unicorn/qemu/target/arm/translate-a64.c
Emilio G. Cota b71769fa5f
target/arm: check CF_PARALLEL instead of parallel_cpus
Thereby decoupling the resulting translated code from the current state
of the system.

Backports commit 2399d4e7cec22ecf1c51062d2ebfd45220dbaace from qemu
2018-03-13 15:05:45 -04:00

13646 lines
444 KiB
C

/*
* AArch64 translation
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "unicorn/platform.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "tcg-op-gvec.h"
#include "qemu/log.h"
#include "arm_ldst.h"
#include "translate.h"
#include "internals.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/semihost.h"
#include "exec/gen-icount.h"
#ifdef CONFIG_USER_ONLY
static TCGv_i64 cpu_exclusive_test;
static TCGv_i32 cpu_exclusive_info;
#endif
static TCGv_i64 cpu_reg(DisasContext *s, int reg);
static const char *regnames[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
};
enum a64_shift_type {
A64_SHIFT_TYPE_LSL = 0,
A64_SHIFT_TYPE_LSR = 1,
A64_SHIFT_TYPE_ASR = 2,
A64_SHIFT_TYPE_ROR = 3
};
/* Table based decoder typedefs - used when the relevant bits for decode
* are too awkwardly scattered across the instruction (eg SIMD).
*/
typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
typedef struct AArch64DecodeTable {
uint32_t pattern;
uint32_t mask;
AArch64DecodeFn *disas_fn;
} AArch64DecodeTable;
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGContext *t, TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGContext *t, TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGContext *t, TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGContext *t, TCGv_i64, TCGv_i32);
typedef void NeonGenTwoSingleOPFn(TCGContext *t, TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOPFn(TCGContext *t, TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOneOpFn(TCGContext *t, TCGv_i64, TCGv_i64);
typedef void CryptoTwoOpFn(TCGContext *, TCGv_ptr, TCGv_ptr);
typedef void CryptoThreeOpIntFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void CryptoThreeOpFn(TCGContext *, TCGv_ptr, TCGv_ptr, TCGv_ptr);
/* Note that the gvec expanders operate on offsets + sizes. */
typedef void GVecGen2Fn(TCGContext *, unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
typedef void GVecGen2iFn(TCGContext *, unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
typedef void GVecGen3Fn(TCGContext *, unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
/* initialize TCG globals. */
void a64_translate_init(struct uc_struct *uc)
{
TCGContext *tcg_ctx = uc->tcg_ctx;
int i;
tcg_ctx->cpu_pc = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, pc),
"pc");
for (i = 0; i < 32; i++) {
tcg_ctx->cpu_X[i] = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, xregs[i]),
regnames[i]);
}
tcg_ctx->cpu_NF = tcg_global_mem_new_i32(uc->tcg_ctx, tcg_ctx->cpu_env, offsetof(CPUARMState, NF), "NF");
tcg_ctx->cpu_ZF = tcg_global_mem_new_i32(uc->tcg_ctx, tcg_ctx->cpu_env, offsetof(CPUARMState, ZF), "ZF");
tcg_ctx->cpu_CF = tcg_global_mem_new_i32(uc->tcg_ctx, tcg_ctx->cpu_env, offsetof(CPUARMState, CF), "CF");
tcg_ctx->cpu_VF = tcg_global_mem_new_i32(uc->tcg_ctx, tcg_ctx->cpu_env, offsetof(CPUARMState, VF), "VF");
tcg_ctx->cpu_exclusive_addr = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
tcg_ctx->cpu_exclusive_val = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, exclusive_val), "exclusive_val");
tcg_ctx->cpu_exclusive_high = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, exclusive_high), "exclusive_high");
#ifdef CONFIG_USER_ONLY
cpu_exclusive_test = tcg_global_mem_new_i64(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, exclusive_test), "exclusive_test");
cpu_exclusive_info = tcg_global_mem_new_i32(uc->tcg_ctx, tcg_ctx->cpu_env,
offsetof(CPUARMState, exclusive_info), "exclusive_info");
#endif
}
static inline int get_a64_user_mem_index(DisasContext *s)
{
/* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
* if EL1, access as if EL0; otherwise access at current EL
*/
ARMMMUIdx useridx;
switch (s->mmu_idx) {
case ARMMMUIdx_S12NSE1:
useridx = ARMMMUIdx_S12NSE0;
break;
case ARMMMUIdx_S1SE1:
useridx = ARMMMUIdx_S1SE0;
break;
case ARMMMUIdx_S2NS:
g_assert_not_reached();
default:
useridx = s->mmu_idx;
break;
}
return arm_to_core_mmu_idx(useridx);
}
#if 0
void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
int el = arm_current_el(env);
const char *ns_status;
cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
env->pc, env->xregs[31]);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
if ((i % 4) == 3) {
cpu_fprintf(f, "\n");
} else {
cpu_fprintf(f, " ");
}
}
if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
} else {
ns_status = "";
}
cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-',
ns_status,
el,
psr & PSTATE_SP ? 'h' : 't');
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 32;
for (i = 0; i < numvfpregs; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
uint64_t vlo = q[0];
uint64_t vhi = q[1];
cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
i, vhi, vlo, (i & 1 ? '\n' : ' '));
}
cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
}
}
#endif
void gen_a64_set_pc_im(DisasContext *s, uint64_t val)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_movi_i64(tcg_ctx, tcg_ctx->cpu_pc, val);
}
/* Load the PC from a generic TCG variable.
*
* If address tagging is enabled via the TCR TBI bits, then loading
* an address into the PC will clear out any tag in the it:
* + for EL2 and EL3 there is only one TBI bit, and if it is set
* then the address is zero-extended, clearing bits [63:56]
* + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
* and TBI1 controls addressses with bit 55 == 1.
* If the appropriate TBI bit is set for the address then
* the address is sign-extended from bit 55 into bits [63:56]
*
* We can avoid doing this for relative-branches, because the
* PC + offset can never overflow into the tag bits (assuming
* that virtual addresses are less than 56 bits wide, as they
* are currently), but we must handle it for branch-to-register.
*/
static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (s->current_el <= 1) {
/* Test if NEITHER or BOTH TBI values are set. If so, no need to
* examine bit 55 of address, can just generate code.
* If mixed, then test via generated code
*/
if (s->tbi0 && s->tbi1) {
TCGv_i64 tmp_reg = tcg_temp_new_i64(tcg_ctx);
/* Both bits set, sign extension from bit 55 into [63:56] will
* cover both cases
*/
tcg_gen_shli_i64(tcg_ctx, tmp_reg, src, 8);
tcg_gen_sari_i64(tcg_ctx, tcg_ctx->cpu_pc, tmp_reg, 8);
tcg_temp_free_i64(tcg_ctx, tmp_reg);
} else if (!s->tbi0 && !s->tbi1) {
/* Neither bit set, just load it as-is */
tcg_gen_mov_i64(tcg_ctx, tcg_ctx->cpu_pc, src);
} else {
TCGv_i64 tcg_tmpval = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_bit55 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
tcg_gen_andi_i64(tcg_ctx, tcg_bit55, src, (1ull << 55));
if (s->tbi0) {
/* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
tcg_gen_andi_i64(tcg_ctx, tcg_tmpval, src,
0x00FFFFFFFFFFFFFFull);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_EQ, tcg_ctx->cpu_pc,
tcg_bit55, tcg_zero, tcg_tmpval, src);
} else {
/* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
tcg_gen_ori_i64(tcg_ctx, tcg_tmpval, src,
0xFF00000000000000ull);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_NE, tcg_ctx->cpu_pc,
tcg_bit55, tcg_zero, tcg_tmpval, src);
}
tcg_temp_free_i64(tcg_ctx, tcg_zero);
tcg_temp_free_i64(tcg_ctx, tcg_bit55);
tcg_temp_free_i64(tcg_ctx, tcg_tmpval);
}
} else { /* EL > 1 */
if (s->tbi0) {
/* Force tag byte to all zero */
tcg_gen_andi_i64(tcg_ctx, tcg_ctx->cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
} else {
/* Load unmodified address */
tcg_gen_mov_i64(tcg_ctx, tcg_ctx->cpu_pc, src);
}
}
}
typedef struct DisasCompare64 {
TCGCond cond;
TCGv_i64 value;
} DisasCompare64;
static void a64_test_cc(TCGContext *tcg_ctx, DisasCompare64 *c64, int cc)
{
DisasCompare c32;
arm_test_cc(tcg_ctx, &c32, cc);
/* Sign-extend the 32-bit value so that the GE/LT comparisons work
* properly. The NE/EQ comparisons are also fine with this choice. */
c64->cond = c32.cond;
c64->value = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ext_i32_i64(tcg_ctx, c64->value, c32.value);
arm_free_cc(tcg_ctx, &c32);
}
static void a64_free_cc(TCGContext *tcg_ctx, DisasCompare64 *c64)
{
tcg_temp_free_i64(tcg_ctx, c64->value);
}
static void gen_exception_internal(DisasContext *s, int excp)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_excp = tcg_const_i32(tcg_ctx, excp);
assert(excp_is_internal(excp));
gen_helper_exception_internal(tcg_ctx, tcg_ctx->cpu_env, tcg_excp);
tcg_temp_free_i32(tcg_ctx, tcg_excp);
}
static void gen_exception(DisasContext *s, int excp, uint32_t syndrome, uint32_t target_el)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_excp = tcg_const_i32(tcg_ctx, excp);
TCGv_i32 tcg_syn = tcg_const_i32(tcg_ctx, syndrome);
TCGv_i32 tcg_el = tcg_const_i32(tcg_ctx, target_el);
gen_helper_exception_with_syndrome(tcg_ctx, tcg_ctx->cpu_env, tcg_excp,
tcg_syn, tcg_el);
tcg_temp_free_i32(tcg_ctx, tcg_el);
tcg_temp_free_i32(tcg_ctx, tcg_syn);
tcg_temp_free_i32(tcg_ctx, tcg_excp);
}
static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
{
gen_a64_set_pc_im(s, s->pc - offset);
gen_exception_internal(s, excp);
s->base.is_jmp = DISAS_NORETURN;
}
static void gen_exception_insn(DisasContext *s, int offset, int excp,
uint32_t syndrome, uint32_t target_el)
{
gen_a64_set_pc_im(s, s->pc - offset);
gen_exception(s, excp, syndrome, target_el);
s->base.is_jmp = DISAS_NORETURN;
}
static void gen_ss_advance(DisasContext *s)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* If the singlestep state is Active-not-pending, advance to
* Active-pending.
*/
if (s->ss_active) {
s->pstate_ss = 0;
gen_helper_clear_pstate_ss(tcg_ctx, tcg_ctx->cpu_env);
}
}
static void gen_step_complete_exception(DisasContext *s)
{
/* We just completed step of an insn. Move from Active-not-pending
* to Active-pending, and then also take the swstep exception.
* This corresponds to making the (IMPDEF) choice to prioritize
* swstep exceptions over asynchronous exceptions taken to an exception
* level where debug is disabled. This choice has the advantage that
* we do not need to maintain internal state corresponding to the
* ISV/EX syndrome bits between completion of the step and generation
* of the exception, and our syndrome information is always correct.
*/
gen_ss_advance(s);
gen_exception(s, EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
default_exception_el(s));
s->base.is_jmp = DISAS_NORETURN;
}
static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
{
/* No direct tb linking with singlestep (either QEMU's or the ARM
* debug architecture kind) or deterministic io
*/
if (s->base.singlestep_enabled || s->ss_active ||
(tb_cflags(s->base.tb) & CF_LAST_IO)) {
return false;
}
#ifndef CONFIG_USER_ONLY
/* Only link tbs from inside the same guest page */
if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
return false;
}
#endif
return true;
}
static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
{
TranslationBlock *tb;
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tb = s->base.tb;
if (use_goto_tb(s, n, dest)) {
tcg_gen_goto_tb(tcg_ctx, n);
gen_a64_set_pc_im(s, dest);
tcg_gen_exit_tb(tcg_ctx, (intptr_t)tb + n);
s->base.is_jmp = DISAS_NORETURN;
} else {
gen_a64_set_pc_im(s, dest);
if (s->ss_active) {
gen_step_complete_exception(s);
} else if (s->base.singlestep_enabled) {
gen_exception_internal(s, EXCP_DEBUG);
} else {
tcg_gen_lookup_and_goto_ptr(tcg_ctx);
s->base.is_jmp = DISAS_NORETURN;
}
}
}
static void unallocated_encoding(DisasContext *s)
{
/* Unallocated and reserved encodings are uncategorized */
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
default_exception_el(s));
}
#define unsupported_encoding(s, insn) \
do { \
qemu_log_mask(LOG_UNIMP, \
"%s:%d: unsupported instruction encoding 0x%08x " \
"at pc=%016" PRIx64 "\n", \
__FILE__, __LINE__, insn, s->pc - 4); \
unallocated_encoding(s); \
} while (0)
static void init_tmp_a64_array(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
#endif
s->tmp_a64_count = 0;
}
static void free_tmp_a64(DisasContext *s)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int i;
for (i = 0; i < s->tmp_a64_count; i++) {
tcg_temp_free_i64(tcg_ctx, s->tmp_a64[i]);
}
init_tmp_a64_array(s);
}
static TCGv_i64 new_tmp_a64(DisasContext *s)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
assert(s->tmp_a64_count < TMP_A64_MAX);
return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(tcg_ctx);
}
static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 t = new_tmp_a64(s);
tcg_gen_movi_i64(tcg_ctx, t, 0);
return t;
}
/*
* Register access functions
*
* These functions are used for directly accessing a register in where
* changes to the final register value are likely to be made. If you
* need to use a register for temporary calculation (e.g. index type
* operations) use the read_* form.
*
* B1.2.1 Register mappings
*
* In instruction register encoding 31 can refer to ZR (zero register) or
* the SP (stack pointer) depending on context. In QEMU's case we map SP
* to tcg_ctx->cpu_X[31] and ZR accesses to a temporary which can be discarded.
* This is the point of the _sp forms.
*/
static TCGv_i64 cpu_reg(DisasContext *s, int reg)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (reg == 31) {
return new_tmp_a64_zero(s);
} else {
return tcg_ctx->cpu_X[reg];
}
}
/* register access for when 31 == SP */
static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
return tcg_ctx->cpu_X[reg];
}
/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
* representing the register contents. This TCGv is an auto-freed
* temporary so it need not be explicitly freed, and may be modified.
*/
static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 v = new_tmp_a64(s);
if (reg != 31) {
if (sf) {
tcg_gen_mov_i64(tcg_ctx, v, tcg_ctx->cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(tcg_ctx, v, tcg_ctx->cpu_X[reg]);
}
} else {
tcg_gen_movi_i64(tcg_ctx, v, 0);
}
return v;
}
static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 v = new_tmp_a64(s);
if (sf) {
tcg_gen_mov_i64(tcg_ctx, v, tcg_ctx->cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(tcg_ctx, v, tcg_ctx->cpu_X[reg]);
}
return v;
}
/* We should have at some point before trying to access an FP register
* done the necessary access check, so assert that
* (a) we did the check and
* (b) we didn't then just plough ahead anyway if it failed.
* Print the instruction pattern in the abort message so we can figure
* out what we need to fix if a user encounters this problem in the wild.
*/
static inline void assert_fp_access_checked(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
fprintf(stderr, "target-arm: FP access check missing for "
"instruction 0x%08x\n", s->insn);
abort();
}
#endif
}
/* Return the offset into CPUARMState of an element of specified
* size, 'element' places in from the least significant end of
* the FP/vector register Qn.
*/
static inline int vec_reg_offset(DisasContext *s, int regno,
int element, TCGMemOp size)
{
int offs = 0;
#ifdef HOST_WORDS_BIGENDIAN
/* This is complicated slightly because vfp.zregs[n].d[0] is
* still the low half and vfp.zregs[n].d[1] the high half
* of the 128 bit vector, even on big endian systems.
* Calculate the offset assuming a fully bigendian 128 bits,
* then XOR to account for the order of the two 64 bit halves.
*/
offs += (16 - ((element + 1) * (1 << size)));
offs ^= 8;
#else
offs += element * (1 << size);
#endif
offs += offsetof(CPUARMState, vfp.zregs[regno]);
assert_fp_access_checked(s);
return offs;
}
/* Return the offset info CPUARMState of the "whole" vector register Qn. */
static inline int vec_full_reg_offset(DisasContext *s, int regno)
{
assert_fp_access_checked(s);
return offsetof(CPUARMState, vfp.zregs[regno]);
}
/* Return a newly allocated pointer to the vector register. */
static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr ret = tcg_temp_new_ptr(tcg_ctx);
tcg_gen_addi_ptr(tcg_ctx, ret, tcg_ctx->cpu_env, vec_full_reg_offset(s, regno));
return ret;
}
/* Return the byte size of the "whole" vector register, VL / 8. */
static inline int vec_full_reg_size(DisasContext *s)
{
/* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags.
In the meantime this is just the AdvSIMD length of 128. */
return 128 / 8;
}
/* Return the offset into CPUARMState of a slice (from
* the least significant end) of FP register Qn (ie
* Dn, Sn, Hn or Bn).
* (Note that this is not the same mapping as for A32; see cpu.h)
*/
static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
{
return vec_reg_offset(s, regno, 0, size);
}
/* Offset of the high half of the 128 bit vector Qn */
static inline int fp_reg_hi_offset(DisasContext *s, int regno)
{
return vec_reg_offset(s, regno, 1, MO_64);
}
/* Convenience accessors for reading and writing single and double
* FP registers. Writing clears the upper parts of the associated
* 128 bit vector register, as required by the architecture.
* Note that unlike the GP register accessors, the values returned
* by the read functions must be manually freed.
*/
static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 v = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ld_i64(tcg_ctx, v, tcg_ctx->cpu_env, fp_reg_offset(s, reg, MO_64));
return v;
}
static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 v = tcg_temp_new_i32(tcg_ctx);
tcg_gen_ld_i32(tcg_ctx, v, tcg_ctx->cpu_env, fp_reg_offset(s, reg, MO_32));
return v;
}
/* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
* If SVE is not enabled, then there are only 128 bits in the vector.
*/
static void clear_vec_high(DisasContext *s, bool is_q, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned ofs = fp_reg_offset(s, rd, MO_64);
unsigned vsz = vec_full_reg_size(s);
if (!is_q) {
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
tcg_gen_st_i64(tcg_ctx, tcg_zero, tcg_ctx->cpu_env, ofs + 8);
tcg_temp_free_i64(tcg_ctx, tcg_zero);
}
if (vsz > 16) {
tcg_gen_gvec_dup8i(tcg_ctx, ofs + 16, vsz - 16, vsz - 16, 0);
}
}
static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned ofs = fp_reg_offset(s, reg, MO_64);
tcg_gen_st_i64(tcg_ctx, v, tcg_ctx->cpu_env, ofs);
clear_vec_high(s, false, reg);
}
static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, tmp, v);
write_fp_dreg(s, reg, tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
}
static TCGv_ptr get_fpstatus_ptr(TCGContext *tcg_ctx, bool is_f16)
{
TCGv_ptr statusptr = tcg_temp_new_ptr(tcg_ctx);
int offset;
/* In A64 all instructions (both FP and Neon) use the FPCR; there
* is no equivalent of the A32 Neon "standard FPSCR value".
* However half-precision operations operate under a different
* FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
*/
if (is_f16) {
offset = offsetof(CPUARMState, vfp.fp_status_f16);
} else {
offset = offsetof(CPUARMState, vfp.fp_status);
}
tcg_gen_addi_ptr(tcg_ctx, statusptr, tcg_ctx->cpu_env, offset);
return statusptr;
}
/* Expand a 2-operand AdvSIMD vector operation using an expander function. */
static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
GVecGen2Fn *gvec_fn, int vece)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
gvec_fn(tcg_ctx, vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 2-operand + immediate AdvSIMD vector operation using
* an expander function.
*/
static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
int64_t imm, GVecGen2iFn *gvec_fn, int vece)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
gvec_fn(tcg_ctx, vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
imm, is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 3-operand AdvSIMD vector operation using an expander function. */
static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
GVecGen3Fn *gvec_fn, int vece)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
gvec_fn(tcg_ctx, vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 2-operand + immediate AdvSIMD vector operation using
* an op descriptor.
*/
static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
int rn, int64_t imm, const GVecGen2i *gvec_op)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_gvec_2i(tcg_ctx, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
}
/* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
int rn, int rm, const GVecGen3 *gvec_op)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_gvec_3(tcg_ctx, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), is_q ? 16 : 8,
vec_full_reg_size(s), gvec_op);
}
/* Expand a 3-operand + env pointer operation using
* an out-of-line helper.
*/
static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
int rn, int rm, gen_helper_gvec_3_ptr *fn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_gvec_3_ptr(tcg_ctx, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), tcg_ctx->cpu_env,
is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
}
/* Expand a 3-operand + fpstatus pointer + simd data value operation using
* an out-of-line helper.
*/
static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
int rm, bool is_fp16, int data,
gen_helper_gvec_3_ptr *fn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, is_fp16);
tcg_gen_gvec_3_ptr(tcg_ctx, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), fpst,
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
tcg_temp_free_ptr(tcg_ctx, fpst);
}
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
* than the 32 bit equivalent.
*/
static inline void gen_set_NZ64(TCGContext *tcg_ctx, TCGv_i64 result)
{
tcg_gen_extr_i64_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF, result);
tcg_gen_or_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF);
}
/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
static inline void gen_logic_CC(TCGContext *tcg_ctx, int sf, TCGv_i64 result)
{
if (sf) {
gen_set_NZ64(tcg_ctx, result);
} else {
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_ctx->cpu_ZF, result);
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_ZF);
}
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_CF, 0);
tcg_gen_movi_i32(tcg_ctx, tcg_ctx->cpu_VF, 0);
}
/* dest = T0 + T1; compute C, N, V and Z flags */
static void gen_add_CC(DisasContext *s, int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (sf) {
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64(tcg_ctx);
flag = tcg_temp_new_i64(tcg_ctx);
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_movi_i64(tcg_ctx, tmp, 0);
tcg_gen_add2_i64(tcg_ctx, result, flag, t0, tmp, t1, tmp);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_ctx->cpu_CF, flag);
gen_set_NZ64(tcg_ctx, result);
tcg_gen_xor_i64(tcg_ctx, flag, result, t0);
tcg_gen_xor_i64(tcg_ctx, tmp, t0, t1);
tcg_gen_andc_i64(tcg_ctx, flag, flag, tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_gen_extrh_i64_i32(tcg_ctx, tcg_ctx->cpu_VF, flag);
tcg_gen_mov_i64(tcg_ctx, dest, result);
tcg_temp_free_i64(tcg_ctx, result);
tcg_temp_free_i64(tcg_ctx, flag);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 t1_32 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_movi_i32(tcg_ctx, tmp, 0);
tcg_gen_extrl_i64_i32(tcg_ctx, t0_32, t0);
tcg_gen_extrl_i64_i32(tcg_ctx, t1_32, t1);
tcg_gen_add2_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_CF, t0_32, tmp, t1_32, tmp);
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF);
tcg_gen_xor_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF, t0_32);
tcg_gen_xor_i32(tcg_ctx, tmp, t0_32, t1_32);
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tmp);
tcg_gen_extu_i32_i64(tcg_ctx, dest, tcg_ctx->cpu_NF);
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, t0_32);
tcg_temp_free_i32(tcg_ctx, t1_32);
}
}
/* dest = T0 - T1; compute C, N, V and Z flags */
static void gen_sub_CC(DisasContext *s, int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (sf) {
/* 64 bit arithmetic */
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64(tcg_ctx);
flag = tcg_temp_new_i64(tcg_ctx);
tcg_gen_sub_i64(tcg_ctx, result, t0, t1);
gen_set_NZ64(tcg_ctx, result);
tcg_gen_setcond_i64(tcg_ctx, TCG_COND_GEU, flag, t0, t1);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_ctx->cpu_CF, flag);
tcg_gen_xor_i64(tcg_ctx, flag, result, t0);
tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_xor_i64(tcg_ctx, tmp, t0, t1);
tcg_gen_and_i64(tcg_ctx, flag, flag, tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_gen_extrh_i64_i32(tcg_ctx, tcg_ctx->cpu_VF, flag);
tcg_gen_mov_i64(tcg_ctx, dest, result);
tcg_temp_free_i64(tcg_ctx, flag);
tcg_temp_free_i64(tcg_ctx, result);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 t1_32 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tmp;
tcg_gen_extrl_i64_i32(tcg_ctx, t0_32, t0);
tcg_gen_extrl_i64_i32(tcg_ctx, t1_32, t1);
tcg_gen_sub_i32(tcg_ctx, tcg_ctx->cpu_NF, t0_32, t1_32);
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF);
tcg_gen_setcond_i32(tcg_ctx, TCG_COND_GEU, tcg_ctx->cpu_CF, t0_32, t1_32);
tcg_gen_xor_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF, t0_32);
tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_xor_i32(tcg_ctx, tmp, t0_32, t1_32);
tcg_temp_free_i32(tcg_ctx, t0_32);
tcg_temp_free_i32(tcg_ctx, t1_32);
tcg_gen_and_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_gen_extu_i32_i64(tcg_ctx, dest, tcg_ctx->cpu_NF);
}
}
/* dest = T0 + T1 + CF; do not compute flags. */
static void gen_adc(DisasContext *s, int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 flag = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, flag, tcg_ctx->cpu_CF);
tcg_gen_add_i64(tcg_ctx, dest, t0, t1);
tcg_gen_add_i64(tcg_ctx, dest, dest, flag);
tcg_temp_free_i64(tcg_ctx, flag);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, dest, dest);
}
}
/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
static void gen_adc_CC(DisasContext *s, int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (sf) {
TCGv_i64 result, cf_64, vf_64, tmp;
result = tcg_temp_new_i64(tcg_ctx);
cf_64 = tcg_temp_new_i64(tcg_ctx);
vf_64 = tcg_temp_new_i64(tcg_ctx);
tmp = tcg_const_i64(tcg_ctx, 0);
tcg_gen_extu_i32_i64(tcg_ctx, cf_64, tcg_ctx->cpu_CF);
tcg_gen_add2_i64(tcg_ctx, result, cf_64, t0, tmp, cf_64, tmp);
tcg_gen_add2_i64(tcg_ctx, result, cf_64, result, cf_64, t1, tmp);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_ctx->cpu_CF, cf_64);
gen_set_NZ64(tcg_ctx, result);
tcg_gen_xor_i64(tcg_ctx, vf_64, result, t0);
tcg_gen_xor_i64(tcg_ctx, tmp, t0, t1);
tcg_gen_andc_i64(tcg_ctx, vf_64, vf_64, tmp);
tcg_gen_extrh_i64_i32(tcg_ctx, tcg_ctx->cpu_VF, vf_64);
tcg_gen_mov_i64(tcg_ctx, dest, result);
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_temp_free_i64(tcg_ctx, vf_64);
tcg_temp_free_i64(tcg_ctx, cf_64);
tcg_temp_free_i64(tcg_ctx, result);
} else {
TCGv_i32 t0_32, t1_32, tmp;
t0_32 = tcg_temp_new_i32(tcg_ctx);
t1_32 = tcg_temp_new_i32(tcg_ctx);
tmp = tcg_const_i32(tcg_ctx, 0);
tcg_gen_extrl_i64_i32(tcg_ctx, t0_32, t0);
tcg_gen_extrl_i64_i32(tcg_ctx, t1_32, t1);
tcg_gen_add2_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_CF, t0_32, tmp, tcg_ctx->cpu_CF, tmp);
tcg_gen_add2_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_CF, tcg_ctx->cpu_NF, tcg_ctx->cpu_CF, t1_32, tmp);
tcg_gen_mov_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_NF);
tcg_gen_xor_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_NF, t0_32);
tcg_gen_xor_i32(tcg_ctx, tmp, t0_32, t1_32);
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tmp);
tcg_gen_extu_i32_i64(tcg_ctx, dest, tcg_ctx->cpu_NF);
tcg_temp_free_i32(tcg_ctx, tmp);
tcg_temp_free_i32(tcg_ctx, t1_32);
tcg_temp_free_i32(tcg_ctx, t0_32);
}
}
/*
* Load/Store generators
*/
/*
* Store from GPR register to memory.
*/
static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size, int memidx,
bool iss_valid,
unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
g_assert(size <= 3);
tcg_gen_qemu_st_i64(s->uc, source, tcg_addr, memidx, s->be_data + size);
if (iss_valid) {
uint32_t syn;
syn = syn_data_abort_with_iss(0,
size,
false,
iss_srt,
iss_sf,
iss_ar,
0, 0, 0, 0, 0, false);
disas_set_insn_syndrome(s, syn);
}
}
static void do_gpr_st(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size,
bool iss_valid,
unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
iss_valid, iss_srt, iss_sf, iss_ar);
}
/*
* Load from memory to GPR register
*/
static void do_gpr_ld_memidx(DisasContext *s,
TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed,
bool extend, int memidx,
bool iss_valid, unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGMemOp memop = s->be_data + size;
g_assert(size <= 3);
if (is_signed) {
memop += MO_SIGN;
}
tcg_gen_qemu_ld_i64(s->uc, dest, tcg_addr, memidx, memop);
if (extend && is_signed) {
g_assert(size < 3);
tcg_gen_ext32u_i64(tcg_ctx, dest, dest);
}
if (iss_valid) {
uint32_t syn;
syn = syn_data_abort_with_iss(0,
size,
is_signed,
iss_srt,
iss_sf,
iss_ar,
0, 0, 0, 0, 0, false);
disas_set_insn_syndrome(s, syn);
}
}
static void do_gpr_ld(DisasContext *s,
TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed, bool extend,
bool iss_valid, unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
get_mem_index(s),
iss_valid, iss_srt, iss_sf, iss_ar);
}
/*
* Store from FP register to memory
*/
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* This writes the bottom N bits of a 128 bit wide vector to memory */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ld_i64(tcg_ctx, tmp, tcg_ctx->cpu_env, fp_reg_offset(s, srcidx, MO_64));
if (size < 4) {
tcg_gen_qemu_st_i64(s->uc, tmp, tcg_addr, get_mem_index(s),
s->be_data + size);
} else {
bool be = s->be_data == MO_BE;
TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(tcg_ctx);
tcg_gen_addi_i64(tcg_ctx, tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_st_i64(s->uc, tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
s->be_data | MO_Q);
tcg_gen_ld_i64(tcg_ctx, tmp, tcg_ctx->cpu_env, fp_reg_hi_offset(s, srcidx));
tcg_gen_qemu_st_i64(s->uc, tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
s->be_data | MO_Q);
tcg_temp_free_i64(tcg_ctx, tcg_hiaddr);
}
tcg_temp_free_i64(tcg_ctx, tmp);
}
/*
* Load from memory to FP register
*/
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* This always zero-extends and writes to a full 128 bit wide vector */
TCGv_i64 tmplo = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tmphi;
if (size < 4) {
TCGMemOp memop = s->be_data + size;
tmphi = tcg_const_i64(tcg_ctx, 0);
tcg_gen_qemu_ld_i64(s->uc, tmplo, tcg_addr, get_mem_index(s), memop);
} else {
bool be = s->be_data == MO_BE;
TCGv_i64 tcg_hiaddr;
tmphi = tcg_temp_new_i64(tcg_ctx);
tcg_hiaddr = tcg_temp_new_i64(tcg_ctx);
tcg_gen_addi_i64(tcg_ctx, tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_ld_i64(s->uc, tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
s->be_data | MO_Q);
tcg_gen_qemu_ld_i64(s->uc, tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
s->be_data | MO_Q);
tcg_temp_free_i64(tcg_ctx, tcg_hiaddr);
}
tcg_gen_st_i64(tcg_ctx, tmplo, tcg_ctx->cpu_env, fp_reg_offset(s, destidx, MO_64));
tcg_gen_st_i64(tcg_ctx, tmphi, tcg_ctx->cpu_env, fp_reg_hi_offset(s, destidx));
tcg_temp_free_i64(tcg_ctx, tmplo);
tcg_temp_free_i64(tcg_ctx, tmphi);
clear_vec_high(s, true, destidx);
}
/*
* Vector load/store helpers.
*
* The principal difference between this and a FP load is that we don't
* zero extend as we are filling a partial chunk of the vector register.
* These functions don't support 128 bit loads/stores, which would be
* normal load/store operations.
*
* The _i32 versions are useful when operating on 32 bit quantities
* (eg for floating point single or using Neon helper functions).
*/
/* Get value of an element within a vector register */
static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_32:
tcg_gen_ld32u_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_32|MO_SIGN:
tcg_gen_ld32s_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_64:
case MO_64|MO_SIGN:
tcg_gen_ld_i64(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i32(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i32(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i32(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i32(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
case MO_32:
case MO_32|MO_SIGN:
tcg_gen_ld_i32(tcg_ctx, tcg_dest, tcg_ctx->cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Set value of an element within a vector register */
static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
int element, TCGMemOp memop)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i64(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i64(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st32_i64(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
case MO_64:
tcg_gen_st_i64(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
int destidx, int element, TCGMemOp memop)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i32(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i32(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st_i32(tcg_ctx, tcg_src, tcg_ctx->cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Store from vector register to memory */
static void do_vec_st(DisasContext *s, int srcidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGMemOp memop = s->be_data + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_tmp, srcidx, element, size);
tcg_gen_qemu_st_i64(s->uc, tcg_tmp, tcg_addr, get_mem_index(s), memop);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
/* Load from memory to vector register */
static void do_vec_ld(DisasContext *s, int destidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGMemOp memop = s->be_data + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_qemu_ld_i64(s->uc, tcg_tmp, tcg_addr, get_mem_index(s), memop);
write_vec_element(s, tcg_tmp, destidx, element, size);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
/* Check that FP/Neon access is enabled. If it is, return
* true. If not, emit code to generate an appropriate exception,
* and return false; the caller should not emit any code for
* the instruction. Note that this check must happen after all
* unallocated-encoding checks (otherwise the syndrome information
* for the resulting exception will be incorrect).
*/
static inline bool fp_access_check(DisasContext *s)
{
assert(!s->fp_access_checked);
s->fp_access_checked = true;
if (!s->fp_excp_el) {
return true;
}
gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
s->fp_excp_el);
return false;
}
/* Check that SVE access is enabled. If it is, return true.
* If not, emit code to generate an appropriate exception and return false.
*/
static inline bool sve_access_check(DisasContext *s)
{
if (s->sve_excp_el) {
gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
s->sve_excp_el);
return false;
}
return true;
}
/*
* This utility function is for doing register extension with an
* optional shift. You will likely want to pass a temporary for the
* destination register. See DecodeRegExtend() in the ARM ARM.
*/
static void ext_and_shift_reg(TCGContext *tcg_ctx, TCGv_i64 tcg_out, TCGv_i64 tcg_in,
int option, unsigned int shift)
{
int extsize = extract32(option, 0, 2);
bool is_signed = extract32(option, 2, 1);
if (is_signed) {
switch (extsize) {
case 0:
tcg_gen_ext8s_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16s_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32s_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_ctx, tcg_out, tcg_in);
break;
}
} else {
switch (extsize) {
case 0:
tcg_gen_ext8u_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16u_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32u_i64(tcg_ctx, tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_ctx, tcg_out, tcg_in);
break;
}
}
if (shift) {
tcg_gen_shli_i64(tcg_ctx, tcg_out, tcg_out, shift);
}
}
static inline void gen_check_sp_alignment(DisasContext *s)
{
/* The AArch64 architecture mandates that (if enabled via PSTATE
* or SCTLR bits) there is a check that SP is 16-aligned on every
* SP-relative load or store (with an exception generated if it is not).
* In line with general QEMU practice regarding misaligned accesses,
* we omit these checks for the sake of guest program performance.
* This function is provided as a hook so we can more easily add these
* checks in future (possibly as a "favour catching guest program bugs
* over speed" user selectable option).
*/
}
/*
* This provides a simple table based table lookup decoder. It is
* intended to be used when the relevant bits for decode are too
* awkwardly placed and switch/if based logic would be confusing and
* deeply nested. Since it's a linear search through the table, tables
* should be kept small.
*
* It returns the first handler where insn & mask == pattern, or
* NULL if there is no match.
* The table is terminated by an empty mask (i.e. 0)
*/
static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
uint32_t insn)
{
const AArch64DecodeTable *tptr = table;
while (tptr->mask) {
if ((insn & tptr->mask) == tptr->pattern) {
return tptr->disas_fn;
}
tptr++;
}
return NULL;
}
/*
* The instruction disassembly implemented here matches
* the instruction encoding classifications in chapter C4
* of the ARM Architecture Reference Manual (DDI0487B_a);
* classification names and decode diagrams here should generally
* match up with those in the manual.
*/
/* Unconditional branch (immediate)
* 31 30 26 25 0
* +----+-----------+-------------------------------------+
* | op | 0 0 1 0 1 | imm26 |
* +----+-----------+-------------------------------------+
*/
static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
if (insn & (1U << 31)) {
/* BL Branch with link */
tcg_gen_movi_i64(tcg_ctx, cpu_reg(s, 30), s->pc);
}
/* B Branch / BL Branch with link */
gen_goto_tb(s, 0, addr);
}
/* Compare and branch (immediate)
* 31 30 25 24 23 5 4 0
* +----+-------------+----+---------------------+--------+
* | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
* +----+-------------+----+---------------------+--------+
*/
static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, op, rt;
uint64_t addr;
TCGLabel *label_match;
TCGv_i64 tcg_cmp;
sf = extract32(insn, 31, 1);
op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
rt = extract32(insn, 0, 5);
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
tcg_cmp = read_cpu_reg(s, rt, sf);
label_match = gen_new_label(tcg_ctx);
tcg_gen_brcondi_i64(tcg_ctx, op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(tcg_ctx, label_match);
gen_goto_tb(s, 1, addr);
}
/* Test and branch (immediate)
* 31 30 25 24 23 19 18 5 4 0
* +----+-------------+----+-------+-------------+------+
* | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
* +----+-------------+----+-------+-------------+------+
*/
static void disas_test_b_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int bit_pos, op, rt;
uint64_t addr;
TCGLabel *label_match;
TCGv_i64 tcg_cmp;
bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
rt = extract32(insn, 0, 5);
tcg_cmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_andi_i64(tcg_ctx, tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
label_match = gen_new_label(tcg_ctx);
tcg_gen_brcondi_i64(tcg_ctx, op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
tcg_temp_free_i64(tcg_ctx, tcg_cmp);
gen_goto_tb(s, 0, s->pc);
gen_set_label(tcg_ctx, label_match);
gen_goto_tb(s, 1, addr);
}
/* Conditional branch (immediate)
* 31 25 24 23 5 4 3 0
* +---------------+----+---------------------+----+------+
* | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
* +---------------+----+---------------------+----+------+
*/
static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int cond;
uint64_t addr;
if ((insn & (1 << 4)) || (insn & (1 << 24))) {
unallocated_encoding(s);
return;
}
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
cond = extract32(insn, 0, 4);
if (cond < 0x0e) {
/* genuinely conditional branches */
TCGLabel *label_match = gen_new_label(tcg_ctx);
arm_gen_test_cc(tcg_ctx, cond, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(tcg_ctx, label_match);
gen_goto_tb(s, 1, addr);
} else {
/* 0xe and 0xf are both "always" conditions */
gen_goto_tb(s, 0, addr);
}
}
/* HINT instruction group, including various allocated HINTs */
static void handle_hint(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
unsigned int selector = crm << 3 | op2;
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (selector) {
case 0: /* NOP */
return;
case 3: /* WFI */
s->base.is_jmp = DISAS_WFI;
return;
/* When running in MTTCG we don't generate jumps to the yield and
* WFE helpers as it won't affect the scheduling of other vCPUs.
* If we wanted to more completely model WFE/SEV so we don't busy
* spin unnecessarily we would need to do something more involved.
*/
case 1: /* YIELD */
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
s->base.is_jmp = DISAS_YIELD;
}
return;
case 2: /* WFE */
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
s->base.is_jmp = DISAS_WFE;
}
return;
case 4: /* SEV */
case 5: /* SEVL */
/* we treat all as NOP at least for now */
return;
default:
/* default specified as NOP equivalent */
return;
}
}
static void gen_clrex(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
tcg_gen_movi_i64(tcg_ctx, tcg_ctx->cpu_exclusive_addr, -1);
}
/* CLREX, DSB, DMB, ISB */
static void handle_sync(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
TCGBar bar;
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (op2) {
case 2: /* CLREX */
gen_clrex(s, insn);
return;
case 4: /* DSB */
case 5: /* DMB */
switch (crm & 3) {
case 1: /* MBReqTypes_Reads */
bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
break;
case 2: /* MBReqTypes_Writes */
bar = TCG_BAR_SC | TCG_MO_ST_ST;
break;
default: /* MBReqTypes_All */
bar = TCG_BAR_SC | TCG_MO_ALL;
break;
}
tcg_gen_mb(tcg_ctx, bar);
return;
case 6: /* ISB */
/* We need to break the TB after this insn to execute
* a self-modified code correctly and also to take
* any pending interrupts immediately.
*/
gen_goto_tb(s, 0, s->pc);
return;
default:
unallocated_encoding(s);
return;
}
}
/* MSR (immediate) - move immediate to processor state field */
static void handle_msr_i(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op = op1 << 3 | op2;
switch (op) {
case 0x05: /* SPSel */
if (s->current_el == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x1e: /* DAIFSet */
case 0x1f: /* DAIFClear */
{
TCGv_i32 tcg_imm = tcg_const_i32(tcg_ctx, crm);
TCGv_i32 tcg_op = tcg_const_i32(tcg_ctx, op);
gen_a64_set_pc_im(s, s->pc - 4);
gen_helper_msr_i_pstate(tcg_ctx, tcg_ctx->cpu_env, tcg_op, tcg_imm);
tcg_temp_free_i32(tcg_ctx, tcg_imm);
tcg_temp_free_i32(tcg_ctx, tcg_op);
/* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
gen_a64_set_pc_im(s, s->pc);
s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
break;
}
default:
unallocated_encoding(s);
return;
}
}
static void gen_get_nzcv(TCGContext *tcg_ctx, TCGv_i64 tcg_rt)
{
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 nzcv = tcg_temp_new_i32(tcg_ctx);
/* build bit 31, N */
tcg_gen_andi_i32(tcg_ctx, nzcv, tcg_ctx->cpu_NF, (1U << 31));
/* build bit 30, Z */
tcg_gen_setcondi_i32(tcg_ctx, TCG_COND_EQ, tmp, tcg_ctx->cpu_ZF, 0);
tcg_gen_deposit_i32(tcg_ctx, nzcv, nzcv, tmp, 30, 1);
/* build bit 29, C */
tcg_gen_deposit_i32(tcg_ctx, nzcv, nzcv, tcg_ctx->cpu_CF, 29, 1);
/* build bit 28, V */
tcg_gen_shri_i32(tcg_ctx, tmp, tcg_ctx->cpu_VF, 31);
tcg_gen_deposit_i32(tcg_ctx, nzcv, nzcv, tmp, 28, 1);
/* generate result */
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rt, nzcv);
tcg_temp_free_i32(tcg_ctx, nzcv);
tcg_temp_free_i32(tcg_ctx, tmp);
}
static void gen_set_nzcv(TCGContext *tcg_ctx, TCGv_i64 tcg_rt)
{
TCGv_i32 nzcv = tcg_temp_new_i32(tcg_ctx);
/* take NZCV from R[t] */
tcg_gen_extrl_i64_i32(tcg_ctx, nzcv, tcg_rt);
/* bit 31, N */
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_NF, nzcv, (1U << 31));
/* bit 30, Z */
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_ZF, nzcv, (1 << 30));
tcg_gen_setcondi_i32(tcg_ctx, TCG_COND_EQ, tcg_ctx->cpu_ZF, tcg_ctx->cpu_ZF, 0);
/* bit 29, C */
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_CF, nzcv, (1 << 29));
tcg_gen_shri_i32(tcg_ctx, tcg_ctx->cpu_CF, tcg_ctx->cpu_CF, 29);
/* bit 28, V */
tcg_gen_andi_i32(tcg_ctx, tcg_ctx->cpu_VF, nzcv, (1 << 28));
tcg_gen_shli_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, 3);
tcg_temp_free_i32(tcg_ctx, nzcv);
}
/* MRS - move from system register
* MSR (register) - move to system register
* SYS
* SYSL
* These are all essentially the same insn in 'read' and 'write'
* versions, with varying op0 fields.
*/
static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
unsigned int op0, unsigned int op1, unsigned int op2,
unsigned int crn, unsigned int crm, unsigned int rt)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
const ARMCPRegInfo *ri;
TCGv_i64 tcg_rt;
ri = get_arm_cp_reginfo(s->cp_regs,
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
crn, crm, op0, op1, op2));
if (!ri) {
/* Unknown register; this might be a guest error or a QEMU
* unimplemented feature.
*/
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
"system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
isread ? "read" : "write", op0, op1, crn, crm, op2);
unallocated_encoding(s);
return;
}
/* Check access permissions */
if (!cp_access_ok(s->current_el, ri, isread)) {
unallocated_encoding(s);
return;
}
if (ri->accessfn) {
/* Emit code to perform further access permissions checks at
* runtime; this may result in an exception.
*/
TCGv_ptr tmpptr;
TCGv_i32 tcg_syn, tcg_isread;
uint32_t syndrome;
gen_a64_set_pc_im(s, s->pc - 4);
tmpptr = tcg_const_ptr(tcg_ctx, ri);
syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
tcg_syn = tcg_const_i32(tcg_ctx, syndrome);
tcg_isread = tcg_const_i32(tcg_ctx, isread);
gen_helper_access_check_cp_reg(tcg_ctx, tcg_ctx->cpu_env, tmpptr, tcg_syn, tcg_isread);
tcg_temp_free_ptr(tcg_ctx, tmpptr);
tcg_temp_free_i32(tcg_ctx, tcg_syn);
tcg_temp_free_i32(tcg_ctx, tcg_isread);
}
/* Handle special cases first */
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
case ARM_CP_NOP:
return;
case ARM_CP_NZCV:
tcg_rt = cpu_reg(s, rt);
if (isread) {
gen_get_nzcv(tcg_ctx, tcg_rt);
} else {
gen_set_nzcv(tcg_ctx, tcg_rt);
}
return;
case ARM_CP_CURRENTEL:
/* Reads as current EL value from pstate, which is
* guaranteed to be constant by the tb flags.
*/
tcg_rt = cpu_reg(s, rt);
tcg_gen_movi_i64(tcg_ctx, tcg_rt, s->current_el << 2);
return;
case ARM_CP_DC_ZVA:
/* Writes clear the aligned block of memory which rt points into. */
tcg_rt = cpu_reg(s, rt);
gen_helper_dc_zva(tcg_ctx, tcg_ctx->cpu_env, tcg_rt);
return;
default:
break;
}
if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
return;
}
if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
return;
}
// Unicorn: if'd out
#if 0
if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
gen_io_start();
}
#endif
tcg_rt = cpu_reg(s, rt);
if (isread) {
if (ri->type & ARM_CP_CONST) {
tcg_gen_movi_i64(tcg_ctx, tcg_rt, ri->resetvalue);
} else if (ri->readfn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(tcg_ctx, ri);
gen_helper_get_cp_reg64(tcg_ctx, tcg_rt, tcg_ctx->cpu_env, tmpptr);
tcg_temp_free_ptr(tcg_ctx, tmpptr);
} else {
tcg_gen_ld_i64(tcg_ctx, tcg_rt, tcg_ctx->cpu_env, ri->fieldoffset);
}
} else {
if (ri->type & ARM_CP_CONST) {
/* If not forbidden by access permissions, treat as WI */
return;
} else if (ri->writefn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(tcg_ctx, ri);
gen_helper_set_cp_reg64(tcg_ctx, tcg_ctx->cpu_env, tmpptr, tcg_rt);
tcg_temp_free_ptr(tcg_ctx, tmpptr);
} else {
tcg_gen_st_i64(tcg_ctx, tcg_rt, tcg_ctx->cpu_env, ri->fieldoffset);
}
}
if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
/* I/O operations must end the TB here (whether read or write) */
// Unicorn: commented out
//gen_io_end();
s->base.is_jmp = DISAS_UPDATE;
} else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/* We default to ending the TB on a coprocessor register write,
* but allow this to be suppressed by the register definition
* (usually only necessary to work around guest bugs).
*/
s->base.is_jmp = DISAS_UPDATE;
}
}
/* System
* 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
* +---------------------+---+-----+-----+-------+-------+-----+------+
* | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
* +---------------------+---+-----+-----+-------+-------+-----+------+
*/
static void disas_system(DisasContext *s, uint32_t insn)
{
unsigned int l, op0, op1, crn, crm, op2, rt;
l = extract32(insn, 21, 1);
op0 = extract32(insn, 19, 2);
op1 = extract32(insn, 16, 3);
crn = extract32(insn, 12, 4);
crm = extract32(insn, 8, 4);
op2 = extract32(insn, 5, 3);
rt = extract32(insn, 0, 5);
if (op0 == 0) {
if (l || rt != 31) {
unallocated_encoding(s);
return;
}
switch (crn) {
case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
handle_hint(s, insn, op1, op2, crm);
break;
case 3: /* CLREX, DSB, DMB, ISB */
handle_sync(s, insn, op1, op2, crm);
break;
case 4: /* MSR (immediate) */
handle_msr_i(s, insn, op1, op2, crm);
break;
default:
unallocated_encoding(s);
break;
}
return;
}
handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
}
/* Exception generation
*
* 31 24 23 21 20 5 4 2 1 0
* +-----------------+-----+------------------------+-----+----+
* | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
* +-----------------------+------------------------+----------+
*/
static void disas_exc(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int opc = extract32(insn, 21, 3);
int op2_ll = extract32(insn, 0, 5);
int imm16 = extract32(insn, 5, 16);
TCGv_i32 tmp;
switch (opc) {
case 0:
/* For SVC, HVC and SMC we advance the single-step state
* machine before taking the exception. This is architecturally
* mandated, to ensure that single-stepping a system call
* instruction works properly.
*/
switch (op2_ll) {
case 1: /* SVC */
gen_ss_advance(s);
gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
default_exception_el(s));
break;
case 2: /* HVC */
if (s->current_el == 0) {
unallocated_encoding(s);
break;
}
/* The pre HVC helper handles cases when HVC gets trapped
* as an undefined insn by runtime configuration.
*/
gen_a64_set_pc_im(s, s->pc - 4);
gen_helper_pre_hvc(tcg_ctx, tcg_ctx->cpu_env);
gen_ss_advance(s);
gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
break;
case 3: /* SMC */
if (s->current_el == 0) {
unallocated_encoding(s);
break;
}
gen_a64_set_pc_im(s, s->pc - 4);
tmp = tcg_const_i32(tcg_ctx, syn_aa64_smc(imm16));
gen_helper_pre_smc(tcg_ctx, tcg_ctx->cpu_env, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
gen_ss_advance(s);
gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
break;
default:
unallocated_encoding(s);
break;
}
break;
case 1:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* BRK */
gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
default_exception_el(s));
break;
case 2:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* HLT. This has two purposes.
* Architecturally, it is an external halting debug instruction.
* Since QEMU doesn't implement external debug, we treat this as
* it is required for halting debug disabled: it will UNDEF.
* Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
*/
if (semihosting_enabled() && imm16 == 0xf000) {
#ifndef CONFIG_USER_ONLY
/* In system mode, don't allow userspace access to semihosting,
* to provide some semblance of security (and for consistency
* with our 32-bit semihosting).
*/
if (s->current_el == 0) {
unsupported_encoding(s, insn);
break;
}
#endif
gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
} else {
unsupported_encoding(s, insn);
}
break;
case 5:
if (op2_ll < 1 || op2_ll > 3) {
unallocated_encoding(s);
break;
}
/* DCPS1, DCPS2, DCPS3 */
unsupported_encoding(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* Unconditional branch (register)
* 31 25 24 21 20 16 15 10 9 5 4 0
* +---------------+-------+-------+-------+------+-------+
* | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
* +---------------+-------+-------+-------+------+-------+
*/
static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int opc, op2, op3, rn, op4;
opc = extract32(insn, 21, 4);
op2 = extract32(insn, 16, 5);
op3 = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
op4 = extract32(insn, 0, 5);
if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* BR */
case 1: /* BLR */
case 2: /* RET */
gen_a64_set_pc(s, cpu_reg(s, rn));
/* BLR also needs to load return address */
if (opc == 1) {
tcg_gen_movi_i64(tcg_ctx, cpu_reg(s, 30), s->pc);
}
break;
case 4: /* ERET */
if (s->current_el == 0) {
unallocated_encoding(s);
return;
}
gen_helper_exception_return(tcg_ctx, tcg_ctx->cpu_env);
/* Must exit loop to check un-masked IRQs */
s->base.is_jmp = DISAS_EXIT;
return;
case 5: /* DRPS */
if (rn != 0x1f) {
unallocated_encoding(s);
} else {
unsupported_encoding(s, insn);
}
return;
default:
unallocated_encoding(s);
return;
}
s->base.is_jmp = DISAS_JUMP;
}
/* Branches, exception generating and system instructions */
static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 25, 7)) {
case 0x0a: case 0x0b:
case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
disas_uncond_b_imm(s, insn);
break;
case 0x1a: case 0x5a: /* Compare & branch (immediate) */
disas_comp_b_imm(s, insn);
break;
case 0x1b: case 0x5b: /* Test & branch (immediate) */
disas_test_b_imm(s, insn);
break;
case 0x2a: /* Conditional branch (immediate) */
disas_cond_b_imm(s, insn);
break;
case 0x6a: /* Exception generation / System */
if (insn & (1 << 24)) {
disas_system(s, insn);
} else {
disas_exc(s, insn);
}
break;
case 0x6b: /* Unconditional branch (register) */
disas_uncond_b_reg(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/*
* Load/Store exclusive instructions are implemented by remembering
* the value/address loaded, and seeing if these are the same
* when the store is performed. This is not actually the architecturally
* mandated semantics, but it works for typical guest code sequences
* and avoids having to monitor regular stores.
*
* The store exclusive uses the atomic cmpxchg primitives to avoid
* races in multi-threaded linux-user and when MTTCG softmmu is
* enabled.
*/
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
TCGv_i64 addr, int size, bool is_pair)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int idx = get_mem_index(s);
TCGMemOp memop = s->be_data;
g_assert(size <= 3);
if (is_pair) {
g_assert(size >= 2);
if (size == 2) {
/* The pair must be single-copy atomic for the doubleword. */
memop |= MO_64 | MO_ALIGN;
tcg_gen_qemu_ld_i64(s->uc, tcg_ctx->cpu_exclusive_val, addr, idx, memop);
if (s->be_data == MO_LE) {
tcg_gen_extract_i64(tcg_ctx, cpu_reg(s, rt), tcg_ctx->cpu_exclusive_val, 0, 32);
tcg_gen_extract_i64(tcg_ctx, cpu_reg(s, rt2), tcg_ctx->cpu_exclusive_val, 32, 32);
} else {
tcg_gen_extract_i64(tcg_ctx, cpu_reg(s, rt), tcg_ctx->cpu_exclusive_val, 32, 32);
tcg_gen_extract_i64(tcg_ctx, cpu_reg(s, rt2), tcg_ctx->cpu_exclusive_val, 0, 32);
}
} else {
/* The pair must be single-copy atomic for *each* doubleword, not
the entire quadword, however it must be quadword aligned. */
memop |= MO_64;
tcg_gen_qemu_ld_i64(s->uc, tcg_ctx->cpu_exclusive_val, addr, idx,
memop | MO_ALIGN_16);
TCGv_i64 addr2 = tcg_temp_new_i64(tcg_ctx);
tcg_gen_addi_i64(tcg_ctx, addr2, addr, 8);
tcg_gen_qemu_ld_i64(s->uc, tcg_ctx->cpu_exclusive_high, addr2, idx, memop);
tcg_temp_free_i64(tcg_ctx, addr2);
tcg_gen_mov_i64(tcg_ctx, cpu_reg(s, rt), tcg_ctx->cpu_exclusive_val);
tcg_gen_mov_i64(tcg_ctx, cpu_reg(s, rt2), tcg_ctx->cpu_exclusive_high);
}
} else {
memop |= size | MO_ALIGN;
tcg_gen_qemu_ld_i64(s->uc, tcg_ctx->cpu_exclusive_val, addr, idx, memop);
tcg_gen_mov_i64(tcg_ctx, cpu_reg(s, rt), tcg_ctx->cpu_exclusive_val);
}
tcg_gen_mov_i64(tcg_ctx, tcg_ctx->cpu_exclusive_addr, addr);
}
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i64 addr, int size, int is_pair)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
* && (!is_pair || env->exclusive_high == [addr + datasize])) {
* [addr] = {Rt};
* if (is_pair) {
* [addr + datasize] = {Rt2};
* }
* {Rd} = 0;
* } else {
* {Rd} = 1;
* }
* env->exclusive_addr = -1;
*/
TCGLabel *fail_label = gen_new_label(tcg_ctx);
TCGLabel *done_label = gen_new_label(tcg_ctx);
TCGv_i64 tmp;
tcg_gen_brcond_i64(tcg_ctx, TCG_COND_NE, addr, tcg_ctx->cpu_exclusive_addr, fail_label);
tmp = tcg_temp_new_i64(tcg_ctx);
if (is_pair) {
if (size == 2) {
if (s->be_data == MO_LE) {
tcg_gen_concat32_i64(tcg_ctx, tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
} else {
tcg_gen_concat32_i64(tcg_ctx, tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
}
tcg_gen_atomic_cmpxchg_i64(tcg_ctx, tmp, tcg_ctx->cpu_exclusive_addr,
tcg_ctx->cpu_exclusive_val, tmp,
get_mem_index(s),
MO_64 | MO_ALIGN | s->be_data);
tcg_gen_setcond_i64(tcg_ctx, TCG_COND_NE, tmp, tmp, tcg_ctx->cpu_exclusive_val);
} else if (s->be_data == MO_LE) {
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
gen_helper_paired_cmpxchg64_le_parallel(tcg_ctx, tmp, tcg_ctx->cpu_env,
tcg_ctx->cpu_exclusive_addr,
cpu_reg(s, rt),
cpu_reg(s, rt2));
} else {
gen_helper_paired_cmpxchg64_le(tcg_ctx, tmp, tcg_ctx->cpu_env, tcg_ctx->cpu_exclusive_addr,
cpu_reg(s, rt), cpu_reg(s, rt2));
}
} else {
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
gen_helper_paired_cmpxchg64_be_parallel(tcg_ctx, tmp, tcg_ctx->cpu_env,
tcg_ctx->cpu_exclusive_addr,
cpu_reg(s, rt),
cpu_reg(s, rt2));
} else {
gen_helper_paired_cmpxchg64_be(tcg_ctx, tmp, tcg_ctx->cpu_env, tcg_ctx->cpu_exclusive_addr,
cpu_reg(s, rt), cpu_reg(s, rt2));
}
}
} else {
tcg_gen_atomic_cmpxchg_i64(tcg_ctx, tmp, tcg_ctx->cpu_exclusive_addr, tcg_ctx->cpu_exclusive_val,
cpu_reg(s, rt), get_mem_index(s),
size | MO_ALIGN | s->be_data);
tcg_gen_setcond_i64(tcg_ctx, TCG_COND_NE, tmp, tmp, tcg_ctx->cpu_exclusive_val);
}
tcg_gen_mov_i64(tcg_ctx, cpu_reg(s, rd), tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
tcg_gen_br(tcg_ctx, done_label);
gen_set_label(tcg_ctx, fail_label);
tcg_gen_movi_i64(tcg_ctx, cpu_reg(s, rd), 1);
gen_set_label(tcg_ctx, done_label);
tcg_gen_movi_i64(tcg_ctx, tcg_ctx->cpu_exclusive_addr, -1);
}
/* Update the Sixty-Four bit (SF) registersize. This logic is derived
* from the ARMv8 specs for LDR (Shared decode for all encodings).
*/
static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
{
int opc0 = extract32(opc, 0, 1);
int regsize;
if (is_signed) {
regsize = opc0 ? 32 : 64;
} else {
regsize = size == 3 ? 64 : 32;
}
return regsize == 64;
}
/* Load/store exclusive
*
* 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
* +-----+-------------+----+---+----+------+----+-------+------+------+
* | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
* +-----+-------------+----+---+----+------+----+-------+------+------+
*
* sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
* L: 0 -> store, 1 -> load
* o2: 0 -> exclusive, 1 -> not
* o1: 0 -> single register, 1 -> register pair
* o0: 1 -> load-acquire/store-release, 0 -> not
*/
static void disas_ldst_excl(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
int is_lasr = extract32(insn, 15, 1);
int rs = extract32(insn, 16, 5);
int is_pair = extract32(insn, 21, 1);
int is_store = !extract32(insn, 22, 1);
int is_excl = !extract32(insn, 23, 1);
int size = extract32(insn, 30, 2);
TCGv_i64 tcg_addr;
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if ((!is_excl && !is_pair && !is_lasr) ||
(!is_excl && is_pair) ||
(is_pair && size < 2)) {
unallocated_encoding(s);
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
/* Note that since TCG is single threaded load-acquire/store-release
* semantics require no extra if (is_lasr) { ... } handling.
*/
if (is_excl) {
if (!is_store) {
s->is_ldex = true;
gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
if (is_lasr) {
tcg_gen_mb(tcg_ctx, TCG_MO_ALL | TCG_BAR_LDAQ);
}
} else {
if (is_lasr) {
tcg_gen_mb(tcg_ctx, TCG_MO_ALL | TCG_BAR_STRL);
}
gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
/* Generate ISS for non-exclusive accesses including LASR. */
if (is_store) {
if (is_lasr) {
tcg_gen_mb(tcg_ctx, TCG_MO_ALL | TCG_BAR_STRL);
}
do_gpr_st(s, tcg_rt, tcg_addr, size,
true, rt, iss_sf, is_lasr);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
true, rt, iss_sf, is_lasr);
if (is_lasr) {
tcg_gen_mb(tcg_ctx, TCG_MO_ALL | TCG_BAR_LDAQ);
}
}
}
}
/*
* Load register (literal)
*
* 31 30 29 27 26 25 24 23 5 4 0
* +-----+-------+---+-----+-------------------+-------+
* | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
* +-----+-------+---+-----+-------------------+-------+
*
* V: 1 -> vector (simd/fp)
* opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
* 10-> 32 bit signed, 11 -> prefetch
* opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
*/
static void disas_ld_lit(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rt = extract32(insn, 0, 5);
int64_t imm = sextract32(insn, 5, 19) << 2;
bool is_vector = extract32(insn, 26, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
int size = 2;
TCGv_i64 tcg_rt, tcg_addr;
if (is_vector) {
if (opc == 3) {
unallocated_encoding(s);
return;
}
size = 2 + opc;
if (!fp_access_check(s)) {
return;
}
} else {
if (opc == 3) {
/* PRFM (literal) : prefetch */
return;
}
size = 2 + extract32(opc, 0, 1);
is_signed = extract32(opc, 1, 1);
}
tcg_rt = cpu_reg(s, rt);
tcg_addr = tcg_const_i64(tcg_ctx, (s->pc - 4) + imm);
if (is_vector) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
/* Only unsigned 32bit loads target 32bit registers. */
bool iss_sf = opc != 0;
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
true, rt, iss_sf, false);
}
tcg_temp_free_i64(tcg_ctx, tcg_addr);
}
/*
* LDNP (Load Pair - non-temporal hint)
* LDP (Load Pair - non vector)
* LDPSW (Load Pair Signed Word - non vector)
* STNP (Store Pair - non-temporal hint)
* STP (Store Pair - non vector)
* LDNP (Load Pair of SIMD&FP - non-temporal hint)
* LDP (Load Pair of SIMD&FP)
* STNP (Store Pair of SIMD&FP - non-temporal hint)
* STP (Store Pair of SIMD&FP)
*
* 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
* +-----+-------+---+---+-------+---+-----------------------------+
* | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
* +-----+-------+---+---+-------+---+-------+-------+------+------+
*
* opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
* LDPSW 01
* LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
* V: 0 -> GPR, 1 -> Vector
* idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
* 10 -> signed offset, 11 -> pre-index
* L: 0 -> Store 1 -> Load
*
* Rt, Rt2 = GPR or SIMD registers to be stored
* Rn = general purpose register containing address
* imm7 = signed offset (multiple of 4 or 8 depending on size)
*/
static void disas_ldst_pair(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
uint64_t offset = sextract64(insn, 15, 7);
int index = extract32(insn, 23, 2);
bool is_vector = extract32(insn, 26, 1);
bool is_load = extract32(insn, 22, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
bool postindex = false;
bool wback = false;
TCGv_i64 tcg_addr; /* calculated address */
int size;
if (opc == 3) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size = 2 + opc;
} else {
size = 2 + extract32(opc, 1, 1);
is_signed = extract32(opc, 0, 1);
if (!is_load && is_signed) {
unallocated_encoding(s);
return;
}
}
switch (index) {
case 1: /* post-index */
postindex = true;
wback = true;
break;
case 0:
/* signed offset with "non-temporal" hint. Since we don't emulate
* caches we don't care about hints to the cache system about
* data access patterns, and handle this identically to plain
* signed offset.
*/
if (is_signed) {
/* There is no non-temporal-hint version of LDPSW */
unallocated_encoding(s);
return;
}
postindex = false;
break;
case 2: /* signed offset, rn not updated */
postindex = false;
break;
case 3: /* pre-index */
postindex = false;
wback = true;
break;
}
if (is_vector && !fp_access_check(s)) {
return;
}
offset <<= size;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!postindex) {
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, offset);
}
if (is_vector) {
if (is_load) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
do_fp_st(s, rt, tcg_addr, size);
}
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, 1 << size);
if (is_load) {
do_fp_ld(s, rt2, tcg_addr, size);
} else {
do_fp_st(s, rt2, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
if (is_load) {
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
/* Do not modify tcg_rt before recognizing any exception
* from the second load.
*/
do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
false, 0, false, false);
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, 1 << size);
do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
false, 0, false, false);
tcg_gen_mov_i64(tcg_ctx, tcg_rt, tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
} else {
do_gpr_st(s, tcg_rt, tcg_addr, size,
false, 0, false, false);
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, 1 << size);
do_gpr_st(s, tcg_rt2, tcg_addr, size,
false, 0, false, false);
}
}
if (wback) {
if (postindex) {
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, offset - (1 << size));
} else {
tcg_gen_subi_i64(tcg_ctx, tcg_addr, tcg_addr, 1 << size);
}
tcg_gen_mov_i64(tcg_ctx, cpu_reg_sp(s, rn), tcg_addr);
}
}
/*
* Load/store (immediate post-indexed)
* Load/store (immediate pre-indexed)
* Load/store (unscaled immediate)
*
* 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+--------+-----+------+------+
* |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
* +----+-------+---+-----+-----+---+--------+-----+------+------+
*
* idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
10 -> unprivileged
* V = 0 -> non-vector
* size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
*/
static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
int opc,
int size,
int rt,
bool is_vector)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rn = extract32(insn, 5, 5);
int imm9 = sextract32(insn, 12, 9);
int idx = extract32(insn, 10, 2);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
bool is_unpriv = (idx == 2);
bool iss_valid = !is_vector;
bool post_index;
bool writeback;
TCGv_i64 tcg_addr;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4 || is_unpriv) {
unallocated_encoding(s);
return;
}
is_store = ((opc & 1) == 0);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
if (is_unpriv) {
unallocated_encoding(s);
return;
}
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
switch (idx) {
case 0:
case 2:
post_index = false;
writeback = false;
break;
case 1:
post_index = true;
writeback = true;
break;
case 3:
post_index = false;
writeback = true;
break;
default:
g_assert_not_reached();
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!post_index) {
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, imm9);
}
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
if (is_store) {
do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
iss_valid, rt, iss_sf, false);
} else {
do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
is_signed, is_extended, memidx,
iss_valid, rt, iss_sf, false);
}
}
if (writeback) {
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
if (post_index) {
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, imm9);
}
tcg_gen_mov_i64(tcg_ctx, tcg_rn, tcg_addr);
}
}
/*
* Load/store (register offset)
*
* 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
* |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* V: 1 -> vector/simd
* opt: extend encoding (see DecodeRegExtend)
* S: if S=1 then scale (essentially index by sizeof(size))
* Rt: register to transfer into/out of
* Rn: address register or SP for base
* Rm: offset register or ZR for offset
*/
static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
int opc,
int size,
int rt,
bool is_vector)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rn = extract32(insn, 5, 5);
int shift = extract32(insn, 12, 1);
int rm = extract32(insn, 16, 5);
int opt = extract32(insn, 13, 3);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
TCGv_i64 tcg_rm;
TCGv_i64 tcg_addr;
if (extract32(opt, 1, 1) == 0) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
tcg_rm = read_cpu_reg(s, rm, 1);
ext_and_shift_reg(tcg_ctx, tcg_rm, tcg_rm, opt, shift ? size : 0);
tcg_gen_add_i64(tcg_ctx, tcg_addr, tcg_addr, tcg_rm);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size,
true, rt, iss_sf, false);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size,
is_signed, is_extended,
true, rt, iss_sf, false);
}
}
}
/*
* Load/store (unsigned immediate)
*
* 31 30 29 27 26 25 24 23 22 21 10 9 5
* +----+-------+---+-----+-----+------------+-------+------+
* |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
* +----+-------+---+-----+-----+------------+-------+------+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* Rn: base address register (inc SP)
* Rt: target register
*/
static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
int opc,
int size,
int rt,
bool is_vector)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rn = extract32(insn, 5, 5);
unsigned int imm12 = extract32(insn, 10, 12);
unsigned int offset;
TCGv_i64 tcg_addr;
bool is_store;
bool is_signed = false;
bool is_extended = false;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
offset = imm12 << size;
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, offset);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size,
true, rt, iss_sf, false);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
true, rt, iss_sf, false);
}
}
}
/* Load/store register (all forms) */
static void disas_ldst_reg(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int opc = extract32(insn, 22, 2);
bool is_vector = extract32(insn, 26, 1);
int size = extract32(insn, 30, 2);
switch (extract32(insn, 24, 2)) {
case 0:
if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
} else {
/* Load/store register (unscaled immediate)
* Load/store immediate pre/post-indexed
* Load/store register unprivileged
*/
disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
}
break;
case 1:
disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
break;
default:
unallocated_encoding(s);
break;
}
}
/* AdvSIMD load/store multiple structures
*
* 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+-------------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
* +---+---+---------------+---+-------------+--------+------+------+------+
*
* AdvSIMD load/store multiple structures (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+---+---------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
* +---+---+---------------+---+---+---------+--------+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
*/
static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int opcode = extract32(insn, 12, 4);
bool is_store = !extract32(insn, 22, 1);
bool is_postidx = extract32(insn, 23, 1);
bool is_q = extract32(insn, 30, 1);
TCGv_i64 tcg_addr, tcg_rn;
int ebytes = 1 << size;
int elements = (is_q ? 128 : 64) / (8 << size);
int rpt; /* num iterations */
int selem; /* structure elements */
int r;
if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
unallocated_encoding(s);
return;
}
/* From the shared decode logic */
switch (opcode) {
case 0x0:
rpt = 1;
selem = 4;
break;
case 0x2:
rpt = 4;
selem = 1;
break;
case 0x4:
rpt = 1;
selem = 3;
break;
case 0x6:
rpt = 3;
selem = 1;
break;
case 0x7:
rpt = 1;
selem = 1;
break;
case 0x8:
rpt = 1;
selem = 2;
break;
case 0xa:
rpt = 2;
selem = 1;
break;
default:
unallocated_encoding(s);
return;
}
if (size == 3 && !is_q && selem != 1) {
/* reserved */
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64(tcg_ctx);
tcg_gen_mov_i64(tcg_ctx, tcg_addr, tcg_rn);
for (r = 0; r < rpt; r++) {
int e;
for (e = 0; e < elements; e++) {
int tt = (rt + r) % 32;
int xs;
for (xs = 0; xs < selem; xs++) {
if (is_store) {
do_vec_st(s, tt, e, tcg_addr, size);
} else {
do_vec_ld(s, tt, e, tcg_addr, size);
/* For non-quad operations, setting a slice of the low
* 64 bits of the register clears the high 64 bits (in
* the ARM ARM pseudocode this is implicit in the fact
* that 'rval' is a 64 bit wide variable).
* For quad operations, we might still need to zero the
* high bits of SVE. We optimize by noticing that we only
* need to do this the first time we touch a register.
*/
if (e == 0 && (r == 0 || xs == selem - 1)) {
clear_vec_high(s, is_q, tt);
}
}
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, ebytes);
tt = (tt + 1) % 32;
}
}
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_ctx, tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_ctx, tcg_addr);
}
/* AdvSIMD load/store single structure
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* AdvSIMD load/store single structure (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
* index = encoded in Q:S:size dependent on size
*
* lane_size = encoded in R, opc
* transfer width = encoded in opc, S, size
*/
static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int S = extract32(insn, 12, 1);
int opc = extract32(insn, 13, 3);
int R = extract32(insn, 21, 1);
int is_load = extract32(insn, 22, 1);
int is_postidx = extract32(insn, 23, 1);
int is_q = extract32(insn, 30, 1);
int scale = extract32(opc, 1, 2);
int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
bool replicate = false;
int index = is_q << 3 | S << 2 | size;
int ebytes, xs;
TCGv_i64 tcg_addr, tcg_rn;
switch (scale) {
case 3:
if (!is_load || S) {
unallocated_encoding(s);
return;
}
scale = size;
replicate = true;
break;
case 0:
break;
case 1:
if (extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
}
index >>= 1;
break;
case 2:
if (extract32(size, 1, 1)) {
unallocated_encoding(s);
return;
}
if (!extract32(size, 0, 1)) {
index >>= 2;
} else {
if (S) {
unallocated_encoding(s);
return;
}
index >>= 3;
scale = 3;
}
break;
default:
g_assert_not_reached();
}
if (!fp_access_check(s)) {
return;
}
ebytes = 1 << scale;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64(tcg_ctx);
tcg_gen_mov_i64(tcg_ctx, tcg_addr, tcg_rn);
for (xs = 0; xs < selem; xs++) {
if (replicate) {
/* Load and replicate to all elements */
uint64_t mulconst;
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_qemu_ld_i64(s->uc, tcg_tmp, tcg_addr,
get_mem_index(s), s->be_data + scale);
switch (scale) {
case 0:
mulconst = 0x0101010101010101ULL;
break;
case 1:
mulconst = 0x0001000100010001ULL;
break;
case 2:
mulconst = 0x0000000100000001ULL;
break;
case 3:
mulconst = 0;
break;
default:
g_assert_not_reached();
}
if (mulconst) {
tcg_gen_muli_i64(tcg_ctx, tcg_tmp, tcg_tmp, mulconst);
}
write_vec_element(s, tcg_tmp, rt, 0, MO_64);
if (is_q) {
write_vec_element(s, tcg_tmp, rt, 1, MO_64);
}
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
clear_vec_high(s, is_q, rt);
} else {
/* Load/store one element per register */
if (is_load) {
do_vec_ld(s, rt, index, tcg_addr, scale);
} else {
do_vec_st(s, rt, index, tcg_addr, scale);
}
}
tcg_gen_addi_i64(tcg_ctx, tcg_addr, tcg_addr, ebytes);
rt = (rt + 1) % 32;
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_ctx, tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_ctx, tcg_addr);
}
/* Loads and stores */
static void disas_ldst(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 6)) {
case 0x08: /* Load/store exclusive */
disas_ldst_excl(s, insn);
break;
case 0x18: case 0x1c: /* Load register (literal) */
disas_ld_lit(s, insn);
break;
case 0x28: case 0x29:
case 0x2c: case 0x2d: /* Load/store pair (all forms) */
disas_ldst_pair(s, insn);
break;
case 0x38: case 0x39:
case 0x3c: case 0x3d: /* Load/store register (all forms) */
disas_ldst_reg(s, insn);
break;
case 0x0c: /* AdvSIMD load/store multiple structures */
disas_ldst_multiple_struct(s, insn);
break;
case 0x0d: /* AdvSIMD load/store single structure */
disas_ldst_single_struct(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* PC-rel. addressing
* 31 30 29 28 24 23 5 4 0
* +----+-------+-----------+-------------------+------+
* | op | immlo | 1 0 0 0 0 | immhi | Rd |
* +----+-------+-----------+-------------------+------+
*/
static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int page, rd;
uint64_t base;
uint64_t offset;
page = extract32(insn, 31, 1);
/* SignExtend(immhi:immlo) -> offset */
offset = sextract64(insn, 5, 19);
offset = offset << 2 | extract32(insn, 29, 2);
rd = extract32(insn, 0, 5);
base = s->pc - 4;
if (page) {
/* ADRP (page based) */
base &= ~0xfff;
offset <<= 12;
}
tcg_gen_movi_i64(tcg_ctx, cpu_reg(s, rd), base + offset);
}
/*
* Add/subtract (immediate)
*
* 31 30 29 28 24 23 22 21 10 9 5 4 0
* +--+--+--+-----------+-----+-------------+-----+-----+
* |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
* +--+--+--+-----------+-----+-------------+-----+-----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
*/
static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
uint64_t imm = extract32(insn, 10, 12);
int shift = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool is_64bit = extract32(insn, 31, 1);
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
TCGv_i64 tcg_result;
switch (shift) {
case 0x0:
break;
case 0x1:
imm <<= 12;
break;
default:
unallocated_encoding(s);
return;
}
tcg_result = tcg_temp_new_i64(tcg_ctx);
if (!setflags) {
if (sub_op) {
tcg_gen_subi_i64(tcg_ctx, tcg_result, tcg_rn, imm);
} else {
tcg_gen_addi_i64(tcg_ctx, tcg_result, tcg_rn, imm);
}
} else {
TCGv_i64 tcg_imm = tcg_const_i64(tcg_ctx, imm);
if (sub_op) {
gen_sub_CC(s, is_64bit, tcg_result, tcg_rn, tcg_imm);
} else {
gen_add_CC(s, is_64bit, tcg_result, tcg_rn, tcg_imm);
}
tcg_temp_free_i64(tcg_ctx, tcg_imm);
}
if (is_64bit) {
tcg_gen_mov_i64(tcg_ctx, tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_ctx, tcg_result);
}
/* The input should be a value in the bottom e bits (with higher
* bits zero); returns that value replicated into every element
* of size e in a 64 bit integer.
*/
static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
{
assert(e != 0);
while (e < 64) {
mask |= mask << e;
e *= 2;
}
return mask;
}
/* Return a value with the bottom len bits set (where 0 < len <= 64) */
static inline uint64_t bitmask64(unsigned int length)
{
assert(length > 0 && length <= 64);
return ~0ULL >> (64 - length);
}
/* Simplified variant of pseudocode DecodeBitMasks() for the case where we
* only require the wmask. Returns false if the imms/immr/immn are a reserved
* value (ie should cause a guest UNDEF exception), and true if they are
* valid, in which case the decoded bit pattern is written to result.
*/
static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
unsigned int imms, unsigned int immr)
{
uint64_t mask;
unsigned e, levels, s, r;
int len;
assert(immn < 2 && imms < 64 && immr < 64);
/* The bit patterns we create here are 64 bit patterns which
* are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
* 64 bits each. Each element contains the same value: a run
* of between 1 and e-1 non-zero bits, rotated within the
* element by between 0 and e-1 bits.
*
* The element size and run length are encoded into immn (1 bit)
* and imms (6 bits) as follows:
* 64 bit elements: immn = 1, imms = <length of run - 1>
* 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
* 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
* 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
* 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
* 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
* Notice that immn = 0, imms = 11111x is the only combination
* not covered by one of the above options; this is reserved.
* Further, <length of run - 1> all-ones is a reserved pattern.
*
* In all cases the rotation is by immr % e (and immr is 6 bits).
*/
/* First determine the element size */
len = 31 - clz32((immn << 6) | (~imms & 0x3f));
if (len < 1) {
/* This is the immn == 0, imms == 0x11111x case */
return false;
}
e = 1 << len;
levels = e - 1;
s = imms & levels;
r = immr & levels;
if (s == levels) {
/* <length of run - 1> mustn't be all-ones. */
return false;
}
/* Create the value of one element: s+1 set bits rotated
* by r within the element (which is e bits wide)...
*/
mask = bitmask64(s + 1);
if (r) {
mask = (mask >> r) | (mask << (e - r));
mask &= bitmask64(e);
}
/* ...then replicate the element over the whole 64 bit value */
mask = bitfield_replicate(mask, e);
*result = mask;
return true;
}
/* Logical (immediate)
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_logic_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, opc, is_n, immr, imms, rn, rd;
TCGv_i64 tcg_rd, tcg_rn;
uint64_t wmask;
bool is_and = false;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
is_n = extract32(insn, 22, 1);
immr = extract32(insn, 16, 6);
imms = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && is_n) {
unallocated_encoding(s);
return;
}
if (opc == 0x3) { /* ANDS */
tcg_rd = cpu_reg(s, rd);
} else {
tcg_rd = cpu_reg_sp(s, rd);
}
tcg_rn = cpu_reg(s, rn);
if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
/* some immediate field values are reserved */
unallocated_encoding(s);
return;
}
if (!sf) {
wmask &= 0xffffffff;
}
switch (opc) {
case 0x3: /* ANDS */
case 0x0: /* AND */
tcg_gen_andi_i64(tcg_ctx, tcg_rd, tcg_rn, wmask);
is_and = true;
break;
case 0x1: /* ORR */
tcg_gen_ori_i64(tcg_ctx, tcg_rd, tcg_rn, wmask);
break;
case 0x2: /* EOR */
tcg_gen_xori_i64(tcg_ctx, tcg_rd, tcg_rn, wmask);
break;
default:
assert(FALSE); /* must handle all above */
break;
}
if (!sf && !is_and) {
/* zero extend final result; we know we can skip this for AND
* since the immediate had the high 32 bits clear.
*/
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
if (opc == 3) { /* ANDS */
gen_logic_CC(tcg_ctx, sf, tcg_rd);
}
}
/*
* Move wide (immediate)
*
* 31 30 29 28 23 22 21 20 5 4 0
* +--+-----+-------------+-----+----------------+------+
* |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
* +--+-----+-------------+-----+----------------+------+
*
* sf: 0 -> 32 bit, 1 -> 64 bit
* opc: 00 -> N, 10 -> Z, 11 -> K
* hw: shift/16 (0,16, and sf only 32, 48)
*/
static void disas_movw_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
uint64_t imm = extract32(insn, 5, 16);
int sf = extract32(insn, 31, 1);
int opc = extract32(insn, 29, 2);
int pos = extract32(insn, 21, 2) << 4;
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_imm;
if (!sf && (pos >= 32)) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* MOVN */
case 2: /* MOVZ */
imm <<= pos;
if (opc == 0) {
imm = ~imm;
}
if (!sf) {
imm &= 0xffffffffu;
}
tcg_gen_movi_i64(tcg_ctx, tcg_rd, imm);
break;
case 3: /* MOVK */
tcg_imm = tcg_const_i64(tcg_ctx, imm);
tcg_gen_deposit_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_imm, pos, 16);
tcg_temp_free_i64(tcg_ctx, tcg_imm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
break;
default:
unallocated_encoding(s);
break;
}
}
/* Bitfield
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_bitfield(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
TCGv_i64 tcg_rd, tcg_tmp;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
n = extract32(insn, 22, 1);
ri = extract32(insn, 16, 6);
si = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
bitsize = sf ? 64 : 32;
if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
/* Suppress the zero-extend for !sf. Since RI and SI are constrained
to be smaller than bitsize, we'll never reference data outside the
low 32-bits anyway. */
tcg_tmp = read_cpu_reg(s, rn, 1);
/* Recognize simple(r) extractions. */
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
len = (si - ri) + 1;
if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
tcg_gen_sextract_i64(tcg_ctx, tcg_rd, tcg_tmp, ri, len);
goto done;
} else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
tcg_gen_extract_i64(tcg_ctx, tcg_rd, tcg_tmp, ri, len);
return;
}
/* opc == 1, BXFIL fall through to deposit */
tcg_gen_extract_i64(tcg_ctx, tcg_tmp, tcg_tmp, ri, len);
pos = 0;
} else {
/* Handle the ri > si case with a deposit
* Wd<32+s-r,32-r> = Wn<s:0>
*/
len = si + 1;
pos = (bitsize - ri) & (bitsize - 1);
}
if (opc == 0 && len < ri) {
/* SBFM: sign extend the destination field from len to fill
the balance of the word. Let the deposit below insert all
of those sign bits. */
tcg_gen_sextract_i64(tcg_ctx, tcg_tmp, tcg_tmp, 0, len);
len = ri;
}
if (opc == 1) { /* BFM, BXFIL */
tcg_gen_deposit_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_tmp, pos, len);
} else {
/* SBFM or UBFM: We start with zero, and we haven't modified
any bits outside bitsize, therefore the zero-extension
below is unneeded. */
tcg_gen_deposit_z_i64(tcg_ctx, tcg_rd, tcg_tmp, pos, len);
return;
}
done:
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
/* Extract
* 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
* +----+------+-------------+---+----+------+--------+------+------+
* | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
* +----+------+-------------+---+----+------+--------+------+------+
*/
static void disas_extract(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
sf = extract32(insn, 31, 1);
n = extract32(insn, 22, 1);
rm = extract32(insn, 16, 5);
imm = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
op21 = extract32(insn, 29, 2);
op0 = extract32(insn, 21, 1);
bitsize = sf ? 64 : 32;
if (sf != n || op21 || op0 || imm >= bitsize) {
unallocated_encoding(s);
} else {
TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
tcg_rd = cpu_reg(s, rd);
if (unlikely(imm == 0)) {
/* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
* so an extract from bit 0 is a special case.
*/
if (sf) {
tcg_gen_mov_i64(tcg_ctx, tcg_rd, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, cpu_reg(s, rm));
}
} else if (rm == rn) { /* ROR */
tcg_rm = cpu_reg(s, rm);
if (sf) {
tcg_gen_rotri_i64(tcg_ctx, tcg_rd, tcg_rm, imm);
} else {
TCGv_i32 tmp = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extrl_i64_i32(tcg_ctx, tmp, tcg_rm);
tcg_gen_rotri_i32(tcg_ctx, tmp, tmp, imm);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
}
} else {
tcg_rm = read_cpu_reg(s, rm, sf);
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_shri_i64(tcg_ctx, tcg_rm, tcg_rm, imm);
tcg_gen_shli_i64(tcg_ctx, tcg_rn, tcg_rn, bitsize - imm);
tcg_gen_or_i64(tcg_ctx, tcg_rd, tcg_rm, tcg_rn);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
}
}
/* Data processing - immediate */
static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 23, 6)) {
case 0x20: case 0x21: /* PC-rel. addressing */
disas_pc_rel_adr(s, insn);
break;
case 0x22: case 0x23: /* Add/subtract (immediate) */
disas_add_sub_imm(s, insn);
break;
case 0x24: /* Logical (immediate) */
disas_logic_imm(s, insn);
break;
case 0x25: /* Move wide (immediate) */
disas_movw_imm(s, insn);
break;
case 0x26: /* Bitfield */
disas_bitfield(s, insn);
break;
case 0x27: /* Extract */
disas_extract(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* Shift a TCGv src by TCGv shift_amount, put result in dst.
* Note that it is the caller's responsibility to ensure that the
* shift amount is in range (ie 0..31 or 0..63) and provide the ARM
* mandated semantics for out of range shifts.
*/
static void shift_reg(TCGContext *tcg_ctx, TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, TCGv_i64 shift_amount)
{
switch (shift_type) {
case A64_SHIFT_TYPE_LSL:
tcg_gen_shl_i64(tcg_ctx, dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_LSR:
tcg_gen_shr_i64(tcg_ctx, dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_ASR:
if (!sf) {
tcg_gen_ext32s_i64(tcg_ctx, dst, src);
}
tcg_gen_sar_i64(tcg_ctx, dst, sf ? src : dst, shift_amount);
break;
case A64_SHIFT_TYPE_ROR:
if (sf) {
tcg_gen_rotr_i64(tcg_ctx, dst, src, shift_amount);
} else {
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32(tcg_ctx);
t1 = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extrl_i64_i32(tcg_ctx, t0, src);
tcg_gen_extrl_i64_i32(tcg_ctx, t1, shift_amount);
tcg_gen_rotr_i32(tcg_ctx, t0, t0, t1);
tcg_gen_extu_i32_i64(tcg_ctx, dst, t0);
tcg_temp_free_i32(tcg_ctx, t0);
tcg_temp_free_i32(tcg_ctx, t1);
}
break;
default:
assert(FALSE); /* all shift types should be handled */
break;
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_ctx, dst, dst);
}
}
/* Shift a TCGv src by immediate, put result in dst.
* The shift amount must be in range (this should always be true as the
* relevant instructions will UNDEF on bad shift immediates).
*/
static void shift_reg_imm(TCGContext *tcg_ctx, TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, unsigned int shift_i)
{
assert(shift_i < (sf ? 64 : 32));
if (shift_i == 0) {
tcg_gen_mov_i64(tcg_ctx, dst, src);
} else {
TCGv_i64 shift_const;
shift_const = tcg_const_i64(tcg_ctx, shift_i);
shift_reg(tcg_ctx, dst, src, sf, shift_type, shift_const);
tcg_temp_free_i64(tcg_ctx, shift_const);
}
}
/* Logical (shifted register)
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +----+-----+-----------+-------+---+------+--------+------+------+
* | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
* +----+-----+-----------+-------+---+------+--------+------+------+
*/
static void disas_logic_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
shift_type = extract32(insn, 22, 2);
invert = extract32(insn, 21, 1);
rm = extract32(insn, 16, 5);
shift_amount = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && (shift_amount & (1 << 5))) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
/* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
* register-register MOV and MVN, so it is worth special casing.
*/
tcg_rm = cpu_reg(s, rm);
if (invert) {
tcg_gen_not_i64(tcg_ctx, tcg_rd, tcg_rm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
} else {
if (sf) {
tcg_gen_mov_i64(tcg_ctx, tcg_rd, tcg_rm);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rm);
}
}
return;
}
tcg_rm = read_cpu_reg(s, rm, sf);
if (shift_amount) {
shift_reg_imm(tcg_ctx, tcg_rm, tcg_rm, sf, shift_type, shift_amount);
}
tcg_rn = cpu_reg(s, rn);
switch (opc | (invert << 2)) {
case 0: /* AND */
case 3: /* ANDS */
tcg_gen_and_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 1: /* ORR */
tcg_gen_or_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 2: /* EOR */
tcg_gen_xor_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 4: /* BIC */
case 7: /* BICS */
tcg_gen_andc_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 5: /* ORN */
tcg_gen_orc_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 6: /* EON */
tcg_gen_eqv_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
default:
assert(FALSE);
break;
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
if (opc == 3) {
gen_logic_CC(tcg_ctx, sf, tcg_rd);
}
}
/*
* Add/subtract (extended register)
*
* 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
* |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* opt: 00
* option: extension type (see DecodeRegExtend)
* imm3: optional shift to Rm
*
* Rd = Rn + LSL(extend(Rm), amount)
*/
static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm3 = extract32(insn, 10, 3);
int option = extract32(insn, 13, 3);
int rm = extract32(insn, 16, 5);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rm, tcg_rn; /* temps */
TCGv_i64 tcg_rd;
TCGv_i64 tcg_result;
if (imm3 > 4) {
unallocated_encoding(s);
return;
}
/* non-flag setting ops may use SP */
if (!setflags) {
tcg_rd = cpu_reg_sp(s, rd);
} else {
tcg_rd = cpu_reg(s, rd);
}
tcg_rn = read_cpu_reg_sp(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
ext_and_shift_reg(tcg_ctx, tcg_rm, tcg_rm, option, imm3);
tcg_result = tcg_temp_new_i64(tcg_ctx);
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_ctx, tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(s, sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(s, sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_ctx, tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_ctx, tcg_result);
}
/*
* Add/subtract (shifted register)
*
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+-----------+-----+--+-------+---------+------+------+
* |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+---------+------+------+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
* imm6: Shift amount to apply to Rm before the add/sub
*/
static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm6 = extract32(insn, 10, 6);
int rm = extract32(insn, 16, 5);
int shift_type = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn, tcg_rm;
TCGv_i64 tcg_result;
if ((shift_type == 3) || (!sf && (imm6 > 31))) {
unallocated_encoding(s);
return;
}
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
shift_reg_imm(tcg_ctx, tcg_rm, tcg_rm, sf, shift_type, imm6);
tcg_result = tcg_temp_new_i64(tcg_ctx);
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_ctx, tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(s, sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(s, sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_ctx, tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_ctx, tcg_result);
}
/* Data-processing (3 source)
*
* 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
* +--+------+-----------+------+------+----+------+------+------+
* |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
* +--+------+-----------+------+------+----+------+------+------+
*/
static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int ra = extract32(insn, 10, 5);
int rm = extract32(insn, 16, 5);
int op_id = (extract32(insn, 29, 3) << 4) |
(extract32(insn, 21, 3) << 1) |
extract32(insn, 15, 1);
bool sf = extract32(insn, 31, 1);
bool is_sub = extract32(op_id, 0, 1);
bool is_high = extract32(op_id, 2, 1);
bool is_signed = false;
TCGv_i64 tcg_op1;
TCGv_i64 tcg_op2;
TCGv_i64 tcg_tmp;
/* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
switch (op_id) {
case 0x42: /* SMADDL */
case 0x43: /* SMSUBL */
case 0x44: /* SMULH */
is_signed = true;
break;
case 0x0: /* MADD (32bit) */
case 0x1: /* MSUB (32bit) */
case 0x40: /* MADD (64bit) */
case 0x41: /* MSUB (64bit) */
case 0x4a: /* UMADDL */
case 0x4b: /* UMSUBL */
case 0x4c: /* UMULH */
break;
default:
unallocated_encoding(s);
return;
}
if (is_high) {
TCGv_i64 low_bits = tcg_temp_new_i64(tcg_ctx); /* low bits discarded */
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = cpu_reg(s, rn);
TCGv_i64 tcg_rm = cpu_reg(s, rm);
if (is_signed) {
tcg_gen_muls2_i64(tcg_ctx, low_bits, tcg_rd, tcg_rn, tcg_rm);
} else {
tcg_gen_mulu2_i64(tcg_ctx, low_bits, tcg_rd, tcg_rn, tcg_rm);
}
tcg_temp_free_i64(tcg_ctx, low_bits);
return;
}
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_tmp = tcg_temp_new_i64(tcg_ctx);
if (op_id < 0x42) {
tcg_gen_mov_i64(tcg_ctx, tcg_op1, cpu_reg(s, rn));
tcg_gen_mov_i64(tcg_ctx, tcg_op2, cpu_reg(s, rm));
} else {
if (is_signed) {
tcg_gen_ext32s_i64(tcg_ctx, tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_ctx, tcg_op2, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32u_i64(tcg_ctx, tcg_op2, cpu_reg(s, rm));
}
}
if (ra == 31 && !is_sub) {
/* Special-case MADD with rA == XZR; it is the standard MUL alias */
tcg_gen_mul_i64(tcg_ctx, cpu_reg(s, rd), tcg_op1, tcg_op2);
} else {
tcg_gen_mul_i64(tcg_ctx, tcg_tmp, tcg_op1, tcg_op2);
if (is_sub) {
tcg_gen_sub_i64(tcg_ctx, cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
} else {
tcg_gen_add_i64(tcg_ctx, cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
}
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, cpu_reg(s, rd), cpu_reg(s, rd));
}
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
/* Add/subtract (with carry)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+------------------------+------+---------+------+-----+
* |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
* +--+--+--+------------------------+------+---------+------+-----+
* [000000]
*/
static void disas_adc_sbc(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, op, setflags, rm, rn, rd;
TCGv_i64 tcg_y, tcg_rn, tcg_rd;
if (extract32(insn, 10, 6) != 0) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
setflags = extract32(insn, 29, 1);
rm = extract32(insn, 16, 5);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (op) {
tcg_y = new_tmp_a64(s);
tcg_gen_not_i64(tcg_ctx, tcg_y, cpu_reg(s, rm));
} else {
tcg_y = cpu_reg(s, rm);
}
if (setflags) {
gen_adc_CC(s, sf, tcg_rd, tcg_rn, tcg_y);
} else {
gen_adc(s, sf, tcg_rd, tcg_rn, tcg_y);
}
}
/* Conditional compare (immediate / register)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* [1] y [0] [0]
*/
static void disas_cc(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, op, y, cond, rn, nzcv, is_imm;
TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
DisasCompare c;
if (!extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
if (insn & (1 << 10 | 1 << 4)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
is_imm = extract32(insn, 11, 1);
y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
nzcv = extract32(insn, 0, 4);
/* Set T0 = !COND. */
tcg_t0 = tcg_temp_new_i32(tcg_ctx);
arm_test_cc(tcg_ctx, &c, cond);
tcg_gen_setcondi_i32(tcg_ctx, tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
arm_free_cc(tcg_ctx, &c);
/* Load the arguments for the new comparison. */
if (is_imm) {
tcg_y = new_tmp_a64(s);
tcg_gen_movi_i64(tcg_ctx, tcg_y, y);
} else {
tcg_y = cpu_reg(s, y);
}
tcg_rn = cpu_reg(s, rn);
/* Set the flags for the new comparison. */
tcg_tmp = tcg_temp_new_i64(tcg_ctx);
if (op) {
gen_sub_CC(s, sf, tcg_tmp, tcg_rn, tcg_y);
} else {
gen_add_CC(s, sf, tcg_tmp, tcg_rn, tcg_y);
}
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
/* If COND was false, force the flags to #nzcv. Compute two masks
* to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
* For tcg hosts that support ANDC, we can make do with just T1.
* In either case, allow the tcg optimizer to delete any unused mask.
*/
tcg_t1 = tcg_temp_new_i32(tcg_ctx);
tcg_t2 = tcg_temp_new_i32(tcg_ctx);
tcg_gen_neg_i32(tcg_ctx, tcg_t1, tcg_t0);
tcg_gen_subi_i32(tcg_ctx, tcg_t2, tcg_t0, 1);
if (nzcv & 8) { /* N */
tcg_gen_or_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_NF, tcg_t1);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_NF, tcg_t1);
} else {
tcg_gen_and_i32(tcg_ctx, tcg_ctx->cpu_NF, tcg_ctx->cpu_NF, tcg_t2);
}
}
if (nzcv & 4) { /* Z */
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_ZF, tcg_t1);
} else {
tcg_gen_and_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_ZF, tcg_t2);
}
} else {
tcg_gen_or_i32(tcg_ctx, tcg_ctx->cpu_ZF, tcg_ctx->cpu_ZF, tcg_t0);
}
if (nzcv & 2) { /* C */
tcg_gen_or_i32(tcg_ctx, tcg_ctx->cpu_CF, tcg_ctx->cpu_CF, tcg_t0);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_CF, tcg_ctx->cpu_CF, tcg_t1);
} else {
tcg_gen_and_i32(tcg_ctx, tcg_ctx->cpu_CF, tcg_ctx->cpu_CF, tcg_t2);
}
}
if (nzcv & 1) { /* V */
tcg_gen_or_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tcg_t1);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tcg_t1);
} else {
tcg_gen_and_i32(tcg_ctx, tcg_ctx->cpu_VF, tcg_ctx->cpu_VF, tcg_t2);
}
}
tcg_temp_free_i32(tcg_ctx, tcg_t0);
tcg_temp_free_i32(tcg_ctx, tcg_t1);
tcg_temp_free_i32(tcg_ctx, tcg_t2);
}
/* Conditional select
* 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
* +----+----+---+-----------------+------+------+-----+------+------+
* | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
* +----+----+---+-----------------+------+------+-----+------+------+
*/
static void disas_cond_select(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
TCGv_i64 tcg_rd, zero;
DisasCompare64 c;
if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
/* S == 1 or op2<1> == 1 */
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
else_inv = extract32(insn, 30, 1);
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
else_inc = extract32(insn, 10, 1);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
tcg_rd = cpu_reg(s, rd);
a64_test_cc(tcg_ctx, &c, cond);
zero = tcg_const_i64(tcg_ctx, 0);
if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
/* CSET & CSETM. */
tcg_gen_setcond_i64(tcg_ctx, tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
if (else_inv) {
tcg_gen_neg_i64(tcg_ctx, tcg_rd, tcg_rd);
}
} else {
TCGv_i64 t_true = cpu_reg(s, rn);
TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
if (else_inv && else_inc) {
tcg_gen_neg_i64(tcg_ctx, t_false, t_false);
} else if (else_inv) {
tcg_gen_not_i64(tcg_ctx, t_false, t_false);
} else if (else_inc) {
tcg_gen_addi_i64(tcg_ctx, t_false, t_false, 1);
}
tcg_gen_movcond_i64(tcg_ctx, c.cond, tcg_rd, c.value, zero, t_true, t_false);
}
tcg_temp_free_i64(tcg_ctx, zero);
a64_free_cc(tcg_ctx, &c);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
static void handle_clz(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
tcg_gen_clzi_i64(tcg_ctx, tcg_rd, tcg_rn, 64);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp32, tcg_rn);
tcg_gen_clzi_i32(tcg_ctx, tcg_tmp32, tcg_tmp32, 32);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_ctx, tcg_tmp32);
}
}
static void handle_cls(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
tcg_gen_clrsb_i64(tcg_ctx, tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp32, tcg_rn);
tcg_gen_clrsb_i32(tcg_ctx, tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_ctx, tcg_tmp32);
}
}
static void handle_rbit(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
gen_helper_rbit64(tcg_ctx, tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extrl_i64_i32(tcg_ctx, tcg_tmp32, tcg_rn);
gen_helper_rbit(tcg_ctx, tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tcg_tmp32);
tcg_temp_free_i32(tcg_ctx, tcg_tmp32);
}
}
/* REV with sf==1, opcode==3 ("REV64") */
static void handle_rev64(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (!sf) {
unallocated_encoding(s);
return;
}
tcg_gen_bswap64_i64(tcg_ctx, cpu_reg(s, rd), cpu_reg(s, rn));
}
/* REV with sf==0, opcode==2
* REV32 (sf==1, opcode==2)
*/
static void handle_rev32(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd = cpu_reg(s, rd);
if (sf) {
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
/* bswap32_i64 requires zero high word */
tcg_gen_ext32u_i64(tcg_ctx, tcg_tmp, tcg_rn);
tcg_gen_bswap32_i64(tcg_ctx, tcg_rd, tcg_tmp);
tcg_gen_shri_i64(tcg_ctx, tcg_tmp, tcg_rn, 32);
tcg_gen_bswap32_i64(tcg_ctx, tcg_tmp, tcg_tmp);
tcg_gen_concat32_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_tmp);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, cpu_reg(s, rn));
tcg_gen_bswap32_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
/* REV16 (opcode==1) */
static void handle_rev16(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
TCGv_i64 mask = tcg_const_i64(tcg_ctx, sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
tcg_gen_shri_i64(tcg_ctx, tcg_tmp, tcg_rn, 8);
tcg_gen_and_i64(tcg_ctx, tcg_rd, tcg_rn, mask);
tcg_gen_and_i64(tcg_ctx, tcg_tmp, tcg_tmp, mask);
tcg_gen_shli_i64(tcg_ctx, tcg_rd, tcg_rd, 8);
tcg_gen_or_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_tmp);
tcg_temp_free_i64(tcg_ctx, mask);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
/* Data-processing (1 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+---------+--------+------+------+
* | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
* +----+---+---+-----------------+---------+--------+------+------+
*/
static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
{
unsigned int sf, opcode, rn, rd;
if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
opcode = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
switch (opcode) {
case 0: /* RBIT */
handle_rbit(s, sf, rn, rd);
break;
case 1: /* REV16 */
handle_rev16(s, sf, rn, rd);
break;
case 2: /* REV32 */
handle_rev32(s, sf, rn, rd);
break;
case 3: /* REV64 */
handle_rev64(s, sf, rn, rd);
break;
case 4: /* CLZ */
handle_clz(s, sf, rn, rd);
break;
case 5: /* CLS */
handle_cls(s, sf, rn, rd);
break;
}
}
static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_n, tcg_m, tcg_rd;
tcg_rd = cpu_reg(s, rd);
if (!sf && is_signed) {
tcg_n = new_tmp_a64(s);
tcg_m = new_tmp_a64(s);
tcg_gen_ext32s_i64(tcg_ctx, tcg_n, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_ctx, tcg_m, cpu_reg(s, rm));
} else {
tcg_n = read_cpu_reg(s, rn, sf);
tcg_m = read_cpu_reg(s, rm, sf);
}
if (is_signed) {
gen_helper_sdiv64(tcg_ctx, tcg_rd, tcg_n, tcg_m);
} else {
gen_helper_udiv64(tcg_ctx, tcg_rd, tcg_n, tcg_m);
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
/* LSLV, LSRV, ASRV, RORV */
static void handle_shift_reg(DisasContext *s,
enum a64_shift_type shift_type, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_shift = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_andi_i64(tcg_ctx, tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
shift_reg(tcg_ctx, tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
tcg_temp_free_i64(tcg_ctx, tcg_shift);
}
/* CRC32[BHWX], CRC32C[BHWX] */
static void handle_crc32(DisasContext *s,
unsigned int sf, unsigned int sz, bool crc32c,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_acc, tcg_val;
TCGv_i32 tcg_bytes;
if (!arm_dc_feature(s, ARM_FEATURE_CRC)
|| (sf == 1 && sz != 3)
|| (sf == 0 && sz == 3)) {
unallocated_encoding(s);
return;
}
if (sz == 3) {
tcg_val = cpu_reg(s, rm);
} else {
uint64_t mask;
switch (sz) {
case 0:
mask = 0xFF;
break;
case 1:
mask = 0xFFFF;
break;
case 2:
mask = 0xFFFFFFFF;
break;
default:
g_assert_not_reached();
}
tcg_val = new_tmp_a64(s);
tcg_gen_andi_i64(tcg_ctx, tcg_val, cpu_reg(s, rm), mask);
}
tcg_acc = cpu_reg(s, rn);
tcg_bytes = tcg_const_i32(tcg_ctx, 1 << sz);
if (crc32c) {
gen_helper_crc32c_64(tcg_ctx, cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
} else {
gen_helper_crc32_64(tcg_ctx, cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
}
tcg_temp_free_i32(tcg_ctx, tcg_bytes);
}
/* Data-processing (2 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+------+--------+------+------+
* | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
* +----+---+---+-----------------+------+--------+------+------+
*/
static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
{
unsigned int sf, rm, opcode, rn, rd;
sf = extract32(insn, 31, 1);
rm = extract32(insn, 16, 5);
opcode = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 2: /* UDIV */
handle_div(s, false, sf, rm, rn, rd);
break;
case 3: /* SDIV */
handle_div(s, true, sf, rm, rn, rd);
break;
case 8: /* LSLV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
break;
case 9: /* LSRV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
break;
case 10: /* ASRV */
handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
break;
case 11: /* RORV */
handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
break;
case 16:
case 17:
case 18:
case 19:
case 20:
case 21:
case 22:
case 23: /* CRC32 */
{
int sz = extract32(opcode, 0, 2);
bool crc32c = extract32(opcode, 2, 1);
handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
break;
}
default:
unallocated_encoding(s);
break;
}
}
/* Data processing - register */
static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 5)) {
case 0x0a: /* Logical (shifted register) */
disas_logic_reg(s, insn);
break;
case 0x0b: /* Add/subtract */
if (insn & (1 << 21)) { /* (extended register) */
disas_add_sub_ext_reg(s, insn);
} else {
disas_add_sub_reg(s, insn);
}
break;
case 0x1b: /* Data-processing (3 source) */
disas_data_proc_3src(s, insn);
break;
case 0x1a:
switch (extract32(insn, 21, 3)) {
case 0x0: /* Add/subtract (with carry) */
disas_adc_sbc(s, insn);
break;
case 0x2: /* Conditional compare */
disas_cc(s, insn); /* both imm and reg forms */
break;
case 0x4: /* Conditional select */
disas_cond_select(s, insn);
break;
case 0x6: /* Data-processing */
if (insn & (1 << 30)) { /* (1 source) */
disas_data_proc_1src(s, insn);
} else { /* (2 source) */
disas_data_proc_2src(s, insn);
}
break;
default:
unallocated_encoding(s);
break;
}
break;
default:
unallocated_encoding(s);
break;
}
}
static void handle_fp_compare(DisasContext *s, bool is_double,
unsigned int rn, unsigned int rm,
bool cmp_with_zero, bool signal_all_nans)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_flags = tcg_temp_new_i64(tcg_ctx);
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, false);
if (is_double) {
TCGv_i64 tcg_vn, tcg_vm;
tcg_vn = read_fp_dreg(s, rn);
if (cmp_with_zero) {
tcg_vm = tcg_const_i64(tcg_ctx, 0);
} else {
tcg_vm = read_fp_dreg(s, rm);
}
if (signal_all_nans) {
gen_helper_vfp_cmped_a64(tcg_ctx, tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmpd_a64(tcg_ctx, tcg_flags, tcg_vn, tcg_vm, fpst);
}
tcg_temp_free_i64(tcg_ctx, tcg_vn);
tcg_temp_free_i64(tcg_ctx, tcg_vm);
} else {
TCGv_i32 tcg_vn, tcg_vm;
tcg_vn = read_fp_sreg(s, rn);
if (cmp_with_zero) {
tcg_vm = tcg_const_i32(tcg_ctx, 0);
} else {
tcg_vm = read_fp_sreg(s, rm);
}
if (signal_all_nans) {
gen_helper_vfp_cmpes_a64(tcg_ctx, tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmps_a64(tcg_ctx, tcg_flags, tcg_vn, tcg_vm, fpst);
}
tcg_temp_free_i32(tcg_ctx, tcg_vn);
tcg_temp_free_i32(tcg_ctx, tcg_vm);
}
tcg_temp_free_ptr(tcg_ctx, fpst);
gen_set_nzcv(tcg_ctx, tcg_flags);
tcg_temp_free_i64(tcg_ctx, tcg_flags);
}
/* Floating point compare
* 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
*/
static void disas_fp_compare(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, op, rn, opc, op2r;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
op = extract32(insn, 14, 2);
rn = extract32(insn, 5, 5);
opc = extract32(insn, 3, 2);
op2r = extract32(insn, 0, 3);
if (mos || op || op2r || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
}
/* Floating point conditional compare
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
*/
static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int mos, type, rm, cond, rn, op, nzcv;
TCGv_i64 tcg_flags;
TCGLabel *label_continue = NULL;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
op = extract32(insn, 4, 1);
nzcv = extract32(insn, 0, 4);
if (mos || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (cond < 0x0e) { /* not always */
TCGLabel *label_match = gen_new_label(tcg_ctx);
label_continue = gen_new_label(tcg_ctx);
arm_gen_test_cc(tcg_ctx, cond, label_match);
/* nomatch: */
tcg_flags = tcg_const_i64(tcg_ctx, nzcv << 28);
gen_set_nzcv(tcg_ctx, tcg_flags);
tcg_temp_free_i64(tcg_ctx, tcg_flags);
tcg_gen_br(tcg_ctx, label_continue);
gen_set_label(tcg_ctx, label_match);
}
handle_fp_compare(s, type, rn, rm, false, op);
if (cond < 0x0e) {
gen_set_label(tcg_ctx, label_continue);
}
}
/* Floating point conditional select
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+------+-----+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+------+-----+------+------+
*/
static void disas_fp_csel(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
unsigned int mos, type, rm, cond, rn, rd;
TCGv_i64 t_true, t_false, t_zero;
DisasCompare64 c;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (mos || type > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* Zero extend sreg inputs to 64 bits now. */
t_true = tcg_temp_new_i64(tcg_ctx);
t_false = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
a64_test_cc(tcg_ctx, &c, cond);
t_zero = tcg_const_i64(tcg_ctx, 0);
tcg_gen_movcond_i64(tcg_ctx, c.cond, t_true, c.value, t_zero, t_true, t_false);
tcg_temp_free_i64(tcg_ctx, t_zero);
tcg_temp_free_i64(tcg_ctx, t_false);
a64_free_cc(tcg_ctx, &c);
/* Note that sregs write back zeros to the high bits,
and we've already done the zero-extension. */
write_fp_dreg(s, rd, t_true);
tcg_temp_free_i64(tcg_ctx, t_true);
}
/* Floating-point data-processing (1 source) - half precision */
static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst = NULL;
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i32(tcg_ctx, tcg_res, tcg_op);
break;
case 0x1: /* FABS */
tcg_gen_andi_i32(tcg_ctx, tcg_res, tcg_op, 0x7fff);
break;
case 0x2: /* FNEG */
tcg_gen_xori_i32(tcg_ctx, tcg_res, tcg_op, 0x8000);
break;
case 0x3: /* FSQRT */
gen_helper_sqrt_f16(tcg_ctx, tcg_res, tcg_op, tcg_ctx->cpu_env);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(opcode & 7));
fpst = get_fpstatus_ptr(tcg_ctx, true);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
gen_helper_advsimd_rinth(tcg_ctx, tcg_res, tcg_op, fpst);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
break;
}
case 0xe: /* FRINTX */
fpst = get_fpstatus_ptr(tcg_ctx, true);
gen_helper_advsimd_rinth_exact(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
fpst = get_fpstatus_ptr(tcg_ctx, true);
gen_helper_advsimd_rinth(tcg_ctx, tcg_res, tcg_op, fpst);
break;
default:
abort();
}
write_fp_sreg(s, rd, tcg_res);
if (fpst) {
tcg_temp_free_ptr(tcg_ctx, fpst);
}
tcg_temp_free_i32(tcg_ctx, tcg_op);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
/* C3.6.25 Floating-point data-processing (1 source) - single precision */
static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i32 tcg_op;
TCGv_i32 tcg_res;
fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op = read_fp_sreg(s, rn);
tcg_res = tcg_temp_new_i32(tcg_ctx);
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i32(tcg_ctx, tcg_res, tcg_op);
break;
case 0x1: /* FABS */
gen_helper_vfp_abss(tcg_ctx, tcg_res, tcg_op);
break;
case 0x2: /* FNEG */
gen_helper_vfp_negs(tcg_ctx, tcg_res, tcg_op);
break;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrts(tcg_ctx, tcg_res, tcg_op, tcg_ctx->cpu_env);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(opcode & 7));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, fpst);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
break;
}
case 0xe: /* FRINTX */
gen_helper_rints_exact(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, fpst);
break;
default:
abort();
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_op);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
/* Floating-point data-processing (1 source) - double precision */
static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
TCGv_i64 tcg_op;
TCGv_i64 tcg_res;
switch (opcode) {
case 0x0: /* FMOV */
gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
return;
}
fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op = read_fp_dreg(s, rn);
tcg_res = tcg_temp_new_i64(tcg_ctx);
switch (opcode) {
case 0x1: /* FABS */
gen_helper_vfp_absd(tcg_ctx, tcg_res, tcg_op);
break;
case 0x2: /* FNEG */
gen_helper_vfp_negd(tcg_ctx, tcg_res, tcg_op);
break;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_ctx, tcg_res, tcg_op, tcg_ctx->cpu_env);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(opcode & 7));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
gen_helper_rintd(tcg_ctx, tcg_res, tcg_op, fpst);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
break;
}
case 0xe: /* FRINTX */
gen_helper_rintd_exact(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
gen_helper_rintd(tcg_ctx, tcg_res, tcg_op, fpst);
break;
default:
abort();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tcg_op);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
static void handle_fp_fcvt(DisasContext *s, int opcode,
int rd, int rn, int dtype, int ntype)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
switch (ntype) {
case 0x0:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
if (dtype == 1) {
/* Single to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_fcvtds(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
} else {
/* Single to half */
TCGv_i32 tcg_rd = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_fcvt_f32_to_f16(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rd);
}
tcg_temp_free_i32(tcg_ctx, tcg_rn);
break;
}
case 0x1:
{
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i32 tcg_rd = tcg_temp_new_i32(tcg_ctx);
if (dtype == 0) {
/* Double to single */
gen_helper_vfp_fcvtsd(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
} else {
/* Double to half */
gen_helper_vfp_fcvt_f64_to_f16(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
}
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
break;
}
case 0x3:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
tcg_gen_ext16u_i32(tcg_ctx, tcg_rn, tcg_rn);
if (dtype == 0) {
/* Half to single */
TCGv_i32 tcg_rd = tcg_temp_new_i32(tcg_ctx);
gen_helper_vfp_fcvt_f16_to_f32(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rd);
} else {
/* Half to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64(tcg_ctx);
gen_helper_vfp_fcvt_f16_to_f64(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
}
tcg_temp_free_i32(tcg_ctx, tcg_rn);
break;
}
default:
abort();
}
}
/* Floating point data-processing (1 source)
* 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
* +---+---+---+-----------+------+---+--------+-----------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+--------+-----------+------+------+
*/
static void disas_fp_1src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int opcode = extract32(insn, 15, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
switch (opcode) {
case 0x4: case 0x5: case 0x7:
{
/* FCVT between half, single and double precision */
int dtype = extract32(opcode, 0, 2);
if (type == 2 || dtype == type) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
break;
}
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x8: case 0x9: case 0xa: case 0xb: case 0xc:
case 0xe: case 0xf:
/* 32-to-32 and 64-to-64 ops */
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_single(s, opcode, rd, rn);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_double(s, opcode, rd, rn);
break;
case 3:
if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_half(s, opcode, rd, rn);
break;
default:
unallocated_encoding(s);
}
break;
default:
unallocated_encoding(s);
break;
}
}
/* Floating-point data-processing (2 source) - single precision */
static void handle_fp_2src_single(DisasContext *s, int opcode,
int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_op1;
TCGv_i32 tcg_op2;
TCGv_i32 tcg_res;
TCGv_ptr fpst;
tcg_res = tcg_temp_new_i32(tcg_ctx);
fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op1 = read_fp_sreg(s, rn);
tcg_op2 = read_fp_sreg(s, rm);
switch (opcode) {
case 0x0: /* FMUL */
gen_helper_vfp_muls(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1: /* FDIV */
gen_helper_vfp_divs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2: /* FADD */
gen_helper_vfp_adds(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3: /* FSUB */
gen_helper_vfp_subs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x4: /* FMAX */
gen_helper_vfp_maxs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5: /* FMIN */
gen_helper_vfp_mins(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x6: /* FMAXNM */
gen_helper_vfp_maxnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7: /* FMINNM */
gen_helper_vfp_minnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x8: /* FNMUL */
gen_helper_vfp_muls(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_negs(tcg_ctx, tcg_res, tcg_res);
break;
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
/* Floating-point data-processing (2 source) - double precision */
static void handle_fp_2src_double(DisasContext *s, int opcode,
int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_op1;
TCGv_i64 tcg_op2;
TCGv_i64 tcg_res;
TCGv_ptr fpst;
tcg_res = tcg_temp_new_i64(tcg_ctx);
fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op1 = read_fp_dreg(s, rn);
tcg_op2 = read_fp_dreg(s, rm);
switch (opcode) {
case 0x0: /* FMUL */
gen_helper_vfp_muld(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1: /* FDIV */
gen_helper_vfp_divd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2: /* FADD */
gen_helper_vfp_addd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3: /* FSUB */
gen_helper_vfp_subd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x4: /* FMAX */
gen_helper_vfp_maxd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5: /* FMIN */
gen_helper_vfp_mind(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x6: /* FMAXNM */
gen_helper_vfp_maxnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7: /* FMINNM */
gen_helper_vfp_minnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x8: /* FNMUL */
gen_helper_vfp_muld(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_negd(tcg_ctx, tcg_res, tcg_res);
break;
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
/* Floating point data-processing (2 source)
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_fp_2src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int opcode = extract32(insn, 12, 4);
if (opcode > 8) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_2src_single(s, opcode, rd, rn, rm);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_2src_double(s, opcode, rd, rn, rm);
break;
default:
unallocated_encoding(s);
}
}
/* Floating-point data-processing (3 source) - single precision */
static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
int rd, int rn, int rm, int ra)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op1 = read_fp_sreg(s, rn);
tcg_op2 = read_fp_sreg(s, rm);
tcg_op3 = read_fp_sreg(s, ra);
/* These are fused multiply-add, and must be done as one
* floating point operation with no rounding between the
* multiplication and addition steps.
* NB that doing the negations here as separate steps is
* correct : an input NaN should come out with its sign bit
* flipped if it is a negated-input.
*/
if (o1 == true) {
gen_helper_vfp_negs(tcg_ctx, tcg_op3, tcg_op3);
}
if (o0 != o1) {
gen_helper_vfp_negs(tcg_ctx, tcg_op1, tcg_op1);
}
gen_helper_vfp_muladds(tcg_ctx, tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_i32(tcg_ctx, tcg_op3);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
/* Floating-point data-processing (3 source) - double precision */
static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
int rd, int rn, int rm, int ra)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, false);
tcg_op1 = read_fp_dreg(s, rn);
tcg_op2 = read_fp_dreg(s, rm);
tcg_op3 = read_fp_dreg(s, ra);
/* These are fused multiply-add, and must be done as one
* floating point operation with no rounding between the
* multiplication and addition steps.
* NB that doing the negations here as separate steps is
* correct : an input NaN should come out with its sign bit
* flipped if it is a negated-input.
*/
if (o1 == true) {
gen_helper_vfp_negd(tcg_ctx, tcg_op3, tcg_op3);
}
if (o0 != o1) {
gen_helper_vfp_negd(tcg_ctx, tcg_op1, tcg_op1);
}
gen_helper_vfp_muladdd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_ptr(tcg_ctx, fpst);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_op3);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
/* Floating point data-processing (3 source)
* 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
* +---+---+---+-----------+------+----+------+----+------+------+------+
* | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
* +---+---+---+-----------+------+----+------+----+------+------+------+
*/
static void disas_fp_3src(DisasContext *s, uint32_t insn)
{
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int ra = extract32(insn, 10, 5);
int rm = extract32(insn, 16, 5);
bool o0 = extract32(insn, 15, 1);
bool o1 = extract32(insn, 21, 1);
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
break;
default:
unallocated_encoding(s);
}
}
/* The imm8 encodes the sign bit, enough bits to represent an exponent in
* the range 01....1xx to 10....0xx, and the most significant 4 bits of
* the mantissa; see VFPExpandImm() in the v8 ARM ARM.
*/
static uint64_t vfp_expand_imm(int size, uint8_t imm8)
{
uint64_t imm;
switch (size) {
case MO_64:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
extract32(imm8, 0, 6);
imm <<= 48;
break;
case MO_32:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
(extract32(imm8, 0, 6) << 3);
imm <<= 16;
break;
case MO_16:
imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
(extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
(extract32(imm8, 0, 6) << 6);
break;
default:
g_assert_not_reached();
}
return imm;
}
/* Floating point immediate
* 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
* +---+---+---+-----------+------+---+------------+-------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
* +---+---+---+-----------+------+---+------------+-------+------+------+
*/
static void disas_fp_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int imm8 = extract32(insn, 13, 8);
int is_double = extract32(insn, 22, 2);
uint64_t imm;
TCGv_i64 tcg_res;
if (is_double > 1) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
imm = vfp_expand_imm(MO_32 + is_double, imm8);
tcg_res = tcg_const_i64(tcg_ctx, imm);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
/* Handle floating point <=> fixed point conversions. Note that we can
* also deal with fp <=> integer conversions as a special case (scale == 64)
* OPTME: consider handling that special case specially or at least skipping
* the call to scalbn in the helpers for zero shifts.
*/
static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
bool itof, int rmode, int scale, int sf, int type)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_signed = !(opcode & 1);
bool is_double = type;
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_shift;
tcg_fpstatus = get_fpstatus_ptr(tcg_ctx, false);
tcg_shift = tcg_const_i32(tcg_ctx, 64 - scale);
if (itof) {
TCGv_i64 tcg_int = cpu_reg(s, rn);
if (!sf) {
TCGv_i64 tcg_extend = new_tmp_a64(s);
if (is_signed) {
tcg_gen_ext32s_i64(tcg_ctx, tcg_extend, tcg_int);
} else {
tcg_gen_ext32u_i64(tcg_ctx, tcg_extend, tcg_int);
}
tcg_int = tcg_extend;
}
if (is_double) {
TCGv_i64 tcg_double = tcg_temp_new_i64(tcg_ctx);
if (is_signed) {
gen_helper_vfp_sqtod(tcg_ctx, tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtod(tcg_ctx, tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_dreg(s, rd, tcg_double);
tcg_temp_free_i64(tcg_ctx, tcg_double);
} else {
TCGv_i32 tcg_single = tcg_temp_new_i32(tcg_ctx);
if (is_signed) {
gen_helper_vfp_sqtos(tcg_ctx, tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtos(tcg_ctx, tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_sreg(s, rd, tcg_single);
tcg_temp_free_i32(tcg_ctx, tcg_single);
}
} else {
TCGv_i64 tcg_int = cpu_reg(s, rd);
TCGv_i32 tcg_rmode;
if (extract32(opcode, 2, 1)) {
/* There are too many rounding modes to all fit into rmode,
* so FCVTA[US] is a special case.
*/
rmode = FPROUNDING_TIEAWAY;
}
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
if (is_double) {
TCGv_i64 tcg_double = read_fp_dreg(s, rn);
if (is_signed) {
if (!sf) {
gen_helper_vfp_tosld(tcg_ctx, tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_ctx, tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
} else {
if (!sf) {
gen_helper_vfp_tould(tcg_ctx, tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqd(tcg_ctx, tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
}
tcg_temp_free_i64(tcg_ctx, tcg_double);
} else {
TCGv_i32 tcg_single = read_fp_sreg(s, rn);
if (sf) {
if (is_signed) {
gen_helper_vfp_tosqs(tcg_ctx, tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqs(tcg_ctx, tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
}
} else {
TCGv_i32 tcg_dest = tcg_temp_new_i32(tcg_ctx);
if (is_signed) {
gen_helper_vfp_tosls(tcg_ctx, tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touls(tcg_ctx, tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
}
tcg_gen_extu_i32_i64(tcg_ctx, tcg_int, tcg_dest);
tcg_temp_free_i32(tcg_ctx, tcg_dest);
}
tcg_temp_free_i32(tcg_ctx, tcg_single);
}
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
if (!sf) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_int, tcg_int);
}
}
tcg_temp_free_ptr(tcg_ctx, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
}
/* Floating point <-> fixed point conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
* | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
*/
static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int scale = extract32(insn, 10, 6);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
bool itof;
if (sbit || (type > 1)
|| (!sf && scale < 32)) {
unallocated_encoding(s);
return;
}
switch ((rmode << 3) | opcode) {
case 0x2: /* SCVTF */
case 0x3: /* UCVTF */
itof = true;
break;
case 0x18: /* FCVTZS */
case 0x19: /* FCVTZU */
itof = false;
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
}
static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* FMOV: gpr to or from float, double, or top half of quad fp reg,
* without conversion.
*/
if (itof) {
TCGv_i64 tcg_rn = cpu_reg(s, rn);
switch (type) {
case 0:
{
/* 32 bit */
TCGv_i64 tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_ext32u_i64(tcg_ctx, tmp, tcg_rn);
tcg_gen_st_i64(tcg_ctx, tmp, tcg_ctx->cpu_env, fp_reg_offset(s, rd, MO_64));
tcg_gen_movi_i64(tcg_ctx, tmp, 0);
tcg_gen_st_i64(tcg_ctx, tmp, tcg_ctx->cpu_env, fp_reg_hi_offset(s, rd));
tcg_temp_free_i64(tcg_ctx, tmp);
break;
}
case 1:
{
/* 64 bit */
TCGv_i64 tmp = tcg_const_i64(tcg_ctx, 0);
tcg_gen_st_i64(tcg_ctx, tcg_rn, tcg_ctx->cpu_env, fp_reg_offset(s, rd, MO_64));
tcg_gen_st_i64(tcg_ctx, tmp, tcg_ctx->cpu_env, fp_reg_hi_offset(s, rd));
tcg_temp_free_i64(tcg_ctx, tmp);
break;
}
case 2:
/* 64 bit to top half. */
tcg_gen_st_i64(tcg_ctx, tcg_rn, tcg_ctx->cpu_env, fp_reg_hi_offset(s, rd));
break;
}
} else {
TCGv_i64 tcg_rd = cpu_reg(s, rd);
switch (type) {
case 0:
/* 32 bit */
tcg_gen_ld32u_i64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, fp_reg_offset(s, rn, MO_32));
break;
case 1:
/* 64 bit */
tcg_gen_ld_i64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, fp_reg_offset(s, rn, MO_64));
break;
case 2:
/* 64 bits from top half */
tcg_gen_ld_i64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, fp_reg_hi_offset(s, rn));
break;
}
}
}
/* Floating point <-> integer conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
* | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
*/
static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
if (sbit) {
unallocated_encoding(s);
return;
}
if (opcode > 5) {
/* FMOV */
bool itof = opcode & 1;
if (rmode >= 2) {
unallocated_encoding(s);
return;
}
switch (sf << 3 | type << 1 | rmode) {
case 0x0: /* 32 bit */
case 0xa: /* 64 bit */
case 0xd: /* 64 bit to top half of quad */
break;
default:
/* all other sf/type/rmode combinations are invalid */
unallocated_encoding(s);
break;
}
if (!fp_access_check(s)) {
return;
}
handle_fmov(s, rd, rn, type, itof);
} else {
/* actual FP conversions */
bool itof = extract32(opcode, 1, 1);
if (type > 1 || (rmode != 0 && opcode > 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
}
}
/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
* 31 30 29 28 25 24 0
* +---+---+---+---------+-----------------------------+
* | | 0 | | 1 1 1 1 | |
* +---+---+---+---------+-----------------------------+
*/
static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 24, 1)) {
/* Floating point data-processing (3 source) */
disas_fp_3src(s, insn);
} else if (extract32(insn, 21, 1) == 0) {
/* Floating point to fixed point conversions */
disas_fp_fixed_conv(s, insn);
} else {
switch (extract32(insn, 10, 2)) {
case 1:
/* Floating point conditional compare */
disas_fp_ccomp(s, insn);
break;
case 2:
/* Floating point data-processing (2 source) */
disas_fp_2src(s, insn);
break;
case 3:
/* Floating point conditional select */
disas_fp_csel(s, insn);
break;
case 0:
switch (ctz32(extract32(insn, 12, 4))) {
case 0: /* [15:12] == xxx1 */
/* Floating point immediate */
disas_fp_imm(s, insn);
break;
case 1: /* [15:12] == xx10 */
/* Floating point compare */
disas_fp_compare(s, insn);
break;
case 2: /* [15:12] == x100 */
/* Floating point data-processing (1 source) */
disas_fp_1src(s, insn);
break;
case 3: /* [15:12] == 1000 */
unallocated_encoding(s);
break;
default: /* [15:12] == 0000 */
/* Floating point <-> integer conversions */
disas_fp_int_conv(s, insn);
break;
}
break;
}
}
}
static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
int pos)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Extract 64 bits from the middle of two concatenated 64 bit
* vector register slices left:right. The extracted bits start
* at 'pos' bits into the right (least significant) side.
* We return the result in tcg_right, and guarantee not to
* trash tcg_left.
*/
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
assert(pos > 0 && pos < 64);
tcg_gen_shri_i64(tcg_ctx, tcg_right, tcg_right, pos);
tcg_gen_shli_i64(tcg_ctx, tcg_tmp, tcg_left, 64 - pos);
tcg_gen_or_i64(tcg_ctx, tcg_right, tcg_right, tcg_tmp);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
/* EXT
* 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+------+---+------+------+
* | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+------+---+------+------+
*/
static void disas_simd_ext(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int is_q = extract32(insn, 30, 1);
int op2 = extract32(insn, 22, 2);
int imm4 = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pos = imm4 << 3;
TCGv_i64 tcg_resl, tcg_resh;
if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_resh = tcg_temp_new_i64(tcg_ctx);
tcg_resl = tcg_temp_new_i64(tcg_ctx);
/* Vd gets bits starting at pos bits into Vm:Vn. This is
* either extracting 128 bits from a 128:128 concatenation, or
* extracting 64 bits from a 64:64 concatenation.
*/
if (!is_q) {
read_vec_element(s, tcg_resl, rn, 0, MO_64);
if (pos != 0) {
read_vec_element(s, tcg_resh, rm, 0, MO_64);
do_ext64(s, tcg_resh, tcg_resl, pos);
}
tcg_gen_movi_i64(tcg_ctx, tcg_resh, 0);
} else {
TCGv_i64 tcg_hh;
typedef struct {
int reg;
int elt;
} EltPosns;
EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
EltPosns *elt = eltposns;
if (pos >= 64) {
elt++;
pos -= 64;
}
read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
elt++;
read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
elt++;
if (pos != 0) {
do_ext64(s, tcg_resh, tcg_resl, pos);
tcg_hh = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
do_ext64(s, tcg_hh, tcg_resh, pos);
tcg_temp_free_i64(tcg_ctx, tcg_hh);
}
}
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resh);
}
/* TBL/TBX
* 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
* | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
*/
static void disas_simd_tb(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op2 = extract32(insn, 22, 2);
int is_q = extract32(insn, 30, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int is_tblx = extract32(insn, 12, 1);
int len = extract32(insn, 13, 2);
TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
TCGv_i32 tcg_regno, tcg_numregs;
if (op2 != 0) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* This does a table lookup: for every byte element in the input
* we index into a table formed from up to four vector registers,
* and then the output is the result of the lookups. Our helper
* function does the lookup operation for a single 64 bit part of
* the input.
*/
tcg_resl = tcg_temp_new_i64(tcg_ctx);
tcg_resh = tcg_temp_new_i64(tcg_ctx);
if (is_tblx) {
read_vec_element(s, tcg_resl, rd, 0, MO_64);
} else {
tcg_gen_movi_i64(tcg_ctx, tcg_resl, 0);
}
if (is_tblx && is_q) {
read_vec_element(s, tcg_resh, rd, 1, MO_64);
} else {
tcg_gen_movi_i64(tcg_ctx, tcg_resh, 0);
}
tcg_idx = tcg_temp_new_i64(tcg_ctx);
tcg_regno = tcg_const_i32(tcg_ctx, rn);
tcg_numregs = tcg_const_i32(tcg_ctx, len + 1);
read_vec_element(s, tcg_idx, rm, 0, MO_64);
gen_helper_simd_tbl(tcg_ctx, tcg_resl, tcg_ctx->cpu_env, tcg_resl, tcg_idx,
tcg_regno, tcg_numregs);
if (is_q) {
read_vec_element(s, tcg_idx, rm, 1, MO_64);
gen_helper_simd_tbl(tcg_ctx, tcg_resh, tcg_ctx->cpu_env, tcg_resh, tcg_idx,
tcg_regno, tcg_numregs);
}
tcg_temp_free_i64(tcg_ctx, tcg_idx);
tcg_temp_free_i32(tcg_ctx, tcg_regno);
tcg_temp_free_i32(tcg_ctx, tcg_numregs);
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resh);
}
/* ZIP/UZP/TRN
* 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
* +---+---+-------------+------+---+------+---+------------------+------+
* | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
* +---+---+-------------+------+---+------+---+------------------+------+
*/
static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
/* opc field bits [1:0] indicate ZIP/UZP/TRN;
* bit 2 indicates 1 vs 2 variant of the insn.
*/
int opcode = extract32(insn, 12, 2);
bool part = extract32(insn, 14, 1);
bool is_q = extract32(insn, 30, 1);
int esize = 8 << size;
int i, ofs;
int datasize = is_q ? 128 : 64;
int elements = datasize / esize;
TCGv_i64 tcg_res, tcg_resl, tcg_resh;
if (opcode == 0 || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_resl = tcg_const_i64(tcg_ctx, 0);
tcg_resh = tcg_const_i64(tcg_ctx, 0);
tcg_res = tcg_temp_new_i64(tcg_ctx);
for (i = 0; i < elements; i++) {
switch (opcode) {
case 1: /* UZP1/2 */
{
int midpoint = elements / 2;
if (i < midpoint) {
read_vec_element(s, tcg_res, rn, 2 * i + part, size);
} else {
read_vec_element(s, tcg_res, rm,
2 * (i - midpoint) + part, size);
}
break;
}
case 2: /* TRN1/2 */
if (i & 1) {
read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
} else {
read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
}
break;
case 3: /* ZIP1/2 */
{
int base = part * elements / 2;
if (i & 1) {
read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
} else {
read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
}
break;
}
default:
g_assert_not_reached();
}
ofs = i * esize;
if (ofs < 64) {
tcg_gen_shli_i64(tcg_ctx, tcg_res, tcg_res, ofs);
tcg_gen_or_i64(tcg_ctx, tcg_resl, tcg_resl, tcg_res);
} else {
tcg_gen_shli_i64(tcg_ctx, tcg_res, tcg_res, ofs - 64);
tcg_gen_or_i64(tcg_ctx, tcg_resh, tcg_resh, tcg_res);
}
}
tcg_temp_free_i64(tcg_ctx, tcg_res);
write_vec_element(s, tcg_resl, rd, 0, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resl);
write_vec_element(s, tcg_resh, rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_resh);
}
/*
* do_reduction_op helper
*
* This mirrors the Reduce() pseudocode in the ARM ARM. It is
* important for correct NaN propagation that we do these
* operations in exactly the order specified by the pseudocode.
*
* This is a recursive function, TCG temps should be freed by the
* calling function once it is done with the values.
*/
static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
int esize, int size, int vmap, TCGv_ptr fpst)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
if (esize == size) {
int element;
TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
TCGv_i32 tcg_elem;
/* We should have one register left here */
assert(ctpop8(vmap) == 1);
element = ctz32(vmap);
assert(element < 8);
tcg_elem = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_elem, rn, element, msize);
return tcg_elem;
} else {
int bits = size / 2;
int shift = ctpop8(vmap) / 2;
int vmap_lo = (vmap >> shift) & vmap;
int vmap_hi = (vmap & ~vmap_lo);
TCGv_i32 tcg_hi, tcg_lo, tcg_res;
tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
tcg_res = tcg_temp_new_i32(tcg_ctx);
switch (fpopcode) {
case 0x0c: /* fmaxnmv half-precision */
gen_helper_advsimd_maxnumh(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x0f: /* fmaxv half-precision */
gen_helper_advsimd_maxh(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x1c: /* fminnmv half-precision */
gen_helper_advsimd_minnumh(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x1f: /* fminv half-precision */
gen_helper_advsimd_minh(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x2c: /* fmaxnmv */
gen_helper_vfp_maxnums(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x2f: /* fmaxv */
gen_helper_vfp_maxs(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x3c: /* fminnmv */
gen_helper_vfp_minnums(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x3f: /* fminv */
gen_helper_vfp_mins(tcg_ctx, tcg_res, tcg_lo, tcg_hi, fpst);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i32(tcg_ctx, tcg_hi);
tcg_temp_free_i32(tcg_ctx, tcg_lo);
return tcg_res;
}
}
/* AdvSIMD across lanes
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool is_q = extract32(insn, 30, 1);
bool is_u = extract32(insn, 29, 1);
bool is_fp = false;
bool is_min = false;
int esize;
int elements;
int i;
TCGv_i64 tcg_res, tcg_elt;
switch (opcode) {
case 0x1b: /* ADDV */
if (is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3: /* SADDLV, UADDLV */
case 0xa: /* SMAXV, UMAXV */
case 0x1a: /* SMINV, UMINV */
if (size == 3 || (size == 2 && !is_q)) {
unallocated_encoding(s);
return;
}
break;
case 0xc: /* FMAXNMV, FMINNMV */
case 0xf: /* FMAXV, FMINV */
/* Bit 1 of size field encodes min vs max and the actual size
* depends on the encoding of the U bit. If not set (and FP16
* enabled) then we do half-precision float instead of single
* precision.
*/
is_min = extract32(size, 1, 1);
is_fp = true;
if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
size = 1;
} else if (!is_u || !is_q || extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
} else {
size = 2;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
esize = 8 << size;
elements = (is_q ? 128 : 64) / esize;
tcg_res = tcg_temp_new_i64(tcg_ctx);
tcg_elt = tcg_temp_new_i64(tcg_ctx);
/* These instructions operate across all lanes of a vector
* to produce a single result. We can guarantee that a 64
* bit intermediate is sufficient:
* + for [US]ADDLV the maximum element size is 32 bits, and
* the result type is 64 bits
* + for FMAX*V, FMIN*V, ADDV the intermediate type is the
* same as the element size, which is 32 bits at most
* For the integer operations we can choose to work at 64
* or 32 bits and truncate at the end; for simplicity
* we use 64 bits always. The floating point
* ops do require 32 bit intermediates, though.
*/
if (!is_fp) {
read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
for (i = 1; i < elements; i++) {
read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
switch (opcode) {
case 0x03: /* SADDLV / UADDLV */
case 0x1b: /* ADDV */
tcg_gen_add_i64(tcg_ctx, tcg_res, tcg_res, tcg_elt);
break;
case 0x0a: /* SMAXV / UMAXV */
tcg_gen_movcond_i64(tcg_ctx, is_u ? TCG_COND_GEU : TCG_COND_GE,
tcg_res,
tcg_res, tcg_elt, tcg_res, tcg_elt);
break;
case 0x1a: /* SMINV / UMINV */
tcg_gen_movcond_i64(tcg_ctx, is_u ? TCG_COND_LEU : TCG_COND_LE,
tcg_res,
tcg_res, tcg_elt, tcg_res, tcg_elt);
break;
break;
default:
g_assert_not_reached();
}
}
} else {
/* Floating point vector reduction ops which work across 32
* bit (single) or 16 bit (half-precision) intermediates.
* Note that correct NaN propagation requires that we do these
* operations in exactly the order specified by the pseudocode.
*/
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, size == MO_16);
int fpopcode = opcode | is_min << 4 | is_u << 5;
int vmap = (1 << elements) - 1;
TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
(is_q ? 128 : 64), vmap, fpst);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_res, tcg_res32);
tcg_temp_free_i32(tcg_ctx, tcg_res32);
tcg_temp_free_ptr(tcg_ctx, fpst);
}
tcg_temp_free_i64(tcg_ctx, tcg_elt);
/* Now truncate the result to the width required for the final output */
if (opcode == 0x03) {
/* SADDLV, UADDLV: result is 2*esize */
size++;
}
switch (size) {
case 0:
tcg_gen_ext8u_i64(tcg_ctx, tcg_res, tcg_res);
break;
case 1:
tcg_gen_ext16u_i64(tcg_ctx, tcg_res, tcg_res);
break;
case 2:
tcg_gen_ext32u_i64(tcg_ctx, tcg_res, tcg_res);
break;
case 3:
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
/* DUP (Element, Vector)
*
* 31 30 29 21 20 16 15 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
int imm5)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = ctz32(imm5);
int index = imm5 >> (size + 1);
if (size > 3 || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_gen_gvec_dup_mem(tcg_ctx, size, vec_full_reg_offset(s, rd),
vec_reg_offset(s, rn, index, size),
is_q ? 16 : 8, vec_full_reg_size(s));
}
/* DUP (element, scalar)
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+--------+-------------+------+------+
* | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
* +-----------------------+--------+-------------+------+------+
*/
static void handle_simd_dupes(DisasContext *s, int rd, int rn,
int imm5)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = ctz32(imm5);
int index;
TCGv_i64 tmp;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
index = imm5 >> (size + 1);
/* This instruction just extracts the specified element and
* zero-extends it into the bottom of the destination register.
*/
tmp = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tmp, rn, index, size);
write_fp_dreg(s, rd, tmp);
tcg_temp_free_i64(tcg_ctx, tmp);
}
/* DUP (General)
*
* 31 30 29 21 20 16 15 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
int imm5)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = ctz32(imm5);
uint32_t dofs, oprsz, maxsz;
if (size > 3 || ((size == 3) && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
dofs = vec_full_reg_offset(s, rd);
oprsz = is_q ? 16 : 8;
maxsz = vec_full_reg_size(s);
tcg_gen_gvec_dup_i64(tcg_ctx, size, dofs, oprsz, maxsz, cpu_reg(s, rn));
}
/* INS (Element)
*
* 31 21 20 16 15 14 11 10 9 5 4 0
* +-----------------------+--------+------------+---+------+------+
* | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +-----------------------+--------+------------+---+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
* index: encoded in imm5<4:size+1>
*/
static void handle_simd_inse(DisasContext *s, int rd, int rn,
int imm4, int imm5)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = ctz32(imm5);
int src_index, dst_index;
TCGv_i64 tmp;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
dst_index = extract32(imm5, 1+size, 5);
src_index = extract32(imm4, size, 4);
tmp = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tmp, rn, src_index, size);
write_vec_element(s, tmp, rd, dst_index, size);
tcg_temp_free_i64(tcg_ctx, tmp);
}
/* INS (General)
*
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+--------+-------------+------+------+
* | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
* +-----------------------+--------+-------------+------+------+
*
* size: encoded in imm5 (see ARM ARM LowestSetBit())
* index: encoded in imm5<4:size+1>
*/
static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
{
int size = ctz32(imm5);
int idx;
if (size > 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
idx = extract32(imm5, 1 + size, 4 - size);
write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
}
/*
* UMOV (General)
* SMOV (General)
*
* 31 30 29 21 20 16 15 12 10 9 5 4 0
* +---+---+-------------------+--------+-------------+------+------+
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
* +---+---+-------------------+--------+-------------+------+------+
*
* U: unsigned when set
* size: encoded in imm5 (see ARM ARM LowestSetBit())
*/
static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
int rn, int rd, int imm5)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = ctz32(imm5);
int element;
TCGv_i64 tcg_rd;
/* Check for UnallocatedEncodings */
if (is_signed) {
if (size > 2 || (size == 2 && !is_q)) {
unallocated_encoding(s);
return;
}
} else {
if (size > 3
|| (size < 3 && is_q)
|| (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
element = extract32(imm5, 1+size, 4);
tcg_rd = cpu_reg(s, rd);
read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
if (is_signed && !is_q) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_rd, tcg_rd);
}
}
/* AdvSIMD copy
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
* +---+---+----+-----------------+------+---+------+---+------+------+
* | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +---+---+----+-----------------+------+---+------+---+------+------+
*/
static void disas_simd_copy(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm4 = extract32(insn, 11, 4);
int op = extract32(insn, 29, 1);
int is_q = extract32(insn, 30, 1);
int imm5 = extract32(insn, 16, 5);
if (op) {
if (is_q) {
/* INS (element) */
handle_simd_inse(s, rd, rn, imm4, imm5);
} else {
unallocated_encoding(s);
}
} else {
switch (imm4) {
case 0:
/* DUP (element - vector) */
handle_simd_dupe(s, is_q, rd, rn, imm5);
break;
case 1:
/* DUP (general) */
handle_simd_dupg(s, is_q, rd, rn, imm5);
break;
case 3:
if (is_q) {
/* INS (general) */
handle_simd_insg(s, rd, rn, imm5);
} else {
unallocated_encoding(s);
}
break;
case 5:
case 7:
/* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
break;
default:
unallocated_encoding(s);
break;
}
}
}
/* AdvSIMD modified immediate
* 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
* | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
*
* There are a number of operations that can be carried out here:
* MOVI - move (shifted) imm into register
* MVNI - move inverted (shifted) imm into register
* ORR - bitwise OR of (shifted) imm with register
* BIC - bitwise clear of (shifted) imm with register
* With ARMv8.2 we also have:
* FMOV half-precision
*/
static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int cmode = extract32(insn, 12, 4);
int cmode_3_1 = extract32(cmode, 1, 3);
int cmode_0 = extract32(cmode, 0, 1);
int o2 = extract32(insn, 11, 1);
uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
bool is_neg = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
uint64_t imm = 0;
if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
/* Check for FMOV (vector, immediate) - half-precision */
if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
/* See AdvSIMDExpandImm() in ARM ARM */
switch (cmode_3_1) {
case 0: /* Replicate(Zeros(24):imm8, 2) */
case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
case 3: /* Replicate(imm8:Zeros(24), 2) */
{
int shift = cmode_3_1 * 8;
imm = bitfield_replicate(abcdefgh << shift, 32);
break;
}
case 4: /* Replicate(Zeros(8):imm8, 4) */
case 5: /* Replicate(imm8:Zeros(8), 4) */
{
int shift = (cmode_3_1 & 0x1) * 8;
imm = bitfield_replicate(abcdefgh << shift, 16);
break;
}
case 6:
if (cmode_0) {
/* Replicate(Zeros(8):imm8:Ones(16), 2) */
imm = (abcdefgh << 16) | 0xffff;
} else {
/* Replicate(Zeros(16):imm8:Ones(8), 2) */
imm = (abcdefgh << 8) | 0xff;
}
imm = bitfield_replicate(imm, 32);
break;
case 7:
if (!cmode_0 && !is_neg) {
imm = bitfield_replicate(abcdefgh, 8);
} else if (!cmode_0 && is_neg) {
int i;
imm = 0;
for (i = 0; i < 8; i++) {
if ((abcdefgh) & (1ULL << i)) {
imm |= 0xffULL << (i * 8);
}
}
} else if (cmode_0) {
if (is_neg) {
imm = (abcdefgh & 0x3f) << 48;
if (abcdefgh & 0x80) {
imm |= 0x8000000000000000ULL;
}
if (abcdefgh & 0x40) {
imm |= 0x3fc0000000000000ULL;
} else {
imm |= 0x4000000000000000ULL;
}
} else {
if (o2) {
/* FMOV (vector, immediate) - half-precision */
imm = vfp_expand_imm(MO_16, abcdefgh);
/* now duplicate across the lanes */
imm = bitfield_replicate(imm, 16);
} else {
imm = (abcdefgh & 0x3f) << 19;
if (abcdefgh & 0x80) {
imm |= 0x80000000;
}
if (abcdefgh & 0x40) {
imm |= 0x3e000000;
} else {
imm |= 0x40000000;
}
imm |= (imm << 32);
}
}
}
break;
default:
fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
g_assert_not_reached();
}
if (cmode_3_1 != 7 && is_neg) {
imm = ~imm;
}
if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
/* MOVI or MVNI, with MVNI negation handled above. */
tcg_gen_gvec_dup64i(tcg_ctx, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
vec_full_reg_size(s), imm);
} else {
/* ORR or BIC, with BIC negation to AND handled above. */
if (is_neg) {
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
} else {
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
}
}
}
/* AdvSIMD scalar copy
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
* +-----+----+-----------------+------+---+------+---+------+------+
* | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
* +-----+----+-----------------+------+---+------+---+------+------+
*/
static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm4 = extract32(insn, 11, 4);
int imm5 = extract32(insn, 16, 5);
int op = extract32(insn, 29, 1);
if (op != 0 || imm4 != 0) {
unallocated_encoding(s);
return;
}
/* DUP (element, scalar) */
handle_simd_dupes(s, rd, rn, imm5);
}
/* AdvSIMD scalar pairwise
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----+---+-----------+------+-----------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
* +-----+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_ptr fpst;
/* For some ops (the FP ones), size[1] is part of the encoding.
* For ADDP strictly it is not but size[1] is always 1 for valid
* encodings.
*/
opcode |= (extract32(size, 1, 1) << 5);
switch (opcode) {
case 0x3b: /* ADDP */
if (u || size != 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
fpst = NULL;
break;
case 0xc: /* FMAXNMP */
case 0xd: /* FADDP */
case 0xf: /* FMAXP */
case 0x2c: /* FMINNMP */
case 0x2f: /* FMINP */
/* FP op, size[0] is 32 or 64 bit*/
if (!u) {
if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
return;
} else {
size = MO_16;
}
} else {
size = extract32(size, 0, 1) ? MO_64 : MO_32;
}
if (!fp_access_check(s)) {
return;
}
fpst = get_fpstatus_ptr(tcg_ctx, size == MO_16);
break;
default:
unallocated_encoding(s);
return;
}
if (size == MO_64) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, 0, MO_64);
read_vec_element(s, tcg_op2, rn, 1, MO_64);
switch (opcode) {
case 0x3b: /* ADDP */
tcg_gen_add_i64(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
break;
case 0xc: /* FMAXNMP */
gen_helper_vfp_maxnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xd: /* FADDP */
gen_helper_vfp_addd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FMAXP */
gen_helper_vfp_maxd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2c: /* FMINNMP */
gen_helper_vfp_minnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2f: /* FMINP */
gen_helper_vfp_mind(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res);
} else {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op1, rn, 0, size);
read_vec_element_i32(s, tcg_op2, rn, 1, size);
if (size == MO_16) {
switch (opcode) {
case 0xc: /* FMAXNMP */
gen_helper_advsimd_maxnumh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xd: /* FADDP */
gen_helper_advsimd_addh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FMAXP */
gen_helper_advsimd_maxh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2c: /* FMINNMP */
gen_helper_advsimd_minnumh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2f: /* FMINP */
gen_helper_advsimd_minh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
} else {
switch (opcode) {
case 0xc: /* FMAXNMP */
gen_helper_vfp_maxnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xd: /* FADDP */
gen_helper_vfp_adds(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FMAXP */
gen_helper_vfp_maxs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2c: /* FMINNMP */
gen_helper_vfp_minnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x2f: /* FMINP */
gen_helper_vfp_mins(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
if (fpst) {
tcg_temp_free_ptr(tcg_ctx, fpst);
}
}
/*
* Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
*
* This code is handles the common shifting code and is used by both
* the vector and scalar code.
*/
static void handle_shri_with_rndacc(DisasContext *s, TCGv_i64 tcg_res, TCGv_i64 tcg_src,
TCGv_i64 tcg_rnd, bool accumulate,
bool is_u, int size, int shift)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool extended_result = false;
bool round = tcg_rnd != NULL;
int ext_lshift = 0;
TCGv_i64 tcg_src_hi;
if (round && size == 3) {
extended_result = true;
ext_lshift = 64 - shift;
tcg_src_hi = tcg_temp_new_i64(tcg_ctx);
} else if (shift == 64) {
if (!accumulate && is_u) {
/* result is zero */
tcg_gen_movi_i64(tcg_ctx, tcg_res, 0);
return;
}
}
/* Deal with the rounding step */
if (round) {
if (extended_result) {
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
if (!is_u) {
/* take care of sign extending tcg_res */
tcg_gen_sari_i64(tcg_ctx, tcg_src_hi, tcg_src, 63);
tcg_gen_add2_i64(tcg_ctx, tcg_src, tcg_src_hi,
tcg_src, tcg_src_hi,
tcg_rnd, tcg_zero);
} else {
tcg_gen_add2_i64(tcg_ctx, tcg_src, tcg_src_hi,
tcg_src, tcg_zero,
tcg_rnd, tcg_zero);
}
tcg_temp_free_i64(tcg_ctx, tcg_zero);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_src, tcg_src, tcg_rnd);
}
}
/* Now do the shift right */
if (round && extended_result) {
/* extended case, >64 bit precision required */
if (ext_lshift == 0) {
/* special case, only high bits matter */
tcg_gen_mov_i64(tcg_ctx, tcg_src, tcg_src_hi);
} else {
tcg_gen_shri_i64(tcg_ctx, tcg_src, tcg_src, shift);
tcg_gen_shli_i64(tcg_ctx, tcg_src_hi, tcg_src_hi, ext_lshift);
tcg_gen_or_i64(tcg_ctx, tcg_src, tcg_src, tcg_src_hi);
}
} else {
if (is_u) {
if (shift == 64) {
/* essentially shifting in 64 zeros */
tcg_gen_movi_i64(tcg_ctx, tcg_src, 0);
} else {
tcg_gen_shri_i64(tcg_ctx, tcg_src, tcg_src, shift);
}
} else {
if (shift == 64) {
/* effectively extending the sign-bit */
tcg_gen_sari_i64(tcg_ctx, tcg_src, tcg_src, 63);
} else {
tcg_gen_sari_i64(tcg_ctx, tcg_src, tcg_src, shift);
}
}
}
if (accumulate) {
tcg_gen_add_i64(tcg_ctx, tcg_res, tcg_res, tcg_src);
} else {
tcg_gen_mov_i64(tcg_ctx, tcg_res, tcg_src);
}
if (extended_result) {
tcg_temp_free_i64(tcg_ctx, tcg_src_hi);
}
}
/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
static void handle_scalar_simd_shri(DisasContext *s,
bool is_u, int immh, int immb,
int opcode, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
const int size = 3;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
bool accumulate = false;
bool round = false;
bool insert = false;
TCGv_i64 tcg_rn;
TCGv_i64 tcg_rd;
TCGv_i64 tcg_round;
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
accumulate = true;
break;
case 0x04: /* SRSHR / URSHR (rounding) */
round = true;
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
accumulate = round = true;
break;
case 0x08: /* SRI */
insert = true;
break;
}
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(tcg_ctx, round_const);
} else {
tcg_round = NULL;
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(tcg_ctx);
if (insert) {
/* shift count same as element size is valid but does nothing;
* special case to avoid potential shift by 64.
*/
int esize = 8 << size;
if (shift != esize) {
tcg_gen_shri_i64(tcg_ctx, tcg_rn, tcg_rn, shift);
tcg_gen_deposit_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
}
} else {
handle_shri_with_rndacc(s, tcg_rd, tcg_rn, tcg_round,
accumulate, is_u, size, shift);
}
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
if (round) {
tcg_temp_free_i64(tcg_ctx, tcg_round);
}
}
/* SHL/SLI - Scalar shift left */
static void handle_scalar_simd_shli(DisasContext *s, bool insert,
int immh, int immb, int opcode,
int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(tcg_ctx);
if (insert) {
tcg_gen_deposit_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
} else {
tcg_gen_shli_i64(tcg_ctx, tcg_rd, tcg_rn, shift);
}
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
}
/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
* (signed/unsigned) narrowing */
static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
bool is_u_shift, bool is_u_narrow,
int immh, int immb, int opcode,
int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int esize = 8 << size;
int shift = (2 * esize) - immhb;
int elements = is_scalar ? 1 : (64 / esize);
bool round = extract32(opcode, 0, 1);
TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
TCGv_i64 tcg_rn, tcg_rd, tcg_round;
TCGv_i32 tcg_rd_narrowed;
TCGv_i64 tcg_final;
static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_unarrow_sat8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_unarrow_sat16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_unarrow_sat32 },
{ NULL, NULL },
};
static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
gen_helper_neon_narrow_sat_u8,
gen_helper_neon_narrow_sat_u16,
gen_helper_neon_narrow_sat_u32,
NULL
};
NeonGenNarrowEnvFn *narrowfn;
int i;
assert(size < 4);
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_u_shift) {
narrowfn = unsigned_narrow_fns[size];
} else {
narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
}
tcg_rn = tcg_temp_new_i64(tcg_ctx);
tcg_rd = tcg_temp_new_i64(tcg_ctx);
tcg_rd_narrowed = tcg_temp_new_i32(tcg_ctx);
tcg_final = tcg_const_i64(tcg_ctx, 0);
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(tcg_ctx, round_const);
} else {
tcg_round = NULL;
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, ldop);
handle_shri_with_rndacc(s, tcg_rd, tcg_rn, tcg_round,
false, is_u_shift, size+1, shift);
narrowfn(tcg_ctx, tcg_rd_narrowed, tcg_ctx->cpu_env, tcg_rd);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tcg_rd_narrowed);
tcg_gen_deposit_i64(tcg_ctx, tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
if (!is_q) {
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
if (round) {
tcg_temp_free_i64(tcg_ctx, tcg_round);
}
tcg_temp_free_i64(tcg_ctx, tcg_rn);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rd_narrowed);
tcg_temp_free_i64(tcg_ctx, tcg_final);
clear_vec_high(s, is_q, rd);
}
/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
bool src_unsigned, bool dst_unsigned,
int immh, int immb, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int shift = immhb - (8 << size);
int pass;
assert(immh != 0);
assert(!(scalar && is_q));
if (!scalar) {
if (!is_q && extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
/* Since we use the variable-shift helpers we must
* replicate the shift count into each element of
* the tcg_shift value.
*/
switch (size) {
case 0:
shift |= shift << 8;
/* fall through */
case 1:
shift |= shift << 16;
break;
case 2:
case 3:
break;
default:
g_assert_not_reached();
}
}
if (!fp_access_check(s)) {
return;
}
if (size == 3) {
TCGv_i64 tcg_shift = tcg_const_i64(tcg_ctx, shift);
static NeonGenTwo64OpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
{ NULL, gen_helper_neon_qshl_u64 },
};
NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
int maxpass = is_q ? 2 : 1;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_ctx, tcg_op, tcg_ctx->cpu_env, tcg_op, tcg_shift);
write_vec_element(s, tcg_op, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op);
}
tcg_temp_free_i64(tcg_ctx, tcg_shift);
clear_vec_high(s, is_q, rd);
} else {
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, shift);
static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
{
{ gen_helper_neon_qshl_s8,
gen_helper_neon_qshl_s16,
gen_helper_neon_qshl_s32 },
{ gen_helper_neon_qshlu_s8,
gen_helper_neon_qshlu_s16,
gen_helper_neon_qshlu_s32 }
}, {
{ NULL, NULL, NULL },
{ gen_helper_neon_qshl_u8,
gen_helper_neon_qshl_u16,
gen_helper_neon_qshl_u32 }
}
};
NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
TCGMemOp memop = scalar ? size : MO_32;
int maxpass = scalar ? 1 : is_q ? 4 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, pass, memop);
genfn(tcg_ctx, tcg_op, tcg_ctx->cpu_env, tcg_op, tcg_shift);
if (scalar) {
switch (size) {
case 0:
tcg_gen_ext8u_i32(tcg_ctx, tcg_op, tcg_op);
break;
case 1:
tcg_gen_ext16u_i32(tcg_ctx, tcg_op, tcg_op);
break;
case 2:
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
tcg_temp_free_i32(tcg_ctx, tcg_shift);
if (!scalar) {
clear_vec_high(s, is_q, rd);
}
}
}
/* Common vector code for handling integer to FP conversion */
static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
int elements, int is_signed,
int fracbits, int size)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr tcg_fpst = get_fpstatus_ptr(tcg_ctx, size == MO_16);
TCGv_i32 tcg_shift = NULL;
TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
int pass;
if (fracbits || size == MO_64) {
tcg_shift = tcg_const_i32(tcg_ctx, fracbits);
}
if (size == MO_64) {
TCGv_i64 tcg_int64 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_double = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < elements; pass++) {
read_vec_element(s, tcg_int64, rn, pass, mop);
if (is_signed) {
gen_helper_vfp_sqtod(tcg_ctx, tcg_double, tcg_int64,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_uqtod(tcg_ctx, tcg_double, tcg_int64,
tcg_shift, tcg_fpst);
}
if (elements == 1) {
write_fp_dreg(s, rd, tcg_double);
} else {
write_vec_element(s, tcg_double, rd, pass, MO_64);
}
}
tcg_temp_free_i64(tcg_ctx, tcg_int64);
tcg_temp_free_i64(tcg_ctx, tcg_double);
} else {
TCGv_i32 tcg_int32 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_float = tcg_temp_new_i32(tcg_ctx);
for (pass = 0; pass < elements; pass++) {
read_vec_element_i32(s, tcg_int32, rn, pass, mop);
switch (size) {
case MO_32:
if (fracbits) {
if (is_signed) {
gen_helper_vfp_sltos(tcg_ctx, tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_ultos(tcg_ctx, tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
}
} else {
if (is_signed) {
gen_helper_vfp_sitos(tcg_ctx, tcg_float, tcg_int32, tcg_fpst);
} else {
gen_helper_vfp_uitos(tcg_ctx, tcg_float, tcg_int32, tcg_fpst);
}
}
break;
case MO_16:
if (fracbits) {
if (is_signed) {
gen_helper_vfp_sltoh(tcg_ctx, tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_ultoh(tcg_ctx, tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
}
} else {
if (is_signed) {
gen_helper_vfp_sitoh(tcg_ctx, tcg_float, tcg_int32, tcg_fpst);
} else {
gen_helper_vfp_uitoh(tcg_ctx, tcg_float, tcg_int32, tcg_fpst);
}
}
break;
default:
g_assert_not_reached();
}
if (elements == 1) {
write_fp_sreg(s, rd, tcg_float);
} else {
write_vec_element_i32(s, tcg_float, rd, pass, size);
}
}
tcg_temp_free_i32(tcg_ctx, tcg_int32);
tcg_temp_free_i32(tcg_ctx, tcg_float);
}
tcg_temp_free_ptr(tcg_ctx, tcg_fpst);
if (tcg_shift) {
tcg_temp_free_i32(tcg_ctx, tcg_shift);
}
clear_vec_high(s, elements << size == 16, rd);
}
/* UCVTF/SCVTF - Integer to FP conversion */
static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int opcode,
int rn, int rd)
{
bool is_double = extract32(immh, 3, 1);
int size = is_double ? MO_64 : MO_32;
int elements;
int immhb = immh << 3 | immb;
int fracbits = (is_double ? 128 : 64) - immhb;
if (!extract32(immh, 2, 2)) {
unallocated_encoding(s);
return;
}
if (is_scalar) {
elements = 1;
} else {
elements = is_double ? 2 : is_q ? 4 : 2;
if (is_double && !is_q) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
/* immh == 0 would be a failure of the decode logic */
g_assert(immh);
handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
}
/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_double = extract32(immh, 3, 1);
int immhb = immh << 3 | immb;
int fracbits = (is_double ? 128 : 64) - immhb;
int pass;
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_rmode, tcg_shift;
if (!extract32(immh, 2, 2)) {
unallocated_encoding(s);
return;
}
if (!is_scalar && !is_q && is_double) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
assert(!(is_scalar && is_q));
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(FPROUNDING_ZERO));
tcg_fpstatus = get_fpstatus_ptr(tcg_ctx, false);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_shift = tcg_const_i32(tcg_ctx, fracbits);
if (is_double) {
int maxpass = is_scalar ? 1 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (is_u) {
gen_helper_vfp_touqd(tcg_ctx, tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_ctx, tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
}
write_vec_element(s, tcg_op, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op);
}
clear_vec_high(s, is_q, rd);
} else {
int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (is_u) {
gen_helper_vfp_touls(tcg_ctx, tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosls(tcg_ctx, tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
tcg_temp_free_ptr(tcg_ctx, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
}
/* AdvSIMD scalar shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +-----+---+-------------+------+------+--------+---+------+------+
* | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +-----+---+-------------+------+------+--------+---+------+------+
*
* This is the scalar version so it works on a fixed sized registers
*/
static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
if (immh == 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA */
case 0x04: /* SRSHR / URSHR */
case 0x06: /* SRSRA / URSRA */
handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF, UCVTF */
handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x10: /* SQSHRUN, SQSHRUN2 */
case 0x11: /* SQRSHRUN, SQRSHRUN2 */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_vec_simd_sqshrn(s, true, false, false, true,
immh, immb, opcode, rn, rd);
break;
case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
immh, immb, opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS, FCVTZU */
handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
break;
default:
unallocated_encoding(s);
break;
}
}
/* AdvSIMD scalar three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +-----+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (is_u) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x9: /* SQDMLAL, SQDMLAL2 */
case 0xb: /* SQDMLSL, SQDMLSL2 */
case 0xd: /* SQDMULL, SQDMULL2 */
if (size == 0 || size == 3) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 2) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
tcg_gen_mul_i64(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_ctx, tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
read_vec_element(s, tcg_op1, rd, 0, MO_64);
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_res, tcg_op1);
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res);
} else {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
gen_helper_neon_mull_s16(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_ctx, tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
{
TCGv_i64 tcg_op3 = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op3, rd, 0, MO_32);
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_res, tcg_op3);
tcg_temp_free_i64(tcg_ctx, tcg_op3);
break;
}
default:
g_assert_not_reached();
}
tcg_gen_ext32u_i64(tcg_ctx, tcg_res, tcg_res);
write_fp_dreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
}
/* CMTST : test is "if (X & Y != 0)". */
static void gen_cmtst_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
tcg_gen_and_i32(s, d, a, b);
tcg_gen_setcondi_i32(s, TCG_COND_NE, d, d, 0);
tcg_gen_neg_i32(s, d, d);
}
static void gen_cmtst_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_and_i64(s, d, a, b);
tcg_gen_setcondi_i64(s, TCG_COND_NE, d, d, 0);
tcg_gen_neg_i64(s, d, d);
}
static void gen_cmtst_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
{
tcg_gen_and_vec(s, vece, d, a, b);
tcg_gen_dupi_vec(s, vece, a, 0);
tcg_gen_cmp_vec(s, TCG_COND_NE, vece, d, d, a);
}
static void handle_3same_64(DisasContext *s, int opcode, bool u,
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Handle 64x64->64 opcodes which are shared between the scalar
* and vector 3-same groups. We cover every opcode where size == 3
* is valid in either the three-reg-same (integer, not pairwise)
* or scalar-three-reg-same groups.
*/
TCGCond cond;
switch (opcode) {
case 0x1: /* SQADD */
if (u) {
gen_helper_neon_qadd_u64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qadd_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x5: /* SQSUB */
if (u) {
gen_helper_neon_qsub_u64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qsub_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x6: /* CMGT, CMHI */
/* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
* We implement this using setcond (test) and then negating.
*/
cond = u ? TCG_COND_GTU : TCG_COND_GT;
do_cmop:
tcg_gen_setcond_i64(tcg_ctx, cond, tcg_rd, tcg_rn, tcg_rm);
tcg_gen_neg_i64(tcg_ctx, tcg_rd, tcg_rd);
break;
case 0x7: /* CMGE, CMHS */
cond = u ? TCG_COND_GEU : TCG_COND_GE;
goto do_cmop;
case 0x11: /* CMTST, CMEQ */
if (u) {
cond = TCG_COND_EQ;
goto do_cmop;
}
gen_cmtst_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
break;
case 0x8: /* SSHL, USHL */
if (u) {
gen_helper_neon_shl_u64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
} else {
gen_helper_neon_shl_s64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
}
break;
case 0x9: /* SQSHL, UQSHL */
if (u) {
gen_helper_neon_qshl_u64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qshl_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
}
break;
case 0xa: /* SRSHL, URSHL */
if (u) {
gen_helper_neon_rshl_u64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
} else {
gen_helper_neon_rshl_s64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
}
break;
case 0xb: /* SQRSHL, UQRSHL */
if (u) {
gen_helper_neon_qrshl_u64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
} else {
gen_helper_neon_qrshl_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
}
break;
case 0x10: /* ADD, SUB */
if (u) {
tcg_gen_sub_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_ctx, tcg_rd, tcg_rn, tcg_rm);
}
break;
default:
g_assert_not_reached();
}
}
/* Handle the 3-same-operands float operations; shared by the scalar
* and vector encodings. The caller must filter out any encodings
* not allocated for the encoding it is dealing with.
*/
static void handle_3same_float(DisasContext *s, int size, int elements,
int fpopcode, int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int pass;
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, false);
for (pass = 0; pass < elements; pass++) {
if (size) {
/* Double */
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
switch (fpopcode) {
case 0x39: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negd(tcg_ctx, tcg_op1, tcg_op1);
/* fall through */
case 0x19: /* FMLA */
read_vec_element(s, tcg_res, rd, pass, MO_64);
gen_helper_vfp_muladdd(tcg_ctx, tcg_res, tcg_op1, tcg_op2,
tcg_res, fpst);
break;
case 0x18: /* FMAXNM */
gen_helper_vfp_maxnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1a: /* FADD */
gen_helper_vfp_addd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1b: /* FMULX */
gen_helper_vfp_mulxd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1c: /* FCMEQ */
gen_helper_neon_ceq_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1e: /* FMAX */
gen_helper_vfp_maxd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1f: /* FRECPS */
gen_helper_recpsf_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x38: /* FMINNM */
gen_helper_vfp_minnumd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3a: /* FSUB */
gen_helper_vfp_subd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3e: /* FMIN */
gen_helper_vfp_mind(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3f: /* FRSQRTS */
gen_helper_rsqrtsf_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5b: /* FMUL */
gen_helper_vfp_muld(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5c: /* FCMGE */
gen_helper_neon_cge_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5d: /* FACGE */
gen_helper_neon_acge_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5f: /* FDIV */
gen_helper_vfp_divd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7a: /* FABD */
gen_helper_vfp_subd(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_absd(tcg_ctx, tcg_res, tcg_res);
break;
case 0x7c: /* FCMGT */
gen_helper_neon_cgt_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7d: /* FACGT */
gen_helper_neon_acgt_f64(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
} else {
/* Single */
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
switch (fpopcode) {
case 0x39: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negs(tcg_ctx, tcg_op1, tcg_op1);
/* fall through */
case 0x19: /* FMLA */
read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
gen_helper_vfp_muladds(tcg_ctx, tcg_res, tcg_op1, tcg_op2,
tcg_res, fpst);
break;
case 0x1a: /* FADD */
gen_helper_vfp_adds(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1b: /* FMULX */
gen_helper_vfp_mulxs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1c: /* FCMEQ */
gen_helper_neon_ceq_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1e: /* FMAX */
gen_helper_vfp_maxs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1f: /* FRECPS */
gen_helper_recpsf_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x18: /* FMAXNM */
gen_helper_vfp_maxnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x38: /* FMINNM */
gen_helper_vfp_minnums(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3a: /* FSUB */
gen_helper_vfp_subs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3e: /* FMIN */
gen_helper_vfp_mins(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3f: /* FRSQRTS */
gen_helper_rsqrtsf_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5b: /* FMUL */
gen_helper_vfp_muls(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5c: /* FCMGE */
gen_helper_neon_cge_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5d: /* FACGE */
gen_helper_neon_acge_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x5f: /* FDIV */
gen_helper_vfp_divs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7a: /* FABD */
gen_helper_vfp_subs(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
gen_helper_vfp_abss(tcg_ctx, tcg_res, tcg_res);
break;
case 0x7c: /* FCMGT */
gen_helper_neon_cgt_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7d: /* FACGT */
gen_helper_neon_acgt_f32(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
if (elements == 1) {
/* scalar single so clear high part */
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_tmp, tcg_res);
write_vec_element(s, tcg_tmp, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
}
}
tcg_temp_free_ptr(tcg_ctx, fpst);
clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
}
/* AdvSIMD scalar three same
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+--------+---+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
* +-----+---+-----------+------+---+------+--------+---+------+------+
*/
static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
TCGv_i64 tcg_rd;
if (opcode >= 0x18) {
/* Floating point: U, size[1] and opcode indicate operation */
int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
switch (fpopcode) {
case 0x1b: /* FMULX */
case 0x1f: /* FRECPS */
case 0x3f: /* FRSQRTS */
case 0x5d: /* FACGE */
case 0x7d: /* FACGT */
case 0x1c: /* FCMEQ */
case 0x5c: /* FCMGE */
case 0x7c: /* FCMGT */
case 0x7a: /* FABD */
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
return;
}
switch (opcode) {
case 0x1: /* SQADD, UQADD */
case 0x5: /* SQSUB, UQSUB */
case 0x9: /* SQSHL, UQSHL */
case 0xb: /* SQRSHL, UQRSHL */
break;
case 0x8: /* SSHL, USHL */
case 0xa: /* SRSHL, URSHL */
case 0x6: /* CMGT, CMHI */
case 0x7: /* CMGE, CMHS */
case 0x11: /* CMTST, CMEQ */
case 0x10: /* ADD, SUB (vector) */
if (size != 3) {
unallocated_encoding(s);
return;
}
break;
case 0x16: /* SQDMULH, SQRDMULH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd = tcg_temp_new_i64(tcg_ctx);
if (size == 3) {
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
tcg_temp_free_i64(tcg_ctx, tcg_rm);
} else {
/* Do a single operation on the lowest element in the vector.
* We use the standard Neon helpers and rely on 0 OP 0 == 0 with
* no side effects for all these operations.
* OPTME: special-purpose helpers would avoid doing some
* unnecessary work in the helper for the 8 and 16 bit cases.
*/
NeonGenTwoOpEnvFn *genenvfn;
TCGv_i32 tcg_rn = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_rm = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_rd32 = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_rn, rn, 0, size);
read_vec_element_i32(s, tcg_rm, rm, 0, size);
switch (opcode) {
case 0x1: /* SQADD, UQADD */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
{ gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
{ gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x5: /* SQSUB, UQSUB */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
{ gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
{ gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x9: /* SQSHL, UQSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xb: /* SQRSHL, UQRSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x16: /* SQDMULH, SQRDMULH */
{
static NeonGenTwoOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
{ gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
};
assert(size == 1 || size == 2);
genenvfn = fns[size - 1][u];
break;
}
default:
g_assert_not_reached();
}
genenvfn(tcg_ctx, tcg_rd32, tcg_ctx->cpu_env, tcg_rn, tcg_rm);
tcg_gen_extu_i32_i64(tcg_ctx, tcg_rd, tcg_rd32);
tcg_temp_free_i32(tcg_ctx, tcg_rd32);
tcg_temp_free_i32(tcg_ctx, tcg_rn);
tcg_temp_free_i32(tcg_ctx, tcg_rm);
}
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
}
/* AdvSIMD scalar three same FP16
* 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
* +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
* | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
* +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
* v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
* m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
*/
static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 3);
int rm = extract32(insn, 16, 5);
bool u = extract32(insn, 29, 1);
bool a = extract32(insn, 23, 1);
int fpopcode = opcode | (a << 3) | (u << 4);
TCGv_ptr fpst;
TCGv_i32 tcg_op1;
TCGv_i32 tcg_op2;
TCGv_i32 tcg_res;
switch (fpopcode) {
case 0x03: /* FMULX */
case 0x04: /* FCMEQ (reg) */
case 0x07: /* FRECPS */
case 0x0f: /* FRSQRTS */
case 0x14: /* FCMGE (reg) */
case 0x15: /* FACGE */
case 0x1a: /* FABD */
case 0x1c: /* FCMGT (reg) */
case 0x1d: /* FACGT */
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
}
if (!fp_access_check(s)) {
return;
}
fpst = get_fpstatus_ptr(tcg_ctx, true);
tcg_op1 = tcg_temp_new_i32(tcg_ctx);
tcg_op2 = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
switch (fpopcode) {
case 0x03: /* FMULX */
gen_helper_advsimd_mulxh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x04: /* FCMEQ (reg) */
gen_helper_advsimd_ceq_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x07: /* FRECPS */
gen_helper_recpsf_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x0f: /* FRSQRTS */
gen_helper_rsqrtsf_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x14: /* FCMGE (reg) */
gen_helper_advsimd_cge_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x15: /* FACGE */
gen_helper_advsimd_acge_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1a: /* FABD */
gen_helper_advsimd_subh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
tcg_gen_andi_i32(tcg_ctx, tcg_res, tcg_res, 0x7fff);
break;
case 0x1c: /* FCMGT (reg) */
gen_helper_advsimd_cgt_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1d: /* FACGT */
gen_helper_advsimd_acgt_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_ptr(tcg_ctx, fpst);
}
/* AdvSIMD scalar three same extra
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
* | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
*/
static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
TCGv_i32 ele1, ele2, ele3;
TCGv_i64 res;
int feature;
switch (u * 16 + opcode) {
case 0x10: /* SQRDMLAH (vector) */
case 0x11: /* SQRDMLSH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
feature = ARM_FEATURE_V8_RDM;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* Do a single operation on the lowest element in the vector.
* We use the standard Neon helpers and rely on 0 OP 0 == 0
* with no side effects for all these operations.
* OPTME: special-purpose helpers would avoid doing some
* unnecessary work in the helper for the 16 bit cases.
*/
ele1 = tcg_temp_new_i32(tcg_ctx);
ele2 = tcg_temp_new_i32(tcg_ctx);
ele3 = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, ele1, rn, 0, size);
read_vec_element_i32(s, ele2, rm, 0, size);
read_vec_element_i32(s, ele3, rd, 0, size);
switch (opcode) {
case 0x0: /* SQRDMLAH */
if (size == 1) {
gen_helper_neon_qrdmlah_s16(tcg_ctx, ele3, tcg_ctx->cpu_env, ele1, ele2, ele3);
} else {
gen_helper_neon_qrdmlah_s32(tcg_ctx, ele3, tcg_ctx->cpu_env, ele1, ele2, ele3);
}
break;
case 0x1: /* SQRDMLSH */
if (size == 1) {
gen_helper_neon_qrdmlsh_s16(tcg_ctx, ele3, tcg_ctx->cpu_env, ele1, ele2, ele3);
} else {
gen_helper_neon_qrdmlsh_s32(tcg_ctx, ele3, tcg_ctx->cpu_env, ele1, ele2, ele3);
}
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i32(tcg_ctx, ele1);
tcg_temp_free_i32(tcg_ctx, ele2);
res = tcg_temp_new_i64(tcg_ctx);
tcg_gen_extu_i32_i64(tcg_ctx, res, ele3);
tcg_temp_free_i32(tcg_ctx, ele3);
write_fp_dreg(s, rd, res);
tcg_temp_free_i64(tcg_ctx, res);
}
static void handle_2misc_64(DisasContext *s, int opcode, bool u,
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Handle 64->64 opcodes which are shared between the scalar and
* vector 2-reg-misc groups. We cover every integer opcode where size == 3
* is valid in either group and also the double-precision fp ops.
* The caller only need provide tcg_rmode and tcg_fpstatus if the op
* requires them.
*/
TCGCond cond;
switch (opcode) {
case 0x4: /* CLS, CLZ */
if (u) {
tcg_gen_clzi_i64(tcg_ctx, tcg_rd, tcg_rn, 64);
} else {
tcg_gen_clrsb_i64(tcg_ctx, tcg_rd, tcg_rn);
}
break;
case 0x5: /* NOT */
/* This opcode is shared with CNT and RBIT but we have earlier
* enforced that size == 3 if and only if this is the NOT insn.
*/
tcg_gen_not_i64(tcg_ctx, tcg_rd, tcg_rn);
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn);
} else {
gen_helper_neon_qabs_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn);
}
break;
case 0xa: /* CMLT */
/* 64 bit integer comparison against zero, result is
* test ? (2^64 - 1) : 0. We implement via setcond(!test) and
* subtracting 1.
*/
cond = TCG_COND_LT;
do_cmop:
tcg_gen_setcondi_i64(tcg_ctx, cond, tcg_rd, tcg_rn, 0);
tcg_gen_neg_i64(tcg_ctx, tcg_rd, tcg_rd);
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0xb: /* ABS, NEG */
if (u) {
tcg_gen_neg_i64(tcg_ctx, tcg_rd, tcg_rn);
} else {
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
tcg_gen_neg_i64(tcg_ctx, tcg_rd, tcg_rn);
tcg_gen_movcond_i64(tcg_ctx, TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
tcg_rn, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_zero);
}
break;
case 0x2f: /* FABS */
gen_helper_vfp_absd(tcg_ctx, tcg_rd, tcg_rn);
break;
case 0x6f: /* FNEG */
gen_helper_vfp_negd(tcg_ctx, tcg_rd, tcg_rn);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_ctx, tcg_rd, tcg_rn, tcg_ctx->cpu_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_tosqd(tcg_ctx, tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_touqd(tcg_ctx, tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rintd(tcg_ctx, tcg_rd, tcg_rn, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rintd_exact(tcg_ctx, tcg_rd, tcg_rn, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
}
static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_double = (size == MO_64);
TCGv_ptr fpst;
if (!fp_access_check(s)) {
return;
}
fpst = get_fpstatus_ptr(tcg_ctx, size == MO_16);
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
NeonGenTwoDoubleOPFn *genfn;
bool swap = false;
int pass;
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fallthrough */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f64;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f64;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f64;
break;
default:
g_assert_not_reached();
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (swap) {
genfn(tcg_ctx, tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_ctx, tcg_res, tcg_op, tcg_zero, fpst);
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_zero);
tcg_temp_free_i64(tcg_ctx, tcg_op);
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_zero = tcg_const_i32(tcg_ctx, 0);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
NeonGenTwoSingleOPFn *genfn;
bool swap = false;
int pass, maxpasses;
if (size == MO_16) {
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fall through */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_advsimd_cgt_f16;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_advsimd_ceq_f16;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_advsimd_cge_f16;
break;
default:
g_assert_not_reached();
}
} else {
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fall through */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f32;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f32;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f32;
break;
default:
g_assert_not_reached();
}
}
if (is_scalar) {
maxpasses = 1;
} else {
int vector_size = 8 << is_q;
maxpasses = vector_size >> size;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
if (swap) {
genfn(tcg_ctx, tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_ctx, tcg_res, tcg_op, tcg_zero, fpst);
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, size);
}
}
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_zero);
tcg_temp_free_i32(tcg_ctx, tcg_op);
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
tcg_temp_free_ptr(tcg_ctx, fpst);
}
static void handle_2misc_reciprocal(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_double = (size == 3);
TCGv_ptr fpst = get_fpstatus_ptr(tcg_ctx, false);
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
int pass;
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (opcode) {
case 0x3d: /* FRECPE */
gen_helper_recpe_f64(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f64(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f64(tcg_ctx, tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op);
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
switch (opcode) {
case 0x3c: /* URECPE */
gen_helper_recpe_u32(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f32(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f32(tcg_ctx, tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f32(tcg_ctx, tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op);
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
tcg_temp_free_ptr(tcg_ctx, fpst);
}
static void handle_2misc_narrow(DisasContext *s, bool scalar,
int opcode, bool u, bool is_q,
int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Handle 2-reg-misc ops which are narrowing (so each 2*size element
* in the source becomes a size element in the destination).
*/
int pass;
TCGv_i32 tcg_res[2];
int destelt = is_q ? 2 : 0;
int passes = scalar ? 1 : 2;
if (scalar) {
tcg_res[1] = tcg_const_i32(tcg_ctx, 0);
}
for (pass = 0; pass < passes; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
NeonGenNarrowFn *genfn = NULL;
NeonGenNarrowEnvFn *genenvfn = NULL;
if (scalar) {
read_vec_element(s, tcg_op, rn, pass, size + 1);
} else {
read_vec_element(s, tcg_op, rn, pass, MO_64);
}
tcg_res[pass] = tcg_temp_new_i32(tcg_ctx);
switch (opcode) {
case 0x12: /* XTN, SQXTUN */
{
static NeonGenNarrowFn * const xtnfns[3] = {
gen_helper_neon_narrow_u8,
gen_helper_neon_narrow_u16,
tcg_gen_extrl_i64_i32,
};
static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
gen_helper_neon_unarrow_sat8,
gen_helper_neon_unarrow_sat16,
gen_helper_neon_unarrow_sat32,
};
if (u) {
genenvfn = sqxtunfns[size];
} else {
genfn = xtnfns[size];
}
break;
}
case 0x14: /* SQXTN, UQXTN */
{
static NeonGenNarrowEnvFn * const fns[3][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_narrow_sat_u8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_narrow_sat_u16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_narrow_sat_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x16: /* FCVTN, FCVTN2 */
/* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
if (size == 2) {
gen_helper_vfp_fcvtsd(tcg_ctx, tcg_res[pass], tcg_op, tcg_ctx->cpu_env);
} else {
TCGv_i32 tcg_lo = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_hi = tcg_temp_new_i32(tcg_ctx);
tcg_gen_extr_i64_i32(tcg_ctx, tcg_lo, tcg_hi, tcg_op);
gen_helper_vfp_fcvt_f32_to_f16(tcg_ctx, tcg_lo, tcg_lo, tcg_ctx->cpu_env);
gen_helper_vfp_fcvt_f32_to_f16(tcg_ctx, tcg_hi, tcg_hi, tcg_ctx->cpu_env);
tcg_gen_deposit_i32(tcg_ctx, tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
tcg_temp_free_i32(tcg_ctx, tcg_lo);
tcg_temp_free_i32(tcg_ctx, tcg_hi);
}
break;
case 0x56: /* FCVTXN, FCVTXN2 */
/* 64 bit to 32 bit float conversion
* with von Neumann rounding (round to odd)
*/
assert(size == 2);
gen_helper_fcvtx_f64_to_f32(tcg_ctx, tcg_res[pass], tcg_op, tcg_ctx->cpu_env);
break;
default:
g_assert_not_reached();
}
if (genfn) {
genfn(tcg_ctx, tcg_res[pass], tcg_op);
} else if (genenvfn) {
genenvfn(tcg_ctx, tcg_res[pass], tcg_ctx->cpu_env, tcg_op);
}
tcg_temp_free_i64(tcg_ctx, tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res[pass]);
}
clear_vec_high(s, is_q, rd);
}
/* Remaining saturating accumulating ops */
static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
bool is_q, int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
bool is_double = (size == 3);
if (is_double) {
TCGv_i64 tcg_rn = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_rd = tcg_temp_new_i64(tcg_ctx);
int pass;
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_rn, rn, pass, MO_64);
read_vec_element(s, tcg_rd, rd, pass, MO_64);
if (is_u) { /* USQADD */
gen_helper_neon_uqadd_s64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
} else { /* SUQADD */
gen_helper_neon_sqadd_u64(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
}
write_vec_element(s, tcg_rd, rd, pass, MO_64);
}
tcg_temp_free_i64(tcg_ctx, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_rn = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_rd = tcg_temp_new_i32(tcg_ctx);
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
if (is_scalar) {
read_vec_element_i32(s, tcg_rn, rn, pass, size);
read_vec_element_i32(s, tcg_rd, rd, pass, size);
} else {
read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
}
if (is_u) { /* USQADD */
switch (size) {
case 0:
gen_helper_neon_uqadd_s8(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
case 1:
gen_helper_neon_uqadd_s16(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
case 2:
gen_helper_neon_uqadd_s32(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
default:
g_assert_not_reached();
}
} else { /* SUQADD */
switch (size) {
case 0:
gen_helper_neon_sqadd_u8(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
case 1:
gen_helper_neon_sqadd_u16(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
case 2:
gen_helper_neon_sqadd_u32(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn, tcg_rd);
break;
default:
g_assert_not_reached();
}
}
if (is_scalar) {
TCGv_i64 tcg_zero = tcg_const_i64(tcg_ctx, 0);
write_vec_element(s, tcg_zero, rd, 0, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_zero);
}
write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_ctx, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rn);
clear_vec_high(s, is_q, rd);
}
}
/* AdvSIMD scalar two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----+---+-----------+------+-----------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +-----+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 12, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
bool is_fcvt = false;
int rmode;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x3: /* USQADD / SUQADD*/
if (!fp_access_check(s)) {
return;
}
handle_2misc_satacc(s, true, u, false, size, rn, rd);
return;
case 0x7: /* SQABS / SQNEG */
break;
case 0xa: /* CMLT */
if (u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size != 3) {
unallocated_encoding(s);
return;
}
break;
case 0x12: /* SQXTUN */
if (!u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x14: /* SQXTN, UQXTN */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
return;
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d:
case 0x1f:
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = extract32(size, 0, 1) ? 3 : 2;
switch (opcode) {
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d);
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
return;
}
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
case 0x7d: /* FRSQRTE */
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
is_fcvt = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
break;
case 0x1c: /* FCVTAS */
case 0x5c: /* FCVTAU */
/* TIEAWAY doesn't fit in the usual rounding mode encoding */
is_fcvt = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_fcvt) {
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rmode));
tcg_fpstatus = get_fpstatus_ptr(tcg_ctx, false);
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
} else {
tcg_rmode = NULL;
tcg_fpstatus = NULL;
}
if (size == 3) {
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i64 tcg_rd = tcg_temp_new_i64(tcg_ctx);
handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
write_fp_dreg(s, rd, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
} else {
TCGv_i32 tcg_rn = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_rd = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_rn, rn, 0, size);
switch (opcode) {
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
{ gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
};
genfn = fns[size][u];
genfn(tcg_ctx, tcg_rd, tcg_ctx->cpu_env, tcg_rn);
break;
}
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_tosls(tcg_ctx, tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_touls(tcg_ctx, tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rd);
tcg_temp_free_i32(tcg_ctx, tcg_rn);
}
if (is_fcvt) {
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
tcg_temp_free_ptr(tcg_ctx, tcg_fpstatus);
}
}
static void gen_ssra8_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_vec_sar8i_i64(s, a, a, shift);
tcg_gen_vec_add8_i64(s, d, d, a);
}
static void gen_ssra16_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_vec_sar16i_i64(s, a, a, shift);
tcg_gen_vec_add16_i64(s, d, d, a);
}
static void gen_ssra32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, int32_t shift)
{
tcg_gen_sari_i32(s, a, a, shift);
tcg_gen_add_i32(s, d, d, a);
}
static void gen_ssra64_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_sari_i64(s, a, a, shift);
tcg_gen_add_i64(s, d, d, a);
}
static void gen_ssra_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
{
tcg_gen_sari_vec(s, vece, a, a, sh);
tcg_gen_add_vec(s, vece, d, d, a);
}
static void gen_usra8_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_vec_shr8i_i64(s, a, a, shift);
tcg_gen_vec_add8_i64(s, d, d, a);
}
static void gen_usra16_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_vec_shr16i_i64(s, a, a, shift);
tcg_gen_vec_add16_i64(s, d, d, a);
}
static void gen_usra32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, int32_t shift)
{
tcg_gen_shri_i32(s, a, a, shift);
tcg_gen_add_i32(s, d, d, a);
}
static void gen_usra64_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_shri_i64(s, a, a, shift);
tcg_gen_add_i64(s, d, d, a);
}
static void gen_usra_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
{
tcg_gen_shri_vec(s, vece, a, a, sh);
tcg_gen_add_vec(s, vece, d, d, a);
}
static void gen_shr8_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
uint64_t mask = dup_const(MO_8, 0xff >> shift);
TCGv_i64 t = tcg_temp_new_i64(s);
tcg_gen_shri_i64(s, t, a, shift);
tcg_gen_andi_i64(s, t, t, mask);
tcg_gen_andi_i64(s, d, d, ~mask);
tcg_gen_or_i64(s, d, d, t);
tcg_temp_free_i64(s, t);
}
static void gen_shr16_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
uint64_t mask = dup_const(MO_16, 0xffff >> shift);
TCGv_i64 t = tcg_temp_new_i64(s);
tcg_gen_shri_i64(s, t, a, shift);
tcg_gen_andi_i64(s, t, t, mask);
tcg_gen_andi_i64(s, d, d, ~mask);
tcg_gen_or_i64(s, d, d, t);
tcg_temp_free_i64(s, t);
}
static void gen_shr32_ins_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, int32_t shift)
{
tcg_gen_shri_i32(s, a, a, shift);
tcg_gen_deposit_i32(s, d, d, a, 0, 32 - shift);
}
static void gen_shr64_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_shri_i64(s, a, a, shift);
tcg_gen_deposit_i64(s, d, d, a, 0, 64 - shift);
}
static void gen_shr_ins_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
{
uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
TCGv_vec t = tcg_temp_new_vec_matching(s, d);
TCGv_vec m = tcg_temp_new_vec_matching(s, d);
tcg_gen_dupi_vec(s, vece, m, mask ^ (mask >> sh));
tcg_gen_shri_vec(s, vece, t, a, sh);
tcg_gen_and_vec(s, vece, d, d, m);
tcg_gen_or_vec(s, vece, d, d, t);
tcg_temp_free_vec(s, t);
tcg_temp_free_vec(s, m);
}
/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
static const GVecGen2i ssra_op[4] = {
{ .fni8 = gen_ssra8_i64,
.fniv = gen_ssra_vec,
.load_dest = true,
.opc = INDEX_op_sari_vec,
.vece = MO_8 },
{ .fni8 = gen_ssra16_i64,
.fniv = gen_ssra_vec,
.load_dest = true,
.opc = INDEX_op_sari_vec,
.vece = MO_16 },
{ .fni4 = gen_ssra32_i32,
.fniv = gen_ssra_vec,
.load_dest = true,
.opc = INDEX_op_sari_vec,
.vece = MO_32 },
{ .fni8 = gen_ssra64_i64,
.fniv = gen_ssra_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.opc = INDEX_op_sari_vec,
.vece = MO_64 },
};
static const GVecGen2i usra_op[4] = {
{ .fni8 = gen_usra8_i64,
.fniv = gen_usra_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_8, },
{ .fni8 = gen_usra16_i64,
.fniv = gen_usra_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_16, },
{ .fni4 = gen_usra32_i32,
.fniv = gen_usra_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_32, },
{ .fni8 = gen_usra64_i64,
.fniv = gen_usra_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_64, },
};
static const GVecGen2i sri_op[4] = {
{ .fni8 = gen_shr8_ins_i64,
.fniv = gen_shr_ins_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_8 },
{ .fni8 = gen_shr16_ins_i64,
.fniv = gen_shr_ins_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_16 },
{ .fni4 = gen_shr32_ins_i32,
.fniv = gen_shr_ins_vec,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_32 },
{ .fni8 = gen_shr64_ins_i64,
.fniv = gen_shr_ins_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.opc = INDEX_op_shri_vec,
.vece = MO_64 },
};
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
bool accumulate = false;
int dsize = is_q ? 128 : 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
TCGv_i64 tcg_round;
uint64_t round_const;
int i;
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
if (size > 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
if (is_u) {
/* Shift count same as element size produces zero to add. */
if (shift == 8 << size) {
goto done;
}
gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
} else {
/* Shift count same as element size produces all sign to add. */
if (shift == 8 << size) {
shift -= 1;
}
gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
}
return;
case 0x08: /* SRI */
/* Shift count same as element size is valid but does nothing. */
if (shift == 8 << size) {
goto done;
}
gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
return;
case 0x00: /* SSHR / USHR */
if (is_u) {
if (shift == 8 << size) {
/* Shift count the same size as element size produces zero. */
tcg_gen_gvec_dup8i(tcg_ctx, vec_full_reg_offset(s, rd),
is_q ? 16 : 8, vec_full_reg_size(s), 0);
} else {
gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
}
} else {
/* Shift count the same size as element size produces all sign. */
if (shift == 8 << size) {
shift -= 1;
}
gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
}
return;
case 0x04: /* SRSHR / URSHR (rounding) */
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
accumulate = true;
break;
default:
g_assert_not_reached();
}
round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(tcg_ctx, round_const);
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, memop);
if (accumulate) {
read_vec_element(s, tcg_rd, rd, i, memop);
}
handle_shri_with_rndacc(s, tcg_rd, tcg_rn, tcg_round,
accumulate, is_u, size, shift);
write_vec_element(s, tcg_rd, rd, i, size);
}
tcg_temp_free_i64(tcg_ctx, tcg_round);
done:
clear_vec_high(s, is_q, rd);
}
static void gen_shl8_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
uint64_t mask = dup_const(MO_8, 0xff << shift);
TCGv_i64 t = tcg_temp_new_i64(s);
tcg_gen_shli_i64(s, t, a, shift);
tcg_gen_andi_i64(s, t, t, mask);
tcg_gen_andi_i64(s, d, d, ~mask);
tcg_gen_or_i64(s, d, d, t);
tcg_temp_free_i64(s, t);
}
static void gen_shl16_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
uint64_t mask = dup_const(MO_16, 0xffff << shift);
TCGv_i64 t = tcg_temp_new_i64(s);
tcg_gen_shli_i64(s, t, a, shift);
tcg_gen_andi_i64(s, t, t, mask);
tcg_gen_andi_i64(s, d, d, ~mask);
tcg_gen_or_i64(s, d, d, t);
tcg_temp_free_i64(s, t);
}
static void gen_shl32_ins_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, int32_t shift)
{
tcg_gen_deposit_i32(s, d, d, a, shift, 32 - shift);
}
static void gen_shl64_ins_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_deposit_i64(s, d, d, a, shift, 64 - shift);
}
static void gen_shl_ins_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
{
uint64_t mask = (1ull << sh) - 1;
TCGv_vec t = tcg_temp_new_vec_matching(s, d);
TCGv_vec m = tcg_temp_new_vec_matching(s, d);
tcg_gen_dupi_vec(s, vece, m, mask);
tcg_gen_shli_vec(s, vece, t, a, sh);
tcg_gen_and_vec(s, vece, d, d, m);
tcg_gen_or_vec(s, vece, d, d, t);
tcg_temp_free_vec(s, t);
tcg_temp_free_vec(s, m);
}
/* SHL/SLI - Vector shift left */
static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
int immh, int immb, int opcode, int rn, int rd)
{
static const GVecGen2i shi_op[4] = {
{ .fni8 = gen_shl8_ins_i64,
.fniv = gen_shl_ins_vec,
.opc = INDEX_op_shli_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_8 },
{ .fni8 = gen_shl16_ins_i64,
.fniv = gen_shl_ins_vec,
.opc = INDEX_op_shli_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_16 },
{ .fni4 = gen_shl32_ins_i32,
.fniv = gen_shl_ins_vec,
.opc = INDEX_op_shli_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_32 },
{ .fni8 = gen_shl64_ins_i64,
.fniv = gen_shl_ins_vec,
.opc = INDEX_op_shli_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_64 },
};
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
if (size > 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (insert) {
gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
} else {
gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
}
}
/* USHLL/SHLL - Vector shift left with widening */
static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGv_i64 tcg_rn = new_tmp_a64(s);
TCGv_i64 tcg_rd = new_tmp_a64(s);
int i;
if (size >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* For the LL variants the store is larger than the load,
* so if rd == rn we would overwrite parts of our input.
* So load everything right now and use shifts in the main loop.
*/
read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
for (i = 0; i < elements; i++) {
tcg_gen_shri_i64(tcg_ctx, tcg_rd, tcg_rn, i * esize);
ext_and_shift_reg(tcg_ctx, tcg_rd, tcg_rd, size | (!is_u << 2), 0);
tcg_gen_shli_i64(tcg_ctx, tcg_rd, tcg_rd, shift);
write_vec_element(s, tcg_rd, rd, i, size + 1);
}
}
/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
int immh, int immb, int opcode, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
int shift = (2 * esize) - immhb;
bool round = extract32(opcode, 0, 1);
TCGv_i64 tcg_rn, tcg_rd, tcg_final;
TCGv_i64 tcg_round;
int i;
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = tcg_temp_new_i64(tcg_ctx);
tcg_rd = tcg_temp_new_i64(tcg_ctx);
tcg_final = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
if (round) {
uint64_t round_const = 1ULL << (shift - 1);
tcg_round = tcg_const_i64(tcg_ctx, round_const);
} else {
tcg_round = NULL;
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, size+1);
handle_shri_with_rndacc(s, tcg_rd, tcg_rn, tcg_round,
false, true, size+1, shift);
tcg_gen_deposit_i64(tcg_ctx, tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
if (!is_q) {
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
if (round) {
tcg_temp_free_i64(tcg_ctx, tcg_round);
}
tcg_temp_free_i64(tcg_ctx, tcg_rn);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_final);
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +---+---+---+-------------+------+------+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +---+---+---+-------------+------+------+--------+---+------+------+
*/
static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA (accumulate) */
case 0x04: /* SRSHR / URSHR (rounding) */
case 0x06: /* SRSRA / URSRA (accum + rounding) */
handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x10: /* SHRN */
case 0x11: /* RSHRN / SQRSHRUN */
if (is_u) {
handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
opcode, rn, rd);
} else {
handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
}
break;
case 0x12: /* SQSHRN / UQSHRN */
case 0x13: /* SQRSHRN / UQRSHRN */
handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x14: /* SSHLL / USHLL */
handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF / UCVTF */
handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS/ FCVTZU */
handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
}
/* Generate code to do a "long" addition or subtraction, ie one done in
* TCGv_i64 on vector lanes twice the width specified by size.
*/
static void gen_neon_addl(TCGContext *tcg_ctx, int size, bool is_sub, TCGv_i64 tcg_res,
TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
{
static NeonGenTwo64OpFn * const fns[3][2] = {
{ gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
{ gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
{ tcg_gen_add_i64, tcg_gen_sub_i64 },
};
NeonGenTwo64OpFn *genfn;
assert(size < 3);
genfn = fns[size][is_sub];
genfn(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
}
static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* 3-reg-different widening insns: 64 x 64 -> 128 */
TCGv_i64 tcg_res[2];
int pass, accop;
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
/* Does this op do an adding accumulate, a subtracting accumulate,
* or no accumulate at all?
*/
switch (opcode) {
case 5:
case 8:
case 9:
accop = 1;
break;
case 10:
case 11:
accop = -1;
break;
default:
accop = 0;
break;
}
if (accop != 0) {
read_vec_element(s, tcg_res[0], rd, 0, MO_64);
read_vec_element(s, tcg_res[1], rd, 1, MO_64);
}
/* size == 2 means two 32x32->64 operations; this is worth special
* casing because we can generally handle it inline.
*/
if (size == 2) {
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_passres;
TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
int elt = pass + is_q * 2;
read_vec_element(s, tcg_op1, rn, elt, memop);
read_vec_element(s, tcg_op2, rm, elt, memop);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64(tcg_ctx);
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
tcg_gen_add_i64(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
break;
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
tcg_gen_sub_i64(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
break;
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
{
TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(tcg_ctx);
tcg_gen_sub_i64(tcg_ctx, tcg_tmp1, tcg_op1, tcg_op2);
tcg_gen_sub_i64(tcg_ctx, tcg_tmp2, tcg_op2, tcg_op1);
tcg_gen_movcond_i64(tcg_ctx, is_u ? TCG_COND_GEU : TCG_COND_GE,
tcg_passres,
tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
tcg_temp_free_i64(tcg_ctx, tcg_tmp1);
tcg_temp_free_i64(tcg_ctx, tcg_tmp2);
break;
}
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
tcg_gen_mul_i64(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
tcg_gen_mul_i64(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_passres, tcg_ctx->cpu_env,
tcg_passres, tcg_passres);
break;
default:
g_assert_not_reached();
}
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
tcg_gen_neg_i64(tcg_ctx, tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_res[pass], tcg_ctx->cpu_env,
tcg_res[pass], tcg_passres);
} else if (accop > 0) {
tcg_gen_add_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_passres);
} else if (accop < 0) {
tcg_gen_sub_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_passres);
}
if (accop != 0) {
tcg_temp_free_i64(tcg_ctx, tcg_passres);
}
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
}
} else {
/* size 0 or 1, generally helper functions */
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i64 tcg_passres;
int elt = pass + is_q * 2;
read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64(tcg_ctx);
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
{
TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(tcg_ctx);
static NeonGenWidenFn * const widenfns[2][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
widenfn(tcg_ctx, tcg_op2_64, tcg_op2);
widenfn(tcg_ctx, tcg_passres, tcg_op1);
gen_neon_addl(tcg_ctx, size, (opcode == 2), tcg_passres,
tcg_passres, tcg_op2_64);
tcg_temp_free_i64(tcg_ctx, tcg_op2_64);
break;
}
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_abdl_u16(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s16(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_abdl_u32(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s32(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_mull_u8(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s8(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_mull_u16(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s16(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
assert(size == 1);
gen_helper_neon_mull_s16(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_passres, tcg_ctx->cpu_env,
tcg_passres, tcg_passres);
break;
case 14: /* PMULL */
assert(size == 0);
gen_helper_neon_mull_p8(tcg_ctx, tcg_passres, tcg_op1, tcg_op2);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
if (accop != 0) {
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
gen_helper_neon_negl_u32(tcg_ctx, tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_res[pass], tcg_ctx->cpu_env,
tcg_res[pass],
tcg_passres);
} else {
gen_neon_addl(tcg_ctx, size, (accop < 0), tcg_res[pass],
tcg_res[pass], tcg_passres);
}
tcg_temp_free_i64(tcg_ctx, tcg_passres);
}
}
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
}
static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i64 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(tcg_ctx);
static NeonGenWidenFn * const widenfns[3][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
{ tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
widenfn(tcg_ctx, tcg_op2_wide, tcg_op2);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
gen_neon_addl(tcg_ctx, size, (opcode == 3),
tcg_res[pass], tcg_op1, tcg_op2_wide);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2_wide);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
}
static void do_narrow_round_high_u32(TCGContext *tcg_ctx, TCGv_i32 res, TCGv_i64 in)
{
tcg_gen_addi_i64(tcg_ctx, in, in, 1U << 31);
tcg_gen_extrh_i64_i32(tcg_ctx, res, in);
}
static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_i32 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_wideres = tcg_temp_new_i64(tcg_ctx);
static NeonGenNarrowFn * const narrowfns[3][2] = {
{ gen_helper_neon_narrow_high_u8,
gen_helper_neon_narrow_round_high_u8 },
{ gen_helper_neon_narrow_high_u16,
gen_helper_neon_narrow_round_high_u16 },
{ tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
};
NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
gen_neon_addl(tcg_ctx, size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_res[pass] = tcg_temp_new_i32(tcg_ctx);
gennarrow(tcg_ctx, tcg_res[pass], tcg_wideres);
tcg_temp_free_i64(tcg_ctx, tcg_wideres);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res[pass]);
}
clear_vec_high(s, is_q, rd);
}
static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* PMULL of 64 x 64 -> 128 is an odd special case because it
* is the only three-reg-diff instruction which produces a
* 128-bit wide result from a single operation. However since
* it's possible to calculate the two halves more or less
* separately we just use two helper calls.
*/
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, is_q, MO_64);
read_vec_element(s, tcg_op2, rm, is_q, MO_64);
gen_helper_neon_pmull_64_lo(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, 0, MO_64);
gen_helper_neon_pmull_64_hi(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
/* AdvSIMD three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
{
/* Instructions in this group fall into three basic classes
* (in each case with the operation working on each element in
* the input vectors):
* (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
* 128 bit input)
* (2) wide 64 x 128 -> 128
* (3) narrowing 128 x 128 -> 64
* Here we do initial decode, catch unallocated cases and
* dispatch to separate functions for each class.
*/
int is_q = extract32(insn, 30, 1);
int is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
switch (opcode) {
case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
/* 64 x 128 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
/* 128 x 128 -> 64 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 14: /* PMULL, PMULL2 */
if (is_u || size == 1 || size == 2) {
unallocated_encoding(s);
return;
}
if (size == 3) {
if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_pmull_64(s, is_q, rd, rn, rm);
return;
}
goto is_widening;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
if (is_u || size == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
/* 64 x 64 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
is_widening:
if (!fp_access_check(s)) {
return;
}
handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
default:
/* opcode 15 not allocated */
unallocated_encoding(s);
break;
}
}
static void gen_bsl_i64(TCGContext *s, TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
{
tcg_gen_xor_i64(s, rn, rn, rm);
tcg_gen_and_i64(s, rn, rn, rd);
tcg_gen_xor_i64(s, rd, rm, rn);
}
static void gen_bit_i64(TCGContext *s, TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
{
tcg_gen_xor_i64(s, rn, rn, rd);
tcg_gen_and_i64(s, rn, rn, rm);
tcg_gen_xor_i64(s, rd, rd, rn);
}
static void gen_bif_i64(TCGContext *s, TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
{
tcg_gen_xor_i64(s, rn, rn, rd);
tcg_gen_andc_i64(s, rn, rn, rm);
tcg_gen_xor_i64(s, rd, rd, rn);
}
static void gen_bsl_vec(TCGContext *s, unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
{
tcg_gen_xor_vec(s, vece, rn, rn, rm);
tcg_gen_and_vec(s, vece, rn, rn, rd);
tcg_gen_xor_vec(s, vece, rd, rm, rn);
}
static void gen_bit_vec(TCGContext *s, unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
{
tcg_gen_xor_vec(s, vece, rn, rn, rd);
tcg_gen_and_vec(s, vece, rn, rn, rm);
tcg_gen_xor_vec(s, vece, rd, rd, rn);
}
static void gen_bif_vec(TCGContext *s, unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
{
tcg_gen_xor_vec(s, vece, rn, rn, rd);
tcg_gen_andc_vec(s, vece, rn, rn, rm);
tcg_gen_xor_vec(s, vece, rd, rd, rn);
}
/* Logic op (opcode == 3) subgroup of C3.6.16. */
static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
{
static const GVecGen3 bsl_op = {
.fni8 = gen_bsl_i64,
.fniv = gen_bsl_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true
};
static const GVecGen3 bit_op = {
.fni8 = gen_bit_i64,
.fniv = gen_bit_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true
};
static const GVecGen3 bif_op = {
.fni8 = gen_bif_i64,
.fniv = gen_bif_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true
};
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool is_u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
if (!fp_access_check(s)) {
return;
}
switch (size + 4 * is_u) {
case 0: /* AND */
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
return;
case 1: /* BIC */
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
return;
case 2: /* ORR */
if (rn == rm) { /* MOV */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
} else {
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
}
return;
case 3: /* ORN */
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
return;
case 4: /* EOR */
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
return;
case 5: /* BSL bitwise select */
gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
return;
case 6: /* BIT, bitwise insert if true */
gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
return;
case 7: /* BIF, bitwise insert if false */
gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
return;
default:
g_assert_not_reached();
}
}
/* Helper functions for 32 bit comparisons */
static void gen_max_s32(TCGContext *tcg_ctx, TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GE, res, op1, op2, op1, op2);
}
static void gen_max_u32(TCGContext *tcg_ctx, TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GEU, res, op1, op2, op1, op2);
}
static void gen_min_s32(TCGContext *tcg_ctx, TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_LE, res, op1, op2, op1, op2);
}
static void gen_min_u32(TCGContext *tcg_ctx, TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
{
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_LEU, res, op1, op2, op1, op2);
}
/* Pairwise op subgroup of C3.6.16.
*
* This is called directly or via the handle_3same_float for float pairwise
* operations where the opcode and size are calculated differently.
*/
static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
int size, int rn, int rm, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
TCGv_ptr fpst;
int pass;
/* Floating point operations need fpst */
if (opcode >= 0x58) {
fpst = get_fpstatus_ptr(tcg_ctx, false);
} else {
fpst = NULL;
}
if (!fp_access_check(s)) {
return;
}
/* These operations work on the concatenated rm:rn, with each pair of
* adjacent elements being operated on to produce an element in the result.
*/
if (size == 3) {
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
int passreg = (pass == 0) ? rn : rm;
read_vec_element(s, tcg_op1, passreg, 0, MO_64);
read_vec_element(s, tcg_op2, passreg, 1, MO_64);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
switch (opcode) {
case 0x17: /* ADDP */
tcg_gen_add_i64(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2);
break;
case 0x58: /* FMAXNMP */
gen_helper_vfp_maxnumd(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5a: /* FADDP */
gen_helper_vfp_addd(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5e: /* FMAXP */
gen_helper_vfp_maxd(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x78: /* FMINNMP */
gen_helper_vfp_minnumd(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x7e: /* FMINP */
gen_helper_vfp_mind(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
} else {
int maxpass = is_q ? 4 : 2;
TCGv_i32 tcg_res[4];
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
NeonGenTwoOpFn *genfn = NULL;
int passreg = pass < (maxpass / 2) ? rn : rm;
int passelt = (is_q && (pass & 1)) ? 2 : 0;
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
tcg_res[pass] = tcg_temp_new_i32(tcg_ctx);
switch (opcode) {
case 0x17: /* ADDP */
{
static NeonGenTwoOpFn * const fns[3] = {
gen_helper_neon_padd_u8,
gen_helper_neon_padd_u16,
tcg_gen_add_i32,
};
genfn = fns[size];
break;
}
case 0x14: /* SMAXP, UMAXP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
{ gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
{ gen_max_s32, gen_max_u32 },
};
genfn = fns[size][u];
break;
}
case 0x15: /* SMINP, UMINP */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
{ gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
{ gen_min_s32, gen_min_u32 },
};
genfn = fns[size][u];
break;
}
/* The FP operations are all on single floats (32 bit) */
case 0x58: /* FMAXNMP */
gen_helper_vfp_maxnums(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5a: /* FADDP */
gen_helper_vfp_adds(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x5e: /* FMAXP */
gen_helper_vfp_maxs(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x78: /* FMINNMP */
gen_helper_vfp_minnums(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x7e: /* FMINP */
gen_helper_vfp_mins(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
/* FP ops called directly, otherwise call now */
if (genfn) {
genfn(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2);
}
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
}
for (pass = 0; pass < maxpass; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res[pass]);
}
clear_vec_high(s, is_q, rd);
}
if (fpst) {
tcg_temp_free_ptr(tcg_ctx, fpst);
}
}
/* Floating point op subgroup of C3.6.16. */
static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
{
/* For floating point ops, the U, size[1] and opcode bits
* together indicate the operation. size[0] indicates single
* or double.
*/
int fpopcode = extract32(insn, 11, 5)
| (extract32(insn, 23, 1) << 5)
| (extract32(insn, 29, 1) << 6);
int is_q = extract32(insn, 30, 1);
int size = extract32(insn, 22, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int datasize = is_q ? 128 : 64;
int esize = 32 << size;
int elements = datasize / esize;
if (size == 1 && !is_q) {
unallocated_encoding(s);
return;
}
switch (fpopcode) {
case 0x58: /* FMAXNMP */
case 0x5a: /* FADDP */
case 0x5e: /* FMAXP */
case 0x78: /* FMINNMP */
case 0x7e: /* FMINP */
if (size && !is_q) {
unallocated_encoding(s);
return;
}
handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
rn, rm, rd);
return;
case 0x1b: /* FMULX */
case 0x1f: /* FRECPS */
case 0x3f: /* FRSQRTS */
case 0x5d: /* FACGE */
case 0x7d: /* FACGT */
case 0x19: /* FMLA */
case 0x39: /* FMLS */
case 0x18: /* FMAXNM */
case 0x1a: /* FADD */
case 0x1c: /* FCMEQ */
case 0x1e: /* FMAX */
case 0x38: /* FMINNM */
case 0x3a: /* FSUB */
case 0x3e: /* FMIN */
case 0x5b: /* FMUL */
case 0x5c: /* FCMGE */
case 0x5f: /* FDIV */
case 0x7a: /* FABD */
case 0x7c: /* FCMGT */
if (!fp_access_check(s)) {
return;
}
handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
return;
default:
unallocated_encoding(s);
return;
}
}
static void gen_mla8_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
gen_helper_neon_mul_u8(s, a, a, b);
gen_helper_neon_add_u8(s, d, d, a);
}
static void gen_mla16_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
gen_helper_neon_mul_u16(s, a, a, b);
gen_helper_neon_add_u16(s, d, d, a);
}
static void gen_mla32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
tcg_gen_mul_i32(s, a, a, b);
tcg_gen_add_i32(s, d, d, a);
}
static void gen_mla64_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_mul_i64(s, a, a, b);
tcg_gen_add_i64(s, d, d, a);
}
static void gen_mla_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
{
tcg_gen_mul_vec(s, vece, a, a, b);
tcg_gen_add_vec(s, vece, d, d, a);
}
static void gen_mls8_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
gen_helper_neon_mul_u8(s, a, a, b);
gen_helper_neon_sub_u8(s, d, d, a);
}
static void gen_mls16_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
gen_helper_neon_mul_u16(s, a, a, b);
gen_helper_neon_sub_u16(s, d, d, a);
}
static void gen_mls32_i32(TCGContext *s, TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
{
tcg_gen_mul_i32(s, a, a, b);
tcg_gen_sub_i32(s, d, d, a);
}
static void gen_mls64_i64(TCGContext *s, TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_mul_i64(s, a, a, b);
tcg_gen_sub_i64(s, d, d, a);
}
static void gen_mls_vec(TCGContext *s, unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
{
tcg_gen_mul_vec(s, vece, a, a, b);
tcg_gen_sub_vec(s, vece, d, d, a);
}
/* Integer op subgroup of C3.6.16. */
static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
{
static const GVecGen3 cmtst_op[4] = {
{ .fni4 = gen_helper_neon_tst_u8,
.fniv = gen_cmtst_vec,
.vece = MO_8 },
{ .fni4 = gen_helper_neon_tst_u16,
.fniv = gen_cmtst_vec,
.vece = MO_16 },
{ .fni4 = gen_cmtst_i32,
.fniv = gen_cmtst_vec,
.vece = MO_32 },
{ .fni8 = gen_cmtst_i64,
.fniv = gen_cmtst_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static const GVecGen3 mla_op[4] = {
{ .fni4 = gen_mla8_i32,
.fniv = gen_mla_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_8 },
{ .fni4 = gen_mla16_i32,
.fniv = gen_mla_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_16 },
{ .fni4 = gen_mla32_i32,
.fniv = gen_mla_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_32 },
{ .fni8 = gen_mla64_i64,
.fniv = gen_mla_vec,
.opc = INDEX_op_mul_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_64 },
};
static const GVecGen3 mls_op[4] = {
{ .fni4 = gen_mls8_i32,
.fniv = gen_mls_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_8 },
{ .fni4 = gen_mls16_i32,
.fniv = gen_mls_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_16 },
{ .fni4 = gen_mls32_i32,
.fniv = gen_mls_vec,
.opc = INDEX_op_mul_vec,
.load_dest = true,
.vece = MO_32 },
{ .fni8 = gen_mls64_i64,
.fniv = gen_mls_vec,
.opc = INDEX_op_mul_vec,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.load_dest = true,
.vece = MO_64 },
};
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int is_q = extract32(insn, 30, 1);
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 11, 5);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pass;
TCGCond cond;
switch (opcode) {
case 0x13: /* MUL, PMUL */
if (u && size != 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x0: /* SHADD, UHADD */
case 0x2: /* SRHADD, URHADD */
case 0x4: /* SHSUB, UHSUB */
case 0xc: /* SMAX, UMAX */
case 0xd: /* SMIN, UMIN */
case 0xe: /* SABD, UABD */
case 0xf: /* SABA, UABA */
case 0x12: /* MLA, MLS */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x16: /* SQDMULH, SQRDMULH */
if (size == 0 || size == 3) {
unallocated_encoding(s);
return;
}
break;
default:
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x10: /* ADD, SUB */
if (u) {
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
} else {
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
}
return;
case 0x13: /* MUL, PMUL */
if (!u) { /* MUL */
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
return;
}
break;
case 0x12: /* MLA, MLS */
if (u) {
gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
} else {
gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
}
return;
case 0x11:
if (!u) { /* CMTST */
gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
return;
}
/* else CMEQ */
cond = TCG_COND_EQ;
goto do_gvec_cmp;
case 0x06: /* CMGT, CMHI */
cond = u ? TCG_COND_GTU : TCG_COND_GT;
goto do_gvec_cmp;
case 0x07: /* CMGE, CMHS */
cond = u ? TCG_COND_GEU : TCG_COND_GE;
do_gvec_cmp:
tcg_gen_gvec_cmp(tcg_ctx, cond, size, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm),
is_q ? 16 : 8, vec_full_reg_size(s));
return;
}
if (size == 3) {
assert(is_q);
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
}
} else {
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
NeonGenTwoOpFn *genfn = NULL;
NeonGenTwoOpEnvFn *genenvfn = NULL;
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
switch (opcode) {
case 0x0: /* SHADD, UHADD */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
{ gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
{ gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x1: /* SQADD, UQADD */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
{ gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
{ gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x2: /* SRHADD, URHADD */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
{ gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
{ gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x4: /* SHSUB, UHSUB */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
{ gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
{ gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
};
genfn = fns[size][u];
break;
}
case 0x5: /* SQSUB, UQSUB */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
{ gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
{ gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x8: /* SSHL, USHL */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
{ gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
{ gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
};
genfn = fns[size][u];
break;
}
case 0x9: /* SQSHL, UQSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xa: /* SRSHL, URSHL */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
{ gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
{ gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
};
genfn = fns[size][u];
break;
}
case 0xb: /* SQRSHL, UQRSHL */
{
static NeonGenTwoOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0xc: /* SMAX, UMAX */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
{ gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
{ gen_max_s32, gen_max_u32 },
};
genfn = fns[size][u];
break;
}
case 0xd: /* SMIN, UMIN */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
{ gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
{ gen_min_s32, gen_min_u32 },
};
genfn = fns[size][u];
break;
}
case 0xe: /* SABD, UABD */
case 0xf: /* SABA, UABA */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
{ gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
{ gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
};
genfn = fns[size][u];
break;
}
case 0x13: /* MUL, PMUL */
assert(u); /* PMUL */
assert(size == 0);
genfn = gen_helper_neon_mul_p8;
break;
case 0x16: /* SQDMULH, SQRDMULH */
{
static NeonGenTwoOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
{ gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
};
assert(size == 1 || size == 2);
genenvfn = fns[size - 1][u];
break;
}
default:
g_assert_not_reached();
}
if (genenvfn) {
genenvfn(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_op1, tcg_op2);
} else {
genfn(tcg_ctx, tcg_res, tcg_op1, tcg_op2);
}
if (opcode == 0xf) {
/* SABA, UABA: accumulating ops */
static NeonGenTwoOpFn * const fns[3] = {
gen_helper_neon_add_u8,
gen_helper_neon_add_u16,
tcg_gen_add_i32,
};
read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
fns[size](tcg_ctx, tcg_res, tcg_op1, tcg_res);
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
}
}
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD three same
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+---+------+------+
*/
static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
{
int opcode = extract32(insn, 11, 5);
switch (opcode) {
case 0x3: /* logic ops */
disas_simd_3same_logic(s, insn);
break;
case 0x17: /* ADDP */
case 0x14: /* SMAXP, UMAXP */
case 0x15: /* SMINP, UMINP */
{
/* Pairwise operations */
int is_q = extract32(insn, 30, 1);
int u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (opcode == 0x17) {
if (u || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
} else {
if (size == 3) {
unallocated_encoding(s);
return;
}
}
handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
break;
}
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31:
/* floating point ops, sz[1] and U are part of opcode */
disas_simd_3same_float(s, insn);
break;
default:
disas_simd_3same_int(s, insn);
break;
}
}
/*
* Advanced SIMD three same (ARMv8.2 FP16 variants)
*
* 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
* +---+---+---+-----------+---------+------+-----+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
* +---+---+---+-----------+---------+------+-----+--------+---+------+------+
*
* This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
* (register), FACGE, FABD, FCMGT (register) and FACGT.
*
*/
static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int opcode, fpopcode;
int is_q, u, a, rm, rn, rd;
int datasize, elements;
int pass;
TCGv_ptr fpst;
bool pairwise = false;
if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* For these floating point ops, the U, a and opcode bits
* together indicate the operation.
*/
opcode = extract32(insn, 11, 3);
u = extract32(insn, 29, 1);
a = extract32(insn, 23, 1);
is_q = extract32(insn, 30, 1);
rm = extract32(insn, 16, 5);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
fpopcode = opcode | (a << 3) | (u << 4);
datasize = is_q ? 128 : 64;
elements = datasize / 16;
switch (fpopcode) {
case 0x10: /* FMAXNMP */
case 0x12: /* FADDP */
case 0x16: /* FMAXP */
case 0x18: /* FMINNMP */
case 0x1e: /* FMINP */
pairwise = true;
break;
}
fpst = get_fpstatus_ptr(tcg_ctx, true);
if (pairwise) {
int maxpass = is_q ? 8 : 4;
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res[8];
for (pass = 0; pass < maxpass; pass++) {
int passreg = pass < (maxpass / 2) ? rn : rm;
int passelt = (pass << 1) & (maxpass - 1);
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
tcg_res[pass] = tcg_temp_new_i32(tcg_ctx);
switch (fpopcode) {
case 0x10: /* FMAXNMP */
gen_helper_advsimd_maxnumh(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2,
fpst);
break;
case 0x12: /* FADDP */
gen_helper_advsimd_addh(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x16: /* FMAXP */
gen_helper_advsimd_maxh(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
case 0x18: /* FMINNMP */
gen_helper_advsimd_minnumh(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2,
fpst);
break;
case 0x1e: /* FMINP */
gen_helper_advsimd_minh(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2, fpst);
break;
default:
g_assert_not_reached();
}
}
for (pass = 0; pass < maxpass; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
tcg_temp_free_i32(tcg_ctx, tcg_res[pass]);
}
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
} else {
for (pass = 0; pass < elements; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_op2 = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
switch (fpopcode) {
case 0x0: /* FMAXNM */
gen_helper_advsimd_maxnumh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1: /* FMLA */
read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
gen_helper_advsimd_muladdh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, tcg_res,
fpst);
break;
case 0x2: /* FADD */
gen_helper_advsimd_addh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x3: /* FMULX */
gen_helper_advsimd_mulxh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x4: /* FCMEQ */
gen_helper_advsimd_ceq_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x6: /* FMAX */
gen_helper_advsimd_maxh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x7: /* FRECPS */
gen_helper_recpsf_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x8: /* FMINNM */
gen_helper_advsimd_minnumh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x9: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
tcg_gen_xori_i32(tcg_ctx, tcg_op1, tcg_op1, 0x8000);
read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
gen_helper_advsimd_muladdh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, tcg_res,
fpst);
break;
case 0xa: /* FSUB */
gen_helper_advsimd_subh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xe: /* FMIN */
gen_helper_advsimd_minh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0xf: /* FRSQRTS */
gen_helper_rsqrtsf_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x13: /* FMUL */
gen_helper_advsimd_mulh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x14: /* FCMGE */
gen_helper_advsimd_cge_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x15: /* FACGE */
gen_helper_advsimd_acge_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x17: /* FDIV */
gen_helper_advsimd_divh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1a: /* FABD */
gen_helper_advsimd_subh(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
tcg_gen_andi_i32(tcg_ctx, tcg_res, tcg_res, 0x7fff);
break;
case 0x1c: /* FCMGT */
gen_helper_advsimd_cgt_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
case 0x1d: /* FACGT */
gen_helper_advsimd_acgt_f16(tcg_ctx, tcg_res, tcg_op1, tcg_op2, fpst);
break;
default:
fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
__func__, insn, fpopcode, s->pc);
g_assert_not_reached();
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
}
}
tcg_temp_free_ptr(tcg_ctx, fpst);
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD three same extra
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
* | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
*/
static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
int feature, rot;
switch (u * 16 + opcode) {
case 0x10: /* SQRDMLAH (vector) */
case 0x11: /* SQRDMLSH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
feature = ARM_FEATURE_V8_RDM;
break;
case 0x8: /* FCMLA, #0 */
case 0x9: /* FCMLA, #90 */
case 0xa: /* FCMLA, #180 */
case 0xb: /* FCMLA, #270 */
case 0xc: /* FCADD, #90 */
case 0xe: /* FCADD, #270 */
if (size == 0
|| (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
|| (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
feature = ARM_FEATURE_V8_FCMA;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x0: /* SQRDMLAH (vector) */
switch (size) {
case 1:
gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
break;
case 2:
gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
break;
default:
g_assert_not_reached();
}
return;
case 0x1: /* SQRDMLSH (vector) */
switch (size) {
case 1:
gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
break;
case 2:
gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
break;
default:
g_assert_not_reached();
}
return;
case 0x8: /* FCMLA, #0 */
case 0x9: /* FCMLA, #90 */
case 0xa: /* FCMLA, #180 */
case 0xb: /* FCMLA, #270 */
rot = extract32(opcode, 0, 2);
switch (size) {
case 1:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
gen_helper_gvec_fcmlah);
break;
case 2:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
gen_helper_gvec_fcmlas);
break;
case 3:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
gen_helper_gvec_fcmlad);
break;
default:
g_assert_not_reached();
}
return;
case 0xc: /* FCADD, #90 */
case 0xe: /* FCADD, #270 */
rot = extract32(opcode, 1, 1);
switch (size) {
case 1:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcaddh);
break;
case 2:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcadds);
break;
case 3:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcaddd);
break;
default:
g_assert_not_reached();
}
return;
default:
g_assert_not_reached();
}
}
static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Handle 2-reg-misc ops which are widening (so each size element
* in the source becomes a 2*size element in the destination.
* The only instruction like this is FCVTL.
*/
int pass;
if (size == 3) {
/* 32 -> 64 bit fp conversion */
TCGv_i64 tcg_res[2];
int srcelt = is_q ? 2 : 0;
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
gen_helper_vfp_fcvtds(tcg_ctx, tcg_res[pass], tcg_op, tcg_ctx->cpu_env);
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
} else {
/* 16 -> 32 bit fp conversion */
int srcelt = is_q ? 4 : 0;
TCGv_i32 tcg_res[4];
for (pass = 0; pass < 4; pass++) {
tcg_res[pass] = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
gen_helper_vfp_fcvt_f16_to_f32(tcg_ctx, tcg_res[pass], tcg_res[pass],
tcg_ctx->cpu_env);
}
for (pass = 0; pass < 4; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res[pass]);
}
}
}
static void handle_rev(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op = (opcode << 1) | u;
int opsz = op + size;
int grp_size = 3 - opsz;
int dsize = is_q ? 128 : 64;
int i;
if (opsz >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 0) {
/* Special case bytes, use bswap op on each group of elements */
int groups = dsize / (8 << grp_size);
for (i = 0; i < groups; i++) {
TCGv_i64 tcg_tmp = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_tmp, rn, i, grp_size);
switch (grp_size) {
case MO_16:
tcg_gen_bswap16_i64(tcg_ctx, tcg_tmp, tcg_tmp);
break;
case MO_32:
tcg_gen_bswap32_i64(tcg_ctx, tcg_tmp, tcg_tmp);
break;
case MO_64:
tcg_gen_bswap64_i64(tcg_ctx, tcg_tmp, tcg_tmp);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_tmp, rd, i, grp_size);
tcg_temp_free_i64(tcg_ctx, tcg_tmp);
}
clear_vec_high(s, is_q, rd);
} else {
int revmask = (1 << grp_size) - 1;
int esize = 8 << size;
int elements = dsize / esize;
TCGv_i64 tcg_rn = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_rd = tcg_const_i64(tcg_ctx, 0);
TCGv_i64 tcg_rd_hi = tcg_const_i64(tcg_ctx, 0);
for (i = 0; i < elements; i++) {
int e_rev = (i & 0xf) ^ revmask;
int off = e_rev * esize;
read_vec_element(s, tcg_rn, rn, i, size);
if (off >= 64) {
tcg_gen_deposit_i64(tcg_ctx, tcg_rd_hi, tcg_rd_hi,
tcg_rn, off - 64, esize);
} else {
tcg_gen_deposit_i64(tcg_ctx, tcg_rd, tcg_rd, tcg_rn, off, esize);
}
}
write_vec_element(s, tcg_rd, rd, 0, MO_64);
write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_rd_hi);
tcg_temp_free_i64(tcg_ctx, tcg_rd);
tcg_temp_free_i64(tcg_ctx, tcg_rn);
}
}
static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Implement the pairwise operations from 2-misc:
* SADDLP, UADDLP, SADALP, UADALP.
* These all add pairs of elements in the input to produce a
* double-width result element in the output (possibly accumulating).
*/
bool accum = (opcode == 0x6);
int maxpass = is_q ? 2 : 1;
int pass;
TCGv_i64 tcg_res[2];
if (size == 2) {
/* 32 + 32 -> 64 op */
TCGMemOp memop = size + (u ? 0 : MO_SIGN);
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op1, rn, pass * 2, memop);
read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
tcg_gen_add_i64(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2);
if (accum) {
read_vec_element(s, tcg_op1, rd, pass, MO_64);
tcg_gen_add_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_op1);
}
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
}
} else {
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
NeonGenOneOpFn *genfn;
static NeonGenOneOpFn * const fns[2][2] = {
{ gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
{ gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
};
genfn = fns[size][u];
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_ctx, tcg_res[pass], tcg_op);
if (accum) {
read_vec_element(s, tcg_op, rd, pass, MO_64);
if (size == 0) {
gen_helper_neon_addl_u16(tcg_ctx, tcg_res[pass],
tcg_res[pass], tcg_op);
} else {
gen_helper_neon_addl_u32(tcg_ctx, tcg_res[pass],
tcg_res[pass], tcg_op);
}
}
tcg_temp_free_i64(tcg_ctx, tcg_op);
}
}
if (!is_q) {
tcg_res[1] = tcg_const_i64(tcg_ctx, 0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
}
static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* Implement SHLL and SHLL2 */
int pass;
int part = is_q ? 2 : 0;
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
static NeonGenWidenFn * const widenfns[3] = {
gen_helper_neon_widen_u8,
gen_helper_neon_widen_u16,
tcg_gen_extu_i32_i64,
};
NeonGenWidenFn *widenfn = widenfns[size];
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
widenfn(tcg_ctx, tcg_res[pass], tcg_op);
tcg_gen_shli_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], 8 << size);
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
}
/* AdvSIMD two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool need_fpstatus = false;
bool need_rmode = false;
int rmode = -1;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x0: /* REV64, REV32 */
case 0x1: /* REV16 */
handle_rev(s, opcode, u, is_q, size, rn, rd);
return;
case 0x5: /* CNT, NOT, RBIT */
if (u && size == 0) {
/* NOT */
break;
} else if (u && size == 1) {
/* RBIT */
break;
} else if (!u && size == 0) {
/* CNT */
break;
}
unallocated_encoding(s);
return;
case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
return;
case 0x4: /* CLS, CLZ */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x2: /* SADDLP, UADDLP */
case 0x6: /* SADALP, UADALP */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
return;
case 0x13: /* SHLL, SHLL2 */
if (u == 0 || size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_shll(s, is_q, size, rn, rd);
return;
case 0xa: /* CMLT */
if (u == 1) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x3: /* SUQADD, USQADD */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
return;
case 0x7: /* SQABS, SQNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d:
case 0x1f:
{
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
int is_double = extract32(size, 0, 1);
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = is_double ? 3 : 2;
switch (opcode) {
case 0x2f: /* FABS */
case 0x6f: /* FNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d) ? true : false;
int elements = is_double ? 2 : is_q ? 4 : 2;
if (is_double && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
return;
}
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x7f: /* FSQRT */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
need_fpstatus = true;
need_rmode = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x5c: /* FCVTAU */
case 0x1c: /* FCVTAS */
need_fpstatus = true;
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x3c: /* URECPE */
if (size == 3) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3d: /* FRECPE */
case 0x7d: /* FRSQRTE */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x16: /* FCVTN, FCVTN2 */
/* handle_2misc_narrow does a 2*size -> size operation, but these
* instructions encode the source size rather than dest size.
*/
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
return;
case 0x17: /* FCVTL, FCVTL2 */
if (!fp_access_check(s)) {
return;
}
handle_2misc_widening(s, opcode, is_q, size, rn, rd);
return;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
need_rmode = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
/* fall through */
case 0x59: /* FRINTX */
case 0x79: /* FRINTI */
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x58: /* FRINTA */
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x7c: /* URSQRTE */
if (size == 3) {
unallocated_encoding(s);
return;
}
need_fpstatus = true;
break;
default:
unallocated_encoding(s);
return;
}
break;
}
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (need_fpstatus || need_rmode) {
tcg_fpstatus = get_fpstatus_ptr(tcg_ctx, false);
} else {
tcg_fpstatus = NULL;
}
if (need_rmode) {
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
} else {
tcg_rmode = NULL;
}
switch (opcode) {
case 0x5:
if (u && size == 0) { /* NOT */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
return;
}
break;
case 0xb:
if (u) { /* NEG */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
return;
}
break;
}
if (size == 3) {
/* All 64-bit element operations can be shared with scalar 2misc */
int pass;
for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op, rn, pass, MO_64);
handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
tcg_rmode, tcg_fpstatus);
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res);
tcg_temp_free_i64(tcg_ctx, tcg_op);
}
} else {
int pass;
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
TCGCond cond;
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (size == 2) {
/* Special cases for 32 bit elements */
switch (opcode) {
case 0xa: /* CMLT */
/* 32 bit integer comparison against zero, result is
* test ? (2^32 - 1) : 0. We implement via setcond(test)
* and inverting.
*/
cond = TCG_COND_LT;
do_cmop:
tcg_gen_setcondi_i32(tcg_ctx, cond, tcg_res, tcg_op, 0);
tcg_gen_neg_i32(tcg_ctx, tcg_res, tcg_res);
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0x4: /* CLS */
if (u) {
tcg_gen_clzi_i32(tcg_ctx, tcg_res, tcg_op, 32);
} else {
tcg_gen_clrsb_i32(tcg_ctx, tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_op);
} else {
gen_helper_neon_qabs_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_op);
}
break;
case 0xb: /* ABS, NEG */
if (u) {
tcg_gen_neg_i32(tcg_ctx, tcg_res, tcg_op);
} else {
TCGv_i32 tcg_zero = tcg_const_i32(tcg_ctx, 0);
tcg_gen_neg_i32(tcg_ctx, tcg_res, tcg_op);
tcg_gen_movcond_i32(tcg_ctx, TCG_COND_GT, tcg_res, tcg_op,
tcg_zero, tcg_op, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_zero);
}
break;
case 0x2f: /* FABS */
gen_helper_vfp_abss(tcg_ctx, tcg_res, tcg_op);
break;
case 0x6f: /* FNEG */
gen_helper_vfp_negs(tcg_ctx, tcg_res, tcg_op);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrts(tcg_ctx, tcg_res, tcg_op, tcg_ctx->cpu_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_tosls(tcg_ctx, tcg_res, tcg_op,
tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
{
TCGv_i32 tcg_shift = tcg_const_i32(tcg_ctx, 0);
gen_helper_vfp_touls(tcg_ctx, tcg_res, tcg_op,
tcg_shift, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_shift);
break;
}
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rints(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rints_exact(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x7c: /* URSQRTE */
gen_helper_rsqrte_u32(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
} else {
/* Use helpers for 8 and 16 bit elements */
switch (opcode) {
case 0x5: /* CNT, RBIT */
/* For these two insns size is part of the opcode specifier
* (handled earlier); they always operate on byte elements.
*/
if (u) {
gen_helper_neon_rbit_u8(tcg_ctx, tcg_res, tcg_op);
} else {
gen_helper_neon_cnt_u8(tcg_ctx, tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
};
genfn = fns[size][u];
genfn(tcg_ctx, tcg_res, tcg_ctx->cpu_env, tcg_op);
break;
}
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xa: /* CMLT */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
{ gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
{ gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
};
NeonGenTwoOpFn *genfn;
int comp;
bool reverse;
TCGv_i32 tcg_zero = tcg_const_i32(tcg_ctx, 0);
/* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
comp = (opcode - 0x8) * 2 + u;
/* ...but LE, LT are implemented as reverse GE, GT */
reverse = (comp > 2);
if (reverse) {
comp = 4 - comp;
}
genfn = fns[comp][size];
if (reverse) {
genfn(tcg_ctx, tcg_res, tcg_zero, tcg_op);
} else {
genfn(tcg_ctx, tcg_res, tcg_op, tcg_zero);
}
tcg_temp_free_i32(tcg_ctx, tcg_zero);
break;
}
case 0xb: /* ABS, NEG */
if (u) {
TCGv_i32 tcg_zero = tcg_const_i32(tcg_ctx, 0);
if (size) {
gen_helper_neon_sub_u16(tcg_ctx, tcg_res, tcg_zero, tcg_op);
} else {
gen_helper_neon_sub_u8(tcg_ctx, tcg_res, tcg_zero, tcg_op);
}
tcg_temp_free_i32(tcg_ctx, tcg_zero);
} else {
if (size) {
gen_helper_neon_abs_s16(tcg_ctx, tcg_res, tcg_op);
} else {
gen_helper_neon_abs_s8(tcg_ctx, tcg_res, tcg_op);
}
}
break;
case 0x4: /* CLS, CLZ */
if (u) {
if (size == 0) {
gen_helper_neon_clz_u8(tcg_ctx, tcg_res, tcg_op);
} else {
gen_helper_neon_clz_u16(tcg_ctx, tcg_res, tcg_op);
}
} else {
if (size == 0) {
gen_helper_neon_cls_s8(tcg_ctx, tcg_res, tcg_op);
} else {
gen_helper_neon_cls_s16(tcg_ctx, tcg_res, tcg_op);
}
}
break;
default:
g_assert_not_reached();
}
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
}
clear_vec_high(s, is_q, rd);
if (need_rmode) {
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
}
if (need_fpstatus) {
tcg_temp_free_ptr(tcg_ctx, tcg_fpstatus);
}
}
/* AdvSIMD [scalar] two register miscellaneous (FP16)
*
* 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
* | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
* mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
* val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
*
* This actually covers two groups where scalar access is governed by
* bit 28. A bunch of the instructions (float to integral) only exist
* in the vector form and are un-allocated for the scalar decode. Also
* in the scalar decode Q is always 1.
*/
static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int fpop, opcode, a, u;
int rn, rd;
bool is_q;
bool is_scalar;
bool only_in_vector = false;
int pass;
TCGv_i32 tcg_rmode = NULL;
TCGv_ptr tcg_fpstatus = NULL;
bool need_rmode = false;
bool need_fpst = true;
int rmode;
if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
return;
}
rd = extract32(insn, 0, 5);
rn = extract32(insn, 5, 5);
a = extract32(insn, 23, 1);
u = extract32(insn, 29, 1);
is_scalar = extract32(insn, 28, 1);
is_q = extract32(insn, 30, 1);
opcode = extract32(insn, 12, 5);
fpop = deposit32(opcode, 5, 1, a);
fpop = deposit32(fpop, 6, 1, u);
rd = extract32(insn, 0, 5);
rn = extract32(insn, 5, 5);
switch (fpop) {
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
int elements;
if (is_scalar) {
elements = 1;
} else {
elements = (is_q ? 8 : 4);
}
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
return;
}
break;
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
return;
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
break;
case 0x18: /* FRINTN */
need_rmode = true;
only_in_vector = true;
rmode = FPROUNDING_TIEEVEN;
break;
case 0x19: /* FRINTM */
need_rmode = true;
only_in_vector = true;
rmode = FPROUNDING_NEGINF;
break;
case 0x38: /* FRINTP */
need_rmode = true;
only_in_vector = true;
rmode = FPROUNDING_POSINF;
break;
case 0x39: /* FRINTZ */
need_rmode = true;
only_in_vector = true;
rmode = FPROUNDING_ZERO;
break;
case 0x58: /* FRINTA */
need_rmode = true;
only_in_vector = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x59: /* FRINTX */
case 0x79: /* FRINTI */
only_in_vector = true;
/* current rounding mode */
break;
case 0x1a: /* FCVTNS */
need_rmode = true;
rmode = FPROUNDING_TIEEVEN;
break;
case 0x1b: /* FCVTMS */
need_rmode = true;
rmode = FPROUNDING_NEGINF;
break;
case 0x1c: /* FCVTAS */
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x3a: /* FCVTPS */
need_rmode = true;
rmode = FPROUNDING_POSINF;
break;
case 0x3b: /* FCVTZS */
need_rmode = true;
rmode = FPROUNDING_ZERO;
break;
case 0x5a: /* FCVTNU */
need_rmode = true;
rmode = FPROUNDING_TIEEVEN;
break;
case 0x5b: /* FCVTMU */
need_rmode = true;
rmode = FPROUNDING_NEGINF;
break;
case 0x5c: /* FCVTAU */
need_rmode = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x7a: /* FCVTPU */
need_rmode = true;
rmode = FPROUNDING_POSINF;
break;
case 0x7b: /* FCVTZU */
need_rmode = true;
rmode = FPROUNDING_ZERO;
break;
case 0x2f: /* FABS */
case 0x6f: /* FNEG */
need_fpst = false;
break;
case 0x7d: /* FRSQRTE */
case 0x7f: /* FSQRT (vector) */
break;
default:
fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
g_assert_not_reached();
}
/* Check additional constraints for the scalar encoding */
if (is_scalar) {
if (!is_q) {
unallocated_encoding(s);
return;
}
/* FRINTxx is only in the vector form */
if (only_in_vector) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
if (need_rmode || need_fpst) {
tcg_fpstatus = get_fpstatus_ptr(tcg_ctx, true);
}
if (need_rmode) {
tcg_rmode = tcg_const_i32(tcg_ctx, arm_rmode_to_sf(rmode));
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
}
if (is_scalar) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
switch (fpop) {
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_advsimd_f16tosinth(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_advsimd_f16touinth(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x6f: /* FNEG */
tcg_gen_xori_i32(tcg_ctx, tcg_res, tcg_op, 0x8000);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
/* limit any sign extension going on */
tcg_gen_andi_i32(tcg_ctx, tcg_res, tcg_res, 0xffff);
write_fp_sreg(s, rd, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op);
} else {
for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
switch (fpop) {
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_advsimd_f16tosinth(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_advsimd_f16touinth(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_advsimd_rinth(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_advsimd_rinth_exact(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x2f: /* FABS */
tcg_gen_andi_i32(tcg_ctx, tcg_res, tcg_op, 0x7fff);
break;
case 0x6f: /* FNEG */
tcg_gen_xori_i32(tcg_ctx, tcg_res, tcg_op, 0x8000);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x7f: /* FSQRT */
gen_helper_sqrt_f16(tcg_ctx, tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_op);
}
clear_vec_high(s, is_q, rd);
}
if (tcg_rmode) {
gen_helper_set_rmode(tcg_ctx, tcg_rmode, tcg_rmode, tcg_fpstatus);
tcg_temp_free_i32(tcg_ctx, tcg_rmode);
}
if (tcg_fpstatus) {
tcg_temp_free_ptr(tcg_ctx, tcg_fpstatus);
}
}
/* AdvSIMD scalar x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* AdvSIMD vector x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
*/
static void disas_simd_indexed(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
/* This encoding has two kinds of instruction:
* normal, where we perform elt x idxelt => elt for each
* element in the vector
* long, where we perform elt x idxelt and generate a result of
* double the width of the input element
* The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
*/
bool is_scalar = extract32(insn, 28, 1);
bool is_q = extract32(insn, 30, 1);
bool u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int l = extract32(insn, 21, 1);
int m = extract32(insn, 20, 1);
/* Note that the Rm field here is only 4 bits, not 5 as it usually is */
int rm = extract32(insn, 16, 4);
int opcode = extract32(insn, 12, 4);
int h = extract32(insn, 11, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool is_long = false;
int is_fp = 0;
bool is_fp16 = false;
int index;
TCGv_ptr fpst;
switch (16 * u + opcode) {
case 0x08: /* MUL */
case 0x10: /* MLA */
case 0x14: /* MLS */
if (is_scalar) {
unallocated_encoding(s);
return;
}
break;
case 0x02: /* SMLAL, SMLAL2 */
case 0x12: /* UMLAL, UMLAL2 */
case 0x06: /* SMLSL, SMLSL2 */
case 0x16: /* UMLSL, UMLSL2 */
case 0x0a: /* SMULL, SMULL2 */
case 0x1a: /* UMULL, UMULL2 */
if (is_scalar) {
unallocated_encoding(s);
return;
}
is_long = true;
break;
case 0x03: /* SQDMLAL, SQDMLAL2 */
case 0x07: /* SQDMLSL, SQDMLSL2 */
case 0x0b: /* SQDMULL, SQDMULL2 */
is_long = true;
break;
case 0x0c: /* SQDMULH */
case 0x0d: /* SQRDMULH */
break;
case 0x01: /* FMLA */
case 0x05: /* FMLS */
case 0x09: /* FMUL */
case 0x19: /* FMULX */
is_fp = 1;
break;
case 0x1d: /* SQRDMLAH */
case 0x1f: /* SQRDMLSH */
if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
unallocated_encoding(s);
return;
}
break;
case 0x11: /* FCMLA #0 */
case 0x13: /* FCMLA #90 */
case 0x15: /* FCMLA #180 */
case 0x17: /* FCMLA #270 */
if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) {
unallocated_encoding(s);
return;
}
is_fp = 2;
break;
default:
unallocated_encoding(s);
return;
}
switch (is_fp) {
case 1: /* normal fp */
/* convert insn encoded size to TCGMemOp size */
switch (size) {
case 0: /* half-precision */
size = MO_16;
is_fp16 = true;
break;
case MO_32: /* single precision */
case MO_64: /* double precision */
break;
default:
unallocated_encoding(s);
return;
}
break;
case 2: /* complex fp */
/* Each indexable element is a complex pair. */
size <<= 1;
switch (size) {
case MO_32:
if (h && !is_q) {
unallocated_encoding(s);
return;
}
is_fp16 = true;
break;
case MO_64:
break;
default:
unallocated_encoding(s);
return;
}
break;
default: /* integer */
switch (size) {
case MO_8:
case MO_64:
unallocated_encoding(s);
return;
}
break;
}
if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
unallocated_encoding(s);
return;
}
/* Given TCGMemOp size, adjust register and indexing. */
switch (size) {
case MO_16:
index = h << 2 | l << 1 | m;
break;
case MO_32:
index = h << 1 | l;
rm |= m << 4;
break;
case MO_64:
if (l || !is_q) {
unallocated_encoding(s);
return;
}
index = h;
rm |= m << 4;
break;
default:
g_assert_not_reached();
}
if (!fp_access_check(s)) {
return;
}
if (is_fp) {
fpst = get_fpstatus_ptr(tcg_ctx, is_fp16);
} else {
fpst = NULL;
}
switch (16 * u + opcode) {
case 0x11: /* FCMLA #0 */
case 0x13: /* FCMLA #90 */
case 0x15: /* FCMLA #180 */
case 0x17: /* FCMLA #270 */
tcg_gen_gvec_3_ptr(tcg_ctx, vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_reg_offset(s, rm, index, size), fpst,
is_q ? 16 : 8, vec_full_reg_size(s),
extract32(insn, 13, 2), /* rot */
size == MO_64
? gen_helper_gvec_fcmlas_idx
: gen_helper_gvec_fcmlah_idx);
tcg_temp_free_ptr(tcg_ctx, fpst);
return;
}
if (size == 3) {
TCGv_i64 tcg_idx = tcg_temp_new_i64(tcg_ctx);
int pass;
assert(is_fp && is_q && !is_long);
read_vec_element(s, tcg_idx, rm, index, MO_64);
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_res = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (16 * u + opcode) {
case 0x05: /* FMLS */
/* As usual for ARM, separate negation for fused multiply-add */
gen_helper_vfp_negd(tcg_ctx, tcg_op, tcg_op);
/* fall through */
case 0x01: /* FMLA */
read_vec_element(s, tcg_res, rd, pass, MO_64);
gen_helper_vfp_muladdd(tcg_ctx, tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
break;
case 0x09: /* FMUL */
gen_helper_vfp_muld(tcg_ctx, tcg_res, tcg_op, tcg_idx, fpst);
break;
case 0x19: /* FMULX */
gen_helper_vfp_mulxd(tcg_ctx, tcg_res, tcg_op, tcg_idx, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op);
tcg_temp_free_i64(tcg_ctx, tcg_res);
}
tcg_temp_free_i64(tcg_ctx, tcg_idx);
clear_vec_high(s, !is_scalar, rd);
} else if (!is_long) {
/* 32 bit floating point, or 16 or 32 bit integer.
* For the 16 bit scalar case we use the usual Neon helpers and
* rely on the fact that 0 op 0 == 0 with no side effects.
*/
TCGv_i32 tcg_idx = tcg_temp_new_i32(tcg_ctx);
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (size == 1 && !is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to duplicate
* the index into both halves of the 32 bit tcg_idx and then use
* the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_ctx, tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < maxpasses; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i32 tcg_res = tcg_temp_new_i32(tcg_ctx);
read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
switch (16 * u + opcode) {
case 0x08: /* MUL */
case 0x10: /* MLA */
case 0x14: /* MLS */
{
static NeonGenTwoOpFn * const fns[2][2] = {
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
};
NeonGenTwoOpFn *genfn;
bool is_sub = opcode == 0x4;
if (size == 1) {
gen_helper_neon_mul_u16(tcg_ctx, tcg_res, tcg_op, tcg_idx);
} else {
tcg_gen_mul_i32(tcg_ctx, tcg_res, tcg_op, tcg_idx);
}
if (opcode == 0x8) {
break;
}
read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
genfn = fns[size - 1][is_sub];
genfn(tcg_ctx, tcg_res, tcg_op, tcg_res);
break;
}
case 0x05: /* FMLS */
case 0x01: /* FMLA */
read_vec_element_i32(s, tcg_res, rd, pass,
is_scalar ? size : MO_32);
switch (size) {
case 1:
if (opcode == 0x5) {
/* As usual for ARM, separate negation for fused
* multiply-add */
tcg_gen_xori_i32(tcg_ctx, tcg_op, tcg_op, 0x80008000);
}
if (is_scalar) {
gen_helper_advsimd_muladdh(tcg_ctx, tcg_res, tcg_op, tcg_idx,
tcg_res, fpst);
} else {
gen_helper_advsimd_muladd2h(tcg_ctx, tcg_res, tcg_op, tcg_idx,
tcg_res, fpst);
}
break;
case 2:
if (opcode == 0x5) {
/* As usual for ARM, separate negation for
* fused multiply-add */
tcg_gen_xori_i32(tcg_ctx, tcg_op, tcg_op, 0x80000000);
}
gen_helper_vfp_muladds(tcg_ctx, tcg_res, tcg_op, tcg_idx,
tcg_res, fpst);
break;
default:
g_assert_not_reached();
}
break;
case 0x09: /* FMUL */
switch (size) {
case 1:
if (is_scalar) {
gen_helper_advsimd_mulh(tcg_ctx, tcg_res, tcg_op,
tcg_idx, fpst);
} else {
gen_helper_advsimd_mul2h(tcg_ctx, tcg_res, tcg_op,
tcg_idx, fpst);
}
break;
case 2:
gen_helper_vfp_muls(tcg_ctx, tcg_res, tcg_op, tcg_idx, fpst);
break;
default:
g_assert_not_reached();
}
break;
case 0x19: /* FMULX */
switch (size) {
case 1:
if (is_scalar) {
gen_helper_advsimd_mulxh(tcg_ctx, tcg_res, tcg_op,
tcg_idx, fpst);
} else {
gen_helper_advsimd_mulx2h(tcg_ctx, tcg_res, tcg_op,
tcg_idx, fpst);
}
break;
case 2:
gen_helper_vfp_mulxs(tcg_ctx, tcg_res, tcg_op, tcg_idx, fpst);
break;
default:
g_assert_not_reached();
}
break;
case 0x0c: /* SQDMULH */
if (size == 1) {
gen_helper_neon_qdmulh_s16(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qdmulh_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx);
}
break;
case 0x0d: /* SQRDMULH */
if (size == 1) {
gen_helper_neon_qrdmulh_s16(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qrdmulh_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx);
}
break;
case 0x1d: /* SQRDMLAH */
read_vec_element_i32(s, tcg_res, rd, pass,
is_scalar ? size : MO_32);
if (size == 1) {
gen_helper_neon_qrdmlah_s16(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx, tcg_res);
} else {
gen_helper_neon_qrdmlah_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx, tcg_res);
}
break;
case 0x1f: /* SQRDMLSH */
read_vec_element_i32(s, tcg_res, rd, pass,
is_scalar ? size : MO_32);
if (size == 1) {
gen_helper_neon_qrdmlsh_s16(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx, tcg_res);
} else {
gen_helper_neon_qrdmlsh_s32(tcg_ctx, tcg_res, tcg_ctx->cpu_env,
tcg_op, tcg_idx, tcg_res);
}
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
tcg_temp_free_i32(tcg_ctx, tcg_op);
tcg_temp_free_i32(tcg_ctx, tcg_res);
}
tcg_temp_free_i32(tcg_ctx, tcg_idx);
clear_vec_high(s, is_q, rd);
} else {
/* long ops: 16x16->32 or 32x32->64 */
TCGv_i64 tcg_res[2];
int pass;
bool satop = extract32(opcode, 0, 1);
TCGMemOp memop = MO_32;
if (satop || !u) {
memop |= MO_SIGN;
}
if (size == 2) {
TCGv_i64 tcg_idx = tcg_temp_new_i64(tcg_ctx);
read_vec_element(s, tcg_idx, rm, index, memop);
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64(tcg_ctx);
TCGv_i64 tcg_passres;
int passelt;
if (is_scalar) {
passelt = 0;
} else {
passelt = pass + (is_q * 2);
}
read_vec_element(s, tcg_op, rn, passelt, memop);
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64(tcg_ctx);
}
tcg_gen_mul_i64(tcg_ctx, tcg_passres, tcg_op, tcg_idx);
tcg_temp_free_i64(tcg_ctx, tcg_op);
if (satop) {
/* saturating, doubling */
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_passres, tcg_ctx->cpu_env,
tcg_passres, tcg_passres);
}
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
tcg_gen_add_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
tcg_gen_sub_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_ctx, tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s64(tcg_ctx, tcg_res[pass], tcg_ctx->cpu_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_ctx, tcg_passres);
}
tcg_temp_free_i64(tcg_ctx, tcg_idx);
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_idx = tcg_temp_new_i32(tcg_ctx);
assert(size == 1);
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (!is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to
* duplicate the index into both halves of the 32 bit tcg_idx
* and then use the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_ctx, tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32(tcg_ctx);
TCGv_i64 tcg_passres;
if (is_scalar) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
} else {
read_vec_element_i32(s, tcg_op, rn,
pass + (is_q * 2), MO_32);
}
tcg_res[pass] = tcg_temp_new_i64(tcg_ctx);
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64(tcg_ctx);
}
if (memop & MO_SIGN) {
gen_helper_neon_mull_s16(tcg_ctx, tcg_passres, tcg_op, tcg_idx);
} else {
gen_helper_neon_mull_u16(tcg_ctx, tcg_passres, tcg_op, tcg_idx);
}
if (satop) {
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_passres, tcg_ctx->cpu_env,
tcg_passres, tcg_passres);
}
tcg_temp_free_i32(tcg_ctx, tcg_op);
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
gen_helper_neon_addl_u32(tcg_ctx, tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
gen_helper_neon_subl_u32(tcg_ctx, tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_ctx, tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s32(tcg_ctx, tcg_res[pass], tcg_ctx->cpu_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_i64(tcg_ctx, tcg_passres);
}
tcg_temp_free_i32(tcg_ctx, tcg_idx);
if (is_scalar) {
tcg_gen_ext32u_i64(tcg_ctx, tcg_res[0], tcg_res[0]);
}
}
if (is_scalar) {
tcg_res[1] = tcg_const_i64(tcg_ctx, 0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_res[pass]);
}
}
if (fpst) {
tcg_temp_free_ptr(tcg_ctx, fpst);
}
}
/* Crypto AES
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----------------+------+-----------+--------+-----+------+------+
* | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
* +-----------------+------+-----------+--------+-----+------+------+
*/
static void disas_crypto_aes(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int decrypt;
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
TCGv_i32 tcg_decrypt;
CryptoThreeOpIntFn *genfn;
if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
|| size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x4: /* AESE */
decrypt = 0;
genfn = gen_helper_crypto_aese;
break;
case 0x6: /* AESMC */
decrypt = 0;
genfn = gen_helper_crypto_aesmc;
break;
case 0x5: /* AESD */
decrypt = 1;
genfn = gen_helper_crypto_aese;
break;
case 0x7: /* AESIMC */
decrypt = 1;
genfn = gen_helper_crypto_aesmc;
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
tcg_decrypt = tcg_const_i32(tcg_ctx, decrypt);
genfn(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
tcg_temp_free_i32(tcg_ctx, tcg_decrypt);
}
/* Crypto three-reg SHA
* 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
* +-----------------+------+---+------+---+--------+-----+------+------+
* | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
* +-----------------+------+---+------+---+--------+-----+------+------+
*/
static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 3);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
CryptoThreeOpFn *genfn;
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
int feature = ARM_FEATURE_V8_SHA256;
if (size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0: /* SHA1C */
case 1: /* SHA1P */
case 2: /* SHA1M */
case 3: /* SHA1SU0 */
genfn = NULL;
feature = ARM_FEATURE_V8_SHA1;
break;
case 4: /* SHA256H */
genfn = gen_helper_crypto_sha256h;
break;
case 5: /* SHA256H2 */
genfn = gen_helper_crypto_sha256h2;
break;
case 6: /* SHA256SU1 */
genfn = gen_helper_crypto_sha256su1;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
tcg_rm_ptr = vec_full_reg_ptr(s, rm);
if (genfn) {
genfn(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
} else {
TCGv_i32 tcg_opcode = tcg_const_i32(tcg_ctx, opcode);
gen_helper_crypto_sha1_3reg(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr,
tcg_rm_ptr, tcg_opcode);
tcg_temp_free_i32(tcg_ctx, tcg_opcode);
}
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rm_ptr);
}
/* Crypto two-reg SHA
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----------------+------+-----------+--------+-----+------+------+
* | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
* +-----------------+------+-----------+--------+-----+------+------+
*/
static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
CryptoTwoOpFn *genfn;
int feature;
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
if (size != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0: /* SHA1H */
feature = ARM_FEATURE_V8_SHA1;
genfn = gen_helper_crypto_sha1h;
break;
case 1: /* SHA1SU1 */
feature = ARM_FEATURE_V8_SHA1;
genfn = gen_helper_crypto_sha1su1;
break;
case 2: /* SHA256SU0 */
feature = ARM_FEATURE_V8_SHA256;
genfn = gen_helper_crypto_sha256su0;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
genfn(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
}
/* Crypto three-reg SHA512
* 31 21 20 16 15 14 13 12 11 10 9 5 4 0
* +-----------------------+------+---+---+-----+--------+------+------+
* | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
* +-----------------------+------+---+---+-----+--------+------+------+
*/
static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int opcode = extract32(insn, 10, 2);
int o = extract32(insn, 14, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int feature;
CryptoThreeOpFn *genfn;
if (o == 0) {
switch (opcode) {
case 0: /* SHA512H */
feature = ARM_FEATURE_V8_SHA512;
genfn = gen_helper_crypto_sha512h;
break;
case 1: /* SHA512H2 */
feature = ARM_FEATURE_V8_SHA512;
genfn = gen_helper_crypto_sha512h2;
break;
case 2: /* SHA512SU1 */
feature = ARM_FEATURE_V8_SHA512;
genfn = gen_helper_crypto_sha512su1;
break;
case 3: /* RAX1 */
feature = ARM_FEATURE_V8_SHA3;
genfn = NULL;
break;
}
} else {
switch (opcode) {
case 0: /* SM3PARTW1 */
feature = ARM_FEATURE_V8_SM3;
genfn = gen_helper_crypto_sm3partw1;
break;
case 1: /* SM3PARTW2 */
feature = ARM_FEATURE_V8_SM3;
genfn = gen_helper_crypto_sm3partw2;
break;
case 2: /* SM4EKEY */
feature = ARM_FEATURE_V8_SM4;
genfn = gen_helper_crypto_sm4ekey;
break;
default:
unallocated_encoding(s);
return;
}
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (genfn) {
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
tcg_rm_ptr = vec_full_reg_ptr(s, rm);
genfn(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rm_ptr);
} else {
TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
int pass;
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
tcg_gen_rotli_i64(tcg_ctx, tcg_res[pass], tcg_op2, 1);
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_op1);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
}
}
/* Crypto two-reg SHA512
* 31 12 11 10 9 5 4 0
* +-----------------------------------------+--------+------+------+
* | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
* +-----------------------------------------+--------+------+------+
*/
static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int opcode = extract32(insn, 10, 2);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
int feature;
CryptoTwoOpFn *genfn;
switch (opcode) {
case 0: /* SHA512SU0 */
feature = ARM_FEATURE_V8_SHA512;
genfn = gen_helper_crypto_sha512su0;
break;
case 1: /* SM4E */
feature = ARM_FEATURE_V8_SM4;
genfn = gen_helper_crypto_sm4e;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
genfn(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
}
/* Crypto four-register
* 31 23 22 21 20 16 15 14 10 9 5 4 0
* +-------------------+-----+------+---+------+------+------+
* | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
* +-------------------+-----+------+---+------+------+------+
*/
static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int op0 = extract32(insn, 21, 2);
int rm = extract32(insn, 16, 5);
int ra = extract32(insn, 10, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int feature;
switch (op0) {
case 0: /* EOR3 */
case 1: /* BCAX */
feature = ARM_FEATURE_V8_SHA3;
break;
case 2: /* SM3SS1 */
feature = ARM_FEATURE_V8_SM3;
break;
default:
unallocated_encoding(s);
return;
}
if (!arm_dc_feature(s, feature)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (op0 < 2) {
TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
int pass;
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_op3 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
read_vec_element(s, tcg_op3, ra, pass, MO_64);
if (op0 == 0) {
/* EOR3 */
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
} else {
/* BCAX */
tcg_gen_andc_i64(tcg_ctx, tcg_res[pass], tcg_op2, tcg_op3);
}
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], tcg_op1);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_op3);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
} else {
TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
tcg_op1 = tcg_temp_new_i32(tcg_ctx);
tcg_op2 = tcg_temp_new_i32(tcg_ctx);
tcg_op3 = tcg_temp_new_i32(tcg_ctx);
tcg_res = tcg_temp_new_i32(tcg_ctx);
tcg_zero = tcg_const_i32(tcg_ctx, 0);
read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
tcg_gen_rotri_i32(tcg_ctx, tcg_res, tcg_op1, 20);
tcg_gen_add_i32(tcg_ctx, tcg_res, tcg_res, tcg_op2);
tcg_gen_add_i32(tcg_ctx, tcg_res, tcg_res, tcg_op3);
tcg_gen_rotri_i32(tcg_ctx, tcg_res, tcg_res, 25);
write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
tcg_temp_free_i32(tcg_ctx, tcg_op1);
tcg_temp_free_i32(tcg_ctx, tcg_op2);
tcg_temp_free_i32(tcg_ctx, tcg_op3);
tcg_temp_free_i32(tcg_ctx, tcg_res);
tcg_temp_free_i32(tcg_ctx, tcg_zero);
}
}
/* Crypto XAR
* 31 21 20 16 15 10 9 5 4 0
* +-----------------------+------+--------+------+------+
* | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
* +-----------------------+------+--------+------+------+
*/
static void disas_crypto_xar(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int rm = extract32(insn, 16, 5);
int imm6 = extract32(insn, 10, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
int pass;
if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_op1 = tcg_temp_new_i64(tcg_ctx);
tcg_op2 = tcg_temp_new_i64(tcg_ctx);
tcg_res[0] = tcg_temp_new_i64(tcg_ctx);
tcg_res[1] = tcg_temp_new_i64(tcg_ctx);
for (pass = 0; pass < 2; pass++) {
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
tcg_gen_xor_i64(tcg_ctx, tcg_res[pass], tcg_op1, tcg_op2);
tcg_gen_rotri_i64(tcg_ctx, tcg_res[pass], tcg_res[pass], imm6);
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
tcg_temp_free_i64(tcg_ctx, tcg_op1);
tcg_temp_free_i64(tcg_ctx, tcg_op2);
tcg_temp_free_i64(tcg_ctx, tcg_res[0]);
tcg_temp_free_i64(tcg_ctx, tcg_res[1]);
}
/* Crypto three-reg imm2
* 31 21 20 16 15 14 13 12 11 10 9 5 4 0
* +-----------------------+------+-----+------+--------+------+------+
* | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
* +-----------------------+------+-----+------+--------+------+------+
*/
static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
{
TCGContext *tcg_ctx = s->uc->tcg_ctx;
int opcode = extract32(insn, 10, 2);
int imm2 = extract32(insn, 12, 2);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
TCGv_i32 tcg_imm2, tcg_opcode;
if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rd_ptr = vec_full_reg_ptr(s, rd);
tcg_rn_ptr = vec_full_reg_ptr(s, rn);
tcg_rm_ptr = vec_full_reg_ptr(s, rm);
tcg_imm2 = tcg_const_i32(tcg_ctx, imm2);
tcg_opcode = tcg_const_i32(tcg_ctx, opcode);
gen_helper_crypto_sm3tt(tcg_ctx, tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
tcg_opcode);
tcg_temp_free_ptr(tcg_ctx, tcg_rd_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rn_ptr);
tcg_temp_free_ptr(tcg_ctx, tcg_rm_ptr);
tcg_temp_free_i32(tcg_ctx, tcg_imm2);
tcg_temp_free_i32(tcg_ctx, tcg_opcode);
}
/* C3.6 Data processing - SIMD, inc Crypto
*
* As the decode gets a little complex we are using a table based
* approach for this part of the decode.
*/
static const AArch64DecodeTable data_proc_simd[] = {
/* pattern , mask , fn */
{ 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
{ 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
{ 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
{ 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
{ 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
{ 0x0e000400, 0x9fe08400, disas_simd_copy },
{ 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
/* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
{ 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
{ 0x0f000400, 0x9f800400, disas_simd_shift_imm },
{ 0x0e000000, 0xbf208c00, disas_simd_tb },
{ 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
{ 0x2e000000, 0xbf208400, disas_simd_ext },
{ 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
{ 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
{ 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
{ 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
{ 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
{ 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
{ 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
{ 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
{ 0x4e280800, 0xff3e0c00, disas_crypto_aes },
{ 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
{ 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
{ 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
{ 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
{ 0xce000000, 0xff808000, disas_crypto_four_reg },
{ 0xce800000, 0xffe00000, disas_crypto_xar },
{ 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
{ 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
{ 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
{ 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
{ 0x00000000, 0x00000000, NULL }
};
static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
{
/* Note that this is called with all non-FP cases from
* table C3-6 so it must UNDEF for entries not specifically
* allocated to instructions in that table.
*/
AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
if (fn) {
fn(s, insn);
} else {
unallocated_encoding(s);
}
}
/* C3.6 Data processing - SIMD and floating point */
static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
disas_data_proc_fp(s, insn);
} else {
/* SIMD, including crypto */
disas_data_proc_simd(s, insn);
}
}
/* C3.1 A64 instruction index by encoding */
static void disas_a64_insn(CPUARMState *env, DisasContext *s)
{
uint32_t insn;
TCGContext *tcg_ctx = env->uc->tcg_ctx;
// Unicorn: end address tells us to stop emulation
if (s->pc == s->uc->addr_end) {
// imitate WFI instruction to halt emulation
s->base.is_jmp = DISAS_WFI;
return;
}
insn = arm_ldl_code(env, s->pc, s->sctlr_b);
s->insn = insn;
s->pc += 4;
// Unicorn: trace this instruction on request
if (HOOK_EXISTS_BOUNDED(env->uc, UC_HOOK_CODE, s->pc - 4)) {
gen_uc_tracecode(tcg_ctx, 4, UC_HOOK_CODE_IDX, env->uc, s->pc - 4);
// the callback might want to stop emulation immediately
check_exit_request(tcg_ctx);
}
s->fp_access_checked = false;
switch (extract32(insn, 25, 4)) {
case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
unallocated_encoding(s);
break;
case 0x8: case 0x9: /* Data processing - immediate */
disas_data_proc_imm(s, insn);
break;
case 0xa: case 0xb: /* Branch, exception generation and system insns */
disas_b_exc_sys(s, insn);
break;
case 0x4:
case 0x6:
case 0xc:
case 0xe: /* Loads and stores */
disas_ldst(s, insn);
break;
case 0x5:
case 0xd: /* Data processing - register */
disas_data_proc_reg(s, insn);
break;
case 0x7:
case 0xf: /* Data processing - SIMD and floating point */
disas_data_proc_simd_fp(s, insn);
break;
default:
assert(FALSE); /* all 15 cases should be handled above */
break;
}
/* if we allocated any temporaries, free them here */
free_tmp_a64(s);
}
static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
CPUState *cpu, int max_insns)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
CPUARMState *env = cpu->env_ptr;
ARMCPU *arm_cpu = arm_env_get_cpu(env);
int bound;
// Unicorn: Store uc context
dc->uc = env->uc;
dc->pc = dc->base.pc_first;
dc->condjmp = 0;
dc->aarch64 = 1;
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
* there is no secure EL1, so we route exceptions to EL3.
*/
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3);
dc->thumb = 0;
dc->sctlr_b = 0;
dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
dc->condexec_mask = 0;
dc->condexec_cond = 0;
dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
dc->vec_len = 0;
dc->vec_stride = 0;
dc->cp_regs = arm_cpu->cp_regs;
dc->features = env->features;
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
dc->is_ldex = false;
dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
/* Bound the number of insns to execute to those left on the page. */
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
/* If architectural single step active, limit to 1. */
if (dc->ss_active) {
bound = 1;
}
max_insns = MIN(max_insns, bound);
init_tmp_a64_array(dc);
return max_insns;
}
static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
tcg_clear_temp_count();
}
static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
TCGContext *tcg_ctx = cpu->uc->tcg_ctx;
tcg_gen_insn_start(tcg_ctx, dc->pc, 0, 0);
dc->insn_start = tcg_last_op(tcg_ctx);
}
static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
const CPUBreakpoint *bp)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
TCGContext *tcg_ctx = cpu->uc->tcg_ctx;
if (bp->flags & BP_CPU) {
gen_a64_set_pc_im(dc, dc->pc);
gen_helper_check_breakpoints(tcg_ctx, tcg_ctx->cpu_env);
/* End the TB early; it likely won't be executed */
dc->base.is_jmp = DISAS_TOO_MANY;
} else {
gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
/* The address covered by the breakpoint must be
included in [tb->pc, tb->pc + tb->size) in order
to for it to be properly cleared -- thus we
increment the PC here so that the logic setting
tb->size below does the right thing. */
dc->pc += 4;
dc->base.is_jmp = DISAS_NORETURN;
}
return true;
}
static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
CPUARMState *env = cpu->env_ptr;
if (dc->ss_active && !dc->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(dc->base.num_insns == 1);
gen_exception(dc, EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
default_exception_el(dc));
dc->base.is_jmp = DISAS_NORETURN;
} else {
disas_a64_insn(env, dc);
}
dc->base.pc_next = dc->pc;
translator_loop_temp_check(&dc->base);
}
static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
TCGContext *tcg_ctx = cpu->uc->tcg_ctx;
if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
/* Note that this means single stepping WFI doesn't halt the CPU.
* For conditional branch insns this is harmless unreachable code as
* gen_goto_tb() has already handled emitting the debug exception
* (and thus a tb-jump is not possible when singlestepping).
*/
switch (dc->base.is_jmp) {
default:
gen_a64_set_pc_im(dc, dc->pc);
/* fall through */
case DISAS_EXIT:
case DISAS_JUMP:
if (dc->base.singlestep_enabled) {
gen_exception_internal(dc, EXCP_DEBUG);
} else {
gen_step_complete_exception(dc);
}
break;
case DISAS_NORETURN:
break;
}
} else {
switch (dc->base.is_jmp) {
case DISAS_NEXT:
case DISAS_TOO_MANY:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_UPDATE:
gen_a64_set_pc_im(dc, dc->pc);
/* fall through */
case DISAS_JUMP:
tcg_gen_lookup_and_goto_ptr(tcg_ctx);
break;
case DISAS_EXIT:
tcg_gen_exit_tb(tcg_ctx, 0);
break;
case DISAS_NORETURN:
case DISAS_SWI:
break;
case DISAS_WFE:
gen_a64_set_pc_im(dc, dc->pc);
gen_helper_wfe(tcg_ctx, tcg_ctx->cpu_env);
break;
case DISAS_YIELD:
gen_a64_set_pc_im(dc, dc->pc);
gen_helper_yield(tcg_ctx, tcg_ctx->cpu_env);
break;
case DISAS_WFI:
{
/* This is a special case because we don't want to just halt the CPU
* if trying to debug across a WFI.
*/
TCGv_i32 tmp = tcg_const_i32(tcg_ctx, 4);
gen_a64_set_pc_im(dc, dc->pc);
gen_helper_wfi(tcg_ctx, tcg_ctx->cpu_env, tmp);
tcg_temp_free_i32(tcg_ctx, tmp);
/* The helper doesn't necessarily throw an exception, but we
* must go back to the main loop to check for interrupts anyway.
*/
tcg_gen_exit_tb(tcg_ctx, 0);
break;
}
}
}
/* Functions above can change dc->pc, so re-align db->pc_next */
dc->base.pc_next = dc->pc;
}
static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
CPUState *cpu)
{
// Unicorn: if'd out
#if 0
DisasContext *dc = container_of(dcbase, DisasContext, base);
qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size,
4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
#endif
}
const TranslatorOps aarch64_translator_ops = {
aarch64_tr_init_disas_context,
aarch64_tr_tb_start,
aarch64_tr_insn_start,
aarch64_tr_breakpoint_check,
aarch64_tr_translate_insn,
aarch64_tr_tb_stop,
aarch64_tr_disas_log,
};