETPC());
/* flags have been modified by gen_flush_flags() */
env->cc_op = CC_OP_FLAGS;
/* Adjust PC to end of the insn. */
env->pc += 2;
cs->exception_index = EXCP_CHK;
cpu_loop_exit(cs);
}
}
void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
{
/* From the specs:
* X: Not affected, N,V: Undefined,
* Z: Set if val is equal to lb or ub
* C: Set if val < lb or val > ub, cleared otherwise
* We implement here values found from a real MC68040:
* X,N,V: Not affected
* Z: Set if val is equal to lb or ub
* C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
* if lb > ub: set if val > ub and val < lb, cleared otherwise
*/
env->cc_z = val != lb && val != ub;
env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
if (env->cc_c) {
CPUState *cs = CPU(m68k_env_get_cpu(env));
/* Recover PC and CC_OP for the beginning of the insn. */
cpu_restore_state(cs, GETPC());
/* flags have been modified by gen_flush_flags() */
env->cc_op = CC_OP_FLAGS;
/* Adjust PC to end of the insn. */
env->pc += 4;
cs->exception_index = EXCP_CHK;
cpu_loop_exit(cs);
}
}