unicorn/qemu/include/exec/ram_addr.h
Paolo Bonzini cbc56b3ceb
memory: add early bail out from cpu_physical_memory_set_dirty_range
This condition is true in the common case, so we can cut out the body of
the function. In addition, this makes it easier for the compiler to do
at least partial inlining, even if it decides that fully inlining the
function is unreasonable.

Backports commit 8bafcb21643a39a5b29109f8bd5ee5a6f0f6850b from qemu
2018-02-20 08:32:10 -05:00

189 lines
6.6 KiB
C

/*
* Declarations for cpu physical memory functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef RAM_ADDR_H
#define RAM_ADDR_H
#include "uc_priv.h"
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr, Error **errp);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
MemoryRegion *mr, Error **errp);
int qemu_get_ram_fd(struct uc_struct *uc, ram_addr_t addr);
void *qemu_get_ram_block_host_ptr(struct uc_struct *uc, ram_addr_t addr);
void qemu_ram_free(struct uc_struct *c, ram_addr_t addr);
int qemu_ram_resize(struct uc_struct *c, ram_addr_t base, ram_addr_t newsize, Error **errp);
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
static inline bool cpu_physical_memory_get_dirty(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_bit(uc->ram_list.dirty_memory[client], end, page);
return next < end;
}
static inline bool cpu_physical_memory_all_dirty(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_zero_bit(uc->ram_list.dirty_memory[client], end, page);
return next >= end;
}
static inline bool cpu_physical_memory_get_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
unsigned client)
{
return cpu_physical_memory_get_dirty(uc, addr, 1, client);
}
static inline bool cpu_physical_memory_is_clean(struct uc_struct *uc, ram_addr_t addr)
{
return !cpu_physical_memory_get_dirty_flag(uc, addr, DIRTY_MEMORY_CODE);
}
static inline bool cpu_physical_memory_range_includes_clean(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length, uint8_t mask)
{
uint8_t ret = 0;
if (mask & (1 << DIRTY_MEMORY_CODE) &&
!cpu_physical_memory_all_dirty(uc, start, length, DIRTY_MEMORY_CODE)) {
ret |= (1 << DIRTY_MEMORY_CODE);
}
return ret;
}
static inline void cpu_physical_memory_set_dirty_flag(struct uc_struct *uc, ram_addr_t addr,
unsigned client)
{
assert(client < DIRTY_MEMORY_NUM);
set_bit_atomic(addr >> TARGET_PAGE_BITS, uc->ram_list.dirty_memory[client]);
}
static inline void cpu_physical_memory_set_dirty_range(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
unsigned long end, page;
unsigned long **d = uc->ram_list.dirty_memory;
if (!mask && !xen_enabled()) {
return;
}
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
}
}
#if !defined(_WIN32)
static inline void cpu_physical_memory_set_dirty_lebitmap(struct uc_struct *uc, unsigned long *bitmap,
ram_addr_t start,
ram_addr_t pages)
{
unsigned long i, j;
unsigned long page_number, c;
hwaddr addr;
ram_addr_t ram_addr;
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
long k;
long nr = BITS_TO_LONGS(pages);
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
unsigned long **d = uc->ram_list.dirty_memory;
if (tcg_enabled(uc)) {
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
}
}
}
} else {
uint8_t clients = tcg_enabled(uc) ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ctzl(c);
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr = page_number * TARGET_PAGE_SIZE;
ram_addr = start + addr;
cpu_physical_memory_set_dirty_range(uc, ram_addr,
TARGET_PAGE_SIZE * hpratio, clients);
} while (c != 0);
}
}
}
}
#endif /* not _WIN32 */
bool cpu_physical_memory_test_and_clear_dirty(struct uc_struct *uc,
ram_addr_t start,
ram_addr_t length,
unsigned client);
static inline void cpu_physical_memory_clear_dirty_range(struct uc_struct *uc, ram_addr_t start,
ram_addr_t length)
{
cpu_physical_memory_test_and_clear_dirty(uc, start, length, DIRTY_MEMORY_CODE);
}
#endif
#endif