mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-22 17:51:11 +00:00
8f4f15e5f5
Instead of exporting goto_ptr directly to TCG frontends, export tcg_gen_lookup_and_goto_ptr(), which calls goto_ptr with the pointer returned by the lookup_tb_ptr() helper. This is the only use case we have for goto_ptr and lookup_tb_ptr, so having this function is very convenient. Furthermore, it trivially allows us to avoid calling the lookup helper if goto_ptr is not implemented by the backend. Backports commit cedbcb01529cb6cf9a2289cdbebbc63f6149fc18 from qemu
554 lines
18 KiB
C
554 lines
18 KiB
C
/*
|
|
* emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/tb-hash.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
/* Execute a TB, and fix up the CPU state afterwards if necessary */
|
|
static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
TCGContext *tcg_ctx = env->uc->tcg_ctx;
|
|
uintptr_t ret;
|
|
TranslationBlock *last_tb;
|
|
int tb_exit;
|
|
uint8_t *tb_ptr = itb->tc_ptr;
|
|
|
|
// Unicorn: commented out
|
|
//qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
|
|
// "Trace %p [" TARGET_FMT_lx "] %s\n",
|
|
// itb->tc_ptr, itb->pc, lookup_symbol(itb->pc));
|
|
ret = tcg_qemu_tb_exec(env, tb_ptr);
|
|
last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
|
|
tb_exit = ret & TB_EXIT_MASK;
|
|
//trace_exec_tb_exit(last_tb, tb_exit);
|
|
|
|
if (tb_exit > TB_EXIT_IDX1) {
|
|
/* We didn't start executing this TB (eg because the instruction
|
|
* counter hit zero); we must restore the guest PC to the address
|
|
* of the start of the TB.
|
|
*/
|
|
CPUClass *cc = CPU_GET_CLASS(env->uc, cpu);
|
|
// Unicorn: commented out
|
|
//qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
|
|
// "Stopped execution of TB chain before %p ["
|
|
// TARGET_FMT_lx "] %s\n",
|
|
// last_tb->tc_ptr, last_tb->pc,
|
|
// lookup_symbol(last_tb->pc));
|
|
if (cc->synchronize_from_tb) {
|
|
// avoid sync twice when helper_uc_tracecode() already did this.
|
|
if (env->uc->emu_counter <= env->uc->emu_count &&
|
|
!env->uc->stop_request && !env->uc->quit_request) {
|
|
cc->synchronize_from_tb(cpu, last_tb);
|
|
}
|
|
} else {
|
|
assert(cc->set_pc);
|
|
// avoid sync twice when helper_uc_tracecode() already did this.
|
|
if (env->uc->emu_counter <= env->uc->emu_count && !env->uc->quit_request) {
|
|
cc->set_pc(cpu, last_tb->pc);
|
|
}
|
|
}
|
|
}
|
|
if (tb_exit == TB_EXIT_REQUESTED) {
|
|
/* We were asked to stop executing TBs (probably a pending
|
|
* interrupt. We've now stopped, so clear the flag.
|
|
*/
|
|
atomic_set(&cpu->tcg_exit_req, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Execute the code without caching the generated code. An interpreter
|
|
could be used if available. */
|
|
static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
|
|
TranslationBlock *orig_tb, bool ignore_icount)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
|
|
/* Should never happen.
|
|
We only end up here when an existing TB is too long. */
|
|
if (max_cycles > CF_COUNT_MASK) {
|
|
max_cycles = CF_COUNT_MASK;
|
|
}
|
|
|
|
tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
|
max_cycles | CF_NOCACHE);
|
|
tb->orig_tb = orig_tb;
|
|
/* execute the generated code */
|
|
// Unicorn: commented out
|
|
//trace_exec_tb_nocache(tb, tb->pc);
|
|
cpu_tb_exec(cpu, tb);
|
|
tb_phys_invalidate(env->uc, tb, -1);
|
|
tb_free(env->uc, tb);
|
|
}
|
|
|
|
TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
|
|
target_ulong cs_base, uint32_t flags)
|
|
{
|
|
TCGContext *tcg_ctx = cpu->uc->tcg_ctx;
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
TranslationBlock *tb, **tb_hash_head, **ptb1;
|
|
uint32_t h;
|
|
tb_page_addr_t phys_pc, phys_page1;
|
|
|
|
/* find translated block using physical mappings */
|
|
phys_pc = get_page_addr_code(env, pc);
|
|
phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
|
h = tb_hash_func(phys_pc, pc, flags);
|
|
|
|
/* Start at head of the hash entry */
|
|
ptb1 = tb_hash_head = &tcg_ctx->tb_ctx.tb_phys_hash[h];
|
|
tb = *ptb1;
|
|
|
|
while (tb) {
|
|
if (tb->pc == pc &&
|
|
tb->page_addr[0] == phys_page1 &&
|
|
tb->cs_base == cs_base &&
|
|
tb->flags == flags) {
|
|
|
|
if (tb->page_addr[1] == -1) {
|
|
/* done, we have a match */
|
|
break;
|
|
} else {
|
|
/* check next page if needed */
|
|
target_ulong virt_page2 = (pc & TARGET_PAGE_MASK) +
|
|
TARGET_PAGE_SIZE;
|
|
tb_page_addr_t phys_page2 = get_page_addr_code(env, virt_page2);
|
|
|
|
if (tb->page_addr[1] == phys_page2) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ptb1 = &tb->phys_hash_next;
|
|
tb = *ptb1;
|
|
}
|
|
|
|
if (tb) {
|
|
/* Move the TB to the head of the list */
|
|
*ptb1 = tb->phys_hash_next;
|
|
tb->phys_hash_next = *tb_hash_head;
|
|
*tb_hash_head = tb;
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
static inline TranslationBlock *tb_find(CPUState *cpu,
|
|
TranslationBlock *last_tb,
|
|
int tb_exit)
|
|
{
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
uint32_t flags;
|
|
bool have_tb_lock = false;
|
|
|
|
/* we record a subset of the CPU state. It will
|
|
always be the same before a given translated block
|
|
is executed. */
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
// Unicorn: atomic_read used instead of atomic_rcu_read
|
|
tb = atomic_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
|
|
if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
|
tb->flags != flags)) {
|
|
tb = tb_htable_lookup(cpu, pc, cs_base, flags);
|
|
if (!tb) {
|
|
/* mmap_lock is needed by tb_gen_code, and mmap_lock must be
|
|
* taken outside tb_lock. As system emulation is currently
|
|
* single threaded the locks are NOPs.
|
|
*/
|
|
mmap_lock();
|
|
// Unicorn: commented out
|
|
//tb_lock();
|
|
have_tb_lock = true;
|
|
|
|
/* There's a chance that our desired tb has been translated while
|
|
* taking the locks so we check again inside the lock.
|
|
*/
|
|
tb = tb_htable_lookup(cpu, pc, cs_base, flags);
|
|
if (!tb) {
|
|
/* if no translated code available, then translate it now */
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
|
|
}
|
|
// Unicorn: commented out
|
|
//tb_unlock();
|
|
mmap_unlock();
|
|
}
|
|
|
|
/* We add the TB in the virtual pc hash table for the fast lookup */
|
|
atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* We don't take care of direct jumps when address mapping changes in
|
|
* system emulation. So it's not safe to make a direct jump to a TB
|
|
* spanning two pages because the mapping for the second page can change.
|
|
*/
|
|
if (tb->page_addr[1] != -1) {
|
|
last_tb = NULL;
|
|
}
|
|
#endif
|
|
/* See if we can patch the calling TB. */
|
|
if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
|
|
if (!have_tb_lock) {
|
|
// Unicorn: commented out
|
|
//tb_lock();
|
|
have_tb_lock = true;
|
|
}
|
|
/* Check if translation buffer has been flushed */
|
|
if (cpu->tb_flushed) {
|
|
cpu->tb_flushed = false;
|
|
} else if (!tb->invalid) {
|
|
tb_add_jump(last_tb, tb_exit, tb);
|
|
}
|
|
}
|
|
if (have_tb_lock) {
|
|
// Unicorn: commented out
|
|
//tb_unlock();
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
static inline bool cpu_handle_halt(CPUState *cpu)
|
|
{
|
|
if (cpu->halted) {
|
|
if (!cpu_has_work(cpu)) {
|
|
return true;
|
|
}
|
|
|
|
cpu->halted = 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_handle_debug_exception(CPUState *cpu)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu->uc, cpu);
|
|
CPUWatchpoint *wp;
|
|
|
|
if (!cpu->watchpoint_hit) {
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
|
|
cc->debug_excp_handler(cpu);
|
|
}
|
|
|
|
static inline bool cpu_handle_exception(struct uc_struct *uc, CPUState *cpu, int *ret)
|
|
{
|
|
struct hook *hook;
|
|
|
|
if (cpu->exception_index >= 0) {
|
|
if (uc->stop_interrupt && uc->stop_interrupt(cpu->exception_index)) {
|
|
cpu->halted = 1;
|
|
uc->invalid_error = UC_ERR_INSN_INVALID;
|
|
*ret = EXCP_HLT;
|
|
return true;
|
|
}
|
|
|
|
if (cpu->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
*ret = cpu->exception_index;
|
|
if (*ret == EXCP_DEBUG) {
|
|
cpu_handle_debug_exception(cpu);
|
|
}
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
} else {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* if user mode only, we simulate a fake exception
|
|
which will be handled outside the cpu execution
|
|
loop */
|
|
#if defined(TARGET_I386)
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
cc->do_interrupt(cpu);
|
|
#endif
|
|
*ret = cpu->exception_index;
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
#else
|
|
bool catched = false;
|
|
// Unicorn: call registered interrupt callbacks
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_INTR) {
|
|
((uc_cb_hookintr_t)hook->callback)(uc, cpu->exception_index, hook->user_data);
|
|
catched = true;
|
|
}
|
|
// Unicorn: If un-catched interrupt, stop executions.
|
|
if (!catched) {
|
|
cpu->halted = 1;
|
|
uc->invalid_error = UC_ERR_EXCEPTION;
|
|
*ret = EXCP_HLT;
|
|
return true;
|
|
}
|
|
cpu->exception_index = -1;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool cpu_handle_interrupt(CPUState *cpu,
|
|
TranslationBlock **last_tb)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu->uc, cpu);
|
|
int interrupt_request = cpu->interrupt_request;
|
|
|
|
if (unlikely(interrupt_request)) {
|
|
if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
|
|
/* Mask out external interrupts for this step. */
|
|
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
return true;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
cpu->halted = 1;
|
|
cpu->exception_index = EXCP_HLT;
|
|
return true;
|
|
}
|
|
#if defined(TARGET_I386)
|
|
else if (interrupt_request & CPU_INTERRUPT_INIT) {
|
|
X86CPU *x86_cpu = X86_CPU(cpu->uc, cpu);
|
|
CPUArchState *env = &x86_cpu->env;
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
|
|
do_cpu_init(x86_cpu);
|
|
cpu->exception_index = EXCP_HALTED;
|
|
return true;
|
|
}
|
|
#else
|
|
else if (interrupt_request & CPU_INTERRUPT_RESET) {
|
|
cpu_reset(cpu);
|
|
}
|
|
#endif
|
|
else {
|
|
/* The target hook has 3 exit conditions:
|
|
False when the interrupt isn't processed,
|
|
True when it is, and we should restart on a new TB,
|
|
and via longjmp via cpu_loop_exit. */
|
|
if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
|
|
*last_tb = NULL;
|
|
}
|
|
/* The target hook may have updated the 'cpu->interrupt_request';
|
|
* reload the 'interrupt_request' value */
|
|
interrupt_request = cpu->interrupt_request;
|
|
}
|
|
|
|
if (interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
*last_tb = NULL;
|
|
}
|
|
}
|
|
if (unlikely(cpu->exit_request)) {
|
|
cpu->exit_request = 0;
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
|
|
TranslationBlock **last_tb, int *tb_exit)
|
|
{
|
|
uintptr_t ret;
|
|
|
|
/* execute the generated code */
|
|
ret = cpu_tb_exec(cpu, tb);
|
|
tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
|
|
*tb_exit = ret & TB_EXIT_MASK;
|
|
switch (*tb_exit) {
|
|
case TB_EXIT_REQUESTED:
|
|
/* Something asked us to stop executing chained TBs; just
|
|
* continue round the main loop. Whatever requested the exit
|
|
* will also have set something else (eg interrupt_request)
|
|
* which we will handle next time around the loop. But we
|
|
* need to ensure the tcg_exit_req read in generated code
|
|
* comes before the next read of cpu->exit_request or
|
|
* cpu->interrupt_request.
|
|
*/
|
|
smp_mb();
|
|
*last_tb = NULL;
|
|
break;
|
|
case TB_EXIT_ICOUNT_EXPIRED:
|
|
{
|
|
/* Instruction counter expired. */
|
|
#ifdef CONFIG_USER_ONLY
|
|
abort();
|
|
#else
|
|
int insns_left = cpu->icount_decr.u32;
|
|
*last_tb = NULL;
|
|
if (cpu->icount_extra && insns_left >= 0) {
|
|
/* Refill decrementer and continue execution. */
|
|
cpu->icount_extra += insns_left;
|
|
insns_left = MIN(0xffff, cpu->icount_extra);
|
|
cpu->icount_extra -= insns_left;
|
|
cpu->icount_decr.u16.low = insns_left;
|
|
} else {
|
|
if (insns_left > 0) {
|
|
/* Execute remaining instructions. */
|
|
cpu_exec_nocache(cpu, insns_left, tb, false);
|
|
// Unicorn: commented out
|
|
//align_clocks(sc, cpu);
|
|
}
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
default:
|
|
*last_tb = tb;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cpu_exec_step(struct uc_struct *uc, CPUState *cpu)
|
|
{
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
uint32_t flags;
|
|
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
|
|
if (sigsetjmp(cpu->jmp_env, 0) == 0) {
|
|
mmap_lock();
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags,
|
|
1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
|
|
tb->orig_tb = NULL;
|
|
mmap_unlock();
|
|
|
|
/* execute the generated code */
|
|
cpu_tb_exec(cpu, tb);
|
|
tb_phys_invalidate(uc, tb, -1);
|
|
tb_free(uc, tb);
|
|
} else {
|
|
/* We may have exited due to another problem here, so we need
|
|
* to reset any tb_locks we may have taken but didn't release.
|
|
* The mmap_lock is dropped by tb_gen_code if it runs out of
|
|
* memory.
|
|
*/
|
|
#ifndef CONFIG_SOFTMMU
|
|
// Unicorn: Commented out
|
|
//tcg_debug_assert(!have_mmap_lock());
|
|
#endif
|
|
// Unicorn: commented out
|
|
//tb_lock_reset();
|
|
}
|
|
}
|
|
|
|
void cpu_exec_step_atomic(struct uc_struct *uc, CPUState *cpu)
|
|
{
|
|
// Unicorn: commented out
|
|
//start_exclusive();
|
|
|
|
/* Since we got here, we know that parallel_cpus must be true. */
|
|
uc->parallel_cpus = false;
|
|
cpu_exec_step(uc, cpu);
|
|
uc->parallel_cpus = true;
|
|
|
|
// Unicorn: commented out
|
|
//end_exclusive();
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
int cpu_exec(struct uc_struct *uc, CPUState *cpu)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
CPUClass *cc = CPU_GET_CLASS(uc, cpu);
|
|
int ret;
|
|
|
|
if (cpu_handle_halt(cpu)) {
|
|
return EXCP_HALTED;
|
|
}
|
|
|
|
atomic_mb_set(&uc->current_cpu, cpu);
|
|
atomic_mb_set(&uc->tcg_current_rr_cpu, cpu);
|
|
|
|
cc->cpu_exec_enter(cpu);
|
|
cpu->exception_index = -1;
|
|
env->invalid_error = UC_ERR_OK;
|
|
|
|
/* prepare setjmp context for exception handling */
|
|
if (sigsetjmp(cpu->jmp_env, 0) != 0) {
|
|
#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
|
|
/* Some compilers wrongly smash all local variables after
|
|
* siglongjmp. There were bug reports for gcc 4.5.0 and clang.
|
|
* Reload essential local variables here for those compilers.
|
|
* Newer versions of gcc would complain about this code (-Wclobbered). */
|
|
cpu = uc->current_cpu;
|
|
env = cpu->env_ptr;
|
|
cc = CPU_GET_CLASS(uc, cpu);
|
|
#else /* buggy compiler */
|
|
/* Assert that the compiler does not smash local variables. */
|
|
g_assert(cpu == current_cpu);
|
|
g_assert(cc == CPU_GET_CLASS(cpu));
|
|
#endif /* buggy compiler */
|
|
cpu->can_do_io = 1;
|
|
// Unicorn: commented out
|
|
//tb_lock_reset();
|
|
}
|
|
|
|
/* if an exception is pending, we execute it here */
|
|
while (!cpu_handle_exception(uc, cpu, &ret)) {
|
|
TranslationBlock *last_tb = NULL;
|
|
int tb_exit = 0;
|
|
|
|
while (!cpu_handle_interrupt(cpu, &last_tb)) {
|
|
TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit);
|
|
if (!tb) { // invalid TB due to invalid code?
|
|
uc->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
ret = EXCP_HLT;
|
|
break;
|
|
}
|
|
cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
|
|
}
|
|
}
|
|
|
|
cc->cpu_exec_exit(cpu);
|
|
|
|
// Unicorn: flush JIT cache to because emulation might stop in
|
|
// the middle of translation, thus generate incomplete code.
|
|
// TODO: optimize this for better performance
|
|
tb_flush(cpu);
|
|
|
|
return ret;
|
|
}
|