mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-22 20:11:08 +00:00
454932263c
While the vargs approach was flexible the original MTTCG ended up having munge the bits to a bitmap so the data could be used in deferred work helpers. Instead of hiding that in cputlb we push the change to the API to make it take a bitmap of MMU indexes instead. For ARM some the resulting flushes end up being quite long so to aid readability I've tended to move the index shifting to a new line so all the bits being or-ed together line up nicely, for example: tlb_flush_page_by_mmuidx(other_cs, pageaddr, (1 << ARMMMUIdx_S1SE1) | (1 << ARMMMUIdx_S1SE0)); Backports commit 0336cbf8532935d8e23c2aabf3e2ce2c0697b6ac from qemu
1948 lines
65 KiB
C
1948 lines
65 KiB
C
/*
|
|
* Helpers for loads and stores
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "tcg.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "asi.h"
|
|
|
|
//#define DEBUG_MMU
|
|
//#define DEBUG_MXCC
|
|
//#define DEBUG_UNALIGNED
|
|
//#define DEBUG_UNASSIGNED
|
|
//#define DEBUG_ASI
|
|
//#define DEBUG_CACHE_CONTROL
|
|
|
|
#ifdef DEBUG_MMU
|
|
#define DPRINTF_MMU(fmt, ...) \
|
|
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF_MMU(fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_MXCC
|
|
#define DPRINTF_MXCC(fmt, ...) \
|
|
do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_ASI
|
|
#define DPRINTF_ASI(fmt, ...) \
|
|
do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_CACHE_CONTROL
|
|
#define DPRINTF_CACHE_CONTROL(fmt, ...) \
|
|
do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC64
|
|
#ifndef TARGET_ABI32
|
|
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
|
|
#else
|
|
#define AM_CHECK(env1) (1)
|
|
#endif
|
|
#endif
|
|
|
|
#define QT0 (env->qt0)
|
|
#define QT1 (env->qt1)
|
|
|
|
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
|
/* Calculates TSB pointer value for fault page size 8k or 64k */
|
|
static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
|
|
const SparcV9MMU *mmu, const int idx)
|
|
/* Calculates TSB pointer value for fault page size
|
|
* UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
|
|
* UA2005 holds the page size configuration in mmu_ctx registers */
|
|
{
|
|
uint64_t tsb_register;
|
|
int page_size;
|
|
if (cpu_has_hypervisor(env)) {
|
|
int tsb_index = 0;
|
|
int ctx = mmu->tag_access & 0x1fffULL;
|
|
uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
|
|
tsb_index = idx;
|
|
tsb_index |= ctx ? 2 : 0;
|
|
page_size = idx ? ctx_register >> 8 : ctx_register;
|
|
page_size &= 7;
|
|
tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
|
|
} else {
|
|
page_size = idx;
|
|
tsb_register = mmu->tsb;
|
|
}
|
|
|
|
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
|
|
int tsb_size = tsb_register & 0xf;
|
|
|
|
/* discard lower 13 bits which hold tag access context */
|
|
uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
|
|
|
|
/* move va bits to correct position,
|
|
* the context bits will be masked out later */
|
|
uint64_t va = mmu->tag_access >> (3 * page_size + 9);
|
|
|
|
/* calculate tsb_base mask and adjust va if split is in use */
|
|
if (tsb_split) {
|
|
if (idx == 0) {
|
|
va &= ~(1ULL << (13 + tsb_size));
|
|
} else {
|
|
va |= (1ULL << (13 + tsb_size));
|
|
}
|
|
tsb_base_mask <<= 1;
|
|
}
|
|
|
|
return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
|
|
}
|
|
|
|
/* Calculates tag target register value by reordering bits
|
|
in tag access register */
|
|
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
|
|
{
|
|
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
|
|
}
|
|
|
|
static void replace_tlb_entry(SparcTLBEntry *tlb,
|
|
uint64_t tlb_tag, uint64_t tlb_tte,
|
|
CPUSPARCState *env1)
|
|
{
|
|
target_ulong mask, size, va, offset;
|
|
|
|
/* flush page range if translation is valid */
|
|
if (TTE_IS_VALID(tlb->tte)) {
|
|
CPUState *cs = CPU(sparc_env_get_cpu(env1));
|
|
|
|
size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
|
|
mask = 1ULL + ~size;
|
|
|
|
va = tlb->tag & mask;
|
|
|
|
for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
|
|
tlb_flush_page(cs, va + offset);
|
|
}
|
|
}
|
|
|
|
tlb->tag = tlb_tag;
|
|
tlb->tte = tlb_tte;
|
|
}
|
|
|
|
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
|
|
const char *strmmu, CPUSPARCState *env1)
|
|
{
|
|
unsigned int i;
|
|
target_ulong mask;
|
|
uint64_t context;
|
|
|
|
int is_demap_context = (demap_addr >> 6) & 1;
|
|
|
|
/* demap context */
|
|
switch ((demap_addr >> 4) & 3) {
|
|
case 0: /* primary */
|
|
context = env1->dmmu.mmu_primary_context;
|
|
break;
|
|
case 1: /* secondary */
|
|
context = env1->dmmu.mmu_secondary_context;
|
|
break;
|
|
case 2: /* nucleus */
|
|
context = 0;
|
|
break;
|
|
case 3: /* reserved */
|
|
default:
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (TTE_IS_VALID(tlb[i].tte)) {
|
|
|
|
if (is_demap_context) {
|
|
/* will remove non-global entries matching context value */
|
|
if (TTE_IS_GLOBAL(tlb[i].tte) ||
|
|
!tlb_compare_context(&tlb[i], context)) {
|
|
continue;
|
|
}
|
|
} else {
|
|
/* demap page
|
|
will remove any entry matching VA */
|
|
mask = 0xffffffffffffe000ULL;
|
|
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
|
|
|
|
if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
|
|
continue;
|
|
}
|
|
|
|
/* entry should be global or matching context value */
|
|
if (!TTE_IS_GLOBAL(tlb[i].tte) &&
|
|
!tlb_compare_context(&tlb[i], context)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
replace_tlb_entry(&tlb[i], 0, 0, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
|
|
dump_mmu(stdout, fprintf, env1);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
|
|
uint64_t sun4v_tte)
|
|
{
|
|
uint64_t sun4u_tte;
|
|
if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
|
|
/* is already in the sun4u format */
|
|
return sun4v_tte;
|
|
}
|
|
sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
|
|
sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
|
|
TTE_SIDEEFFECT_BIT);
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
|
|
sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
|
|
return sun4u_tte;
|
|
}
|
|
|
|
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
|
|
uint64_t tlb_tag, uint64_t tlb_tte,
|
|
const char *strmmu, CPUSPARCState *env1,
|
|
uint64_t addr)
|
|
{
|
|
unsigned int i, replace_used;
|
|
|
|
tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
|
|
if (cpu_has_hypervisor(env1)) {
|
|
uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
|
|
uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
|
|
uint32_t new_ctx = tlb_tag & 0x1fffU;
|
|
for (i = 0; i < 64; i++) {
|
|
uint32_t ctx = tlb[i].tag & 0x1fffU;
|
|
/* check if new mapping overlaps an existing one */
|
|
if (new_ctx == ctx) {
|
|
uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
|
|
uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
|
|
if (new_vaddr == vaddr
|
|
|| (new_vaddr < vaddr + size
|
|
&& vaddr < new_vaddr + new_size)) {
|
|
DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
|
|
new_vaddr);
|
|
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Try replacing invalid entry */
|
|
for (i = 0; i < 64; i++) {
|
|
if (!TTE_IS_VALID(tlb[i].tte)) {
|
|
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
|
|
dump_mmu(stdout, fprintf, env1);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* All entries are valid, try replacing unlocked entry */
|
|
|
|
for (replace_used = 0; replace_used < 2; ++replace_used) {
|
|
|
|
/* Used entries are not replaced on first pass */
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
|
|
|
|
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
|
|
strmmu, (replace_used ? "used" : "unused"), i);
|
|
dump_mmu(stdout, fprintf, env1);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Now reset used bit and search for unused entries again */
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
TTE_SET_UNUSED(tlb[i].tte);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replacement: no free entries available, "
|
|
"replacing the last one\n", strmmu);
|
|
#endif
|
|
/* corner case: the last entry is replaced anyway */
|
|
replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
|
|
{
|
|
/* ASIs >= 0x80 are user mode.
|
|
* ASIs >= 0x30 are hyper mode (or super if hyper is not available).
|
|
* ASIs <= 0x2f are super mode.
|
|
*/
|
|
if (asi < 0x80
|
|
&& !cpu_hypervisor_mode(env)
|
|
&& (!cpu_supervisor_mode(env)
|
|
|| (asi >= 0x30 && cpu_has_hypervisor(env)))) {
|
|
cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
#endif
|
|
|
|
static void do_check_align(CPUSPARCState *env, target_ulong addr,
|
|
uint32_t align, uintptr_t ra)
|
|
{
|
|
if (addr & align) {
|
|
#ifdef DEBUG_UNALIGNED
|
|
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
#endif
|
|
cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
|
|
}
|
|
}
|
|
|
|
void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
|
|
{
|
|
do_check_align(env, addr, align, GETPC());
|
|
}
|
|
|
|
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
|
|
defined(DEBUG_MXCC)
|
|
static void dump_mxcc(CPUSPARCState *env)
|
|
{
|
|
printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n",
|
|
env->mxccdata[0], env->mxccdata[1],
|
|
env->mxccdata[2], env->mxccdata[3]);
|
|
printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n"
|
|
" %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n",
|
|
env->mxccregs[0], env->mxccregs[1],
|
|
env->mxccregs[2], env->mxccregs[3],
|
|
env->mxccregs[4], env->mxccregs[5],
|
|
env->mxccregs[6], env->mxccregs[7]);
|
|
}
|
|
#endif
|
|
|
|
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
|
|
&& defined(DEBUG_ASI)
|
|
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
|
|
uint64_t r1)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xff);
|
|
break;
|
|
case 2:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xffff);
|
|
break;
|
|
case 4:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xffffffff);
|
|
break;
|
|
case 8:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
|
|
addr, asi, r1);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef TARGET_SPARC64
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
|
|
/* Leon3 cache control */
|
|
|
|
static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
|
|
uint64_t val, int size)
|
|
{
|
|
DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
|
|
addr, val, size);
|
|
|
|
if (size != 4) {
|
|
DPRINTF_CACHE_CONTROL("32bits only\n");
|
|
return;
|
|
}
|
|
|
|
switch (addr) {
|
|
case 0x00: /* Cache control */
|
|
|
|
/* These values must always be read as zeros */
|
|
val &= ~CACHE_CTRL_FD;
|
|
val &= ~CACHE_CTRL_FI;
|
|
val &= ~CACHE_CTRL_IB;
|
|
val &= ~CACHE_CTRL_IP;
|
|
val &= ~CACHE_CTRL_DP;
|
|
|
|
env->cache_control = val;
|
|
break;
|
|
case 0x04: /* Instruction cache configuration */
|
|
case 0x08: /* Data cache configuration */
|
|
/* Read Only */
|
|
break;
|
|
default:
|
|
DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
|
|
break;
|
|
};
|
|
}
|
|
|
|
static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
|
|
int size)
|
|
{
|
|
uint64_t ret = 0;
|
|
|
|
if (size != 4) {
|
|
DPRINTF_CACHE_CONTROL("32bits only\n");
|
|
return 0;
|
|
}
|
|
|
|
switch (addr) {
|
|
case 0x00: /* Cache control */
|
|
ret = env->cache_control;
|
|
break;
|
|
|
|
/* Configuration registers are read and only always keep those
|
|
predefined values */
|
|
|
|
case 0x04: /* Instruction cache configuration */
|
|
ret = 0x10220000;
|
|
break;
|
|
case 0x08: /* Data cache configuration */
|
|
ret = 0x18220000;
|
|
break;
|
|
default:
|
|
DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
|
|
break;
|
|
};
|
|
DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
|
|
addr, ret, size);
|
|
return ret;
|
|
}
|
|
|
|
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
int sign = memop & MO_SIGN;
|
|
CPUState *cs = CPU(sparc_env_get_cpu(env));
|
|
uint64_t ret = 0;
|
|
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
|
|
uint32_t last_addr = addr;
|
|
#endif
|
|
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
switch (asi) {
|
|
case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
|
|
/* case ASI_LEON_CACHEREGS: Leon3 cache control */
|
|
switch (addr) {
|
|
case 0x00: /* Leon3 Cache Control */
|
|
case 0x08: /* Leon3 Instruction Cache config */
|
|
case 0x0C: /* Leon3 Date Cache config */
|
|
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
|
|
ret = leon3_cache_control_ld(env, addr, size);
|
|
}
|
|
break;
|
|
case 0x01c00a00: /* MXCC control register */
|
|
if (size == 8) {
|
|
ret = env->mxccregs[3];
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00a04: /* MXCC control register */
|
|
if (size == 4) {
|
|
ret = env->mxccregs[3];
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00c00: /* Module reset register */
|
|
if (size == 8) {
|
|
ret = env->mxccregs[5];
|
|
/* should we do something here? */
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00f00: /* MBus port address register */
|
|
if (size == 8) {
|
|
ret = env->mxccregs[7];
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented address, size: %d\n", addr,
|
|
size);
|
|
break;
|
|
}
|
|
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
|
|
"addr = %08x -> ret = %" PRIx64 ","
|
|
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
|
|
#ifdef DEBUG_MXCC
|
|
dump_mxcc(env);
|
|
#endif
|
|
break;
|
|
case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
|
|
case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
|
|
{
|
|
int mmulev;
|
|
|
|
mmulev = (addr >> 8) & 15;
|
|
if (mmulev > 4) {
|
|
ret = 0;
|
|
} else {
|
|
ret = mmu_probe(env, addr, mmulev);
|
|
}
|
|
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
|
|
addr, mmulev, ret);
|
|
}
|
|
break;
|
|
case ASI_M_MMUREGS: /* SuperSparc MMU regs */
|
|
case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
|
|
{
|
|
int reg = (addr >> 8) & 0x1f;
|
|
|
|
ret = env->mmuregs[reg];
|
|
if (reg == 3) { /* Fault status cleared on read */
|
|
env->mmuregs[3] = 0;
|
|
} else if (reg == 0x13) { /* Fault status read */
|
|
ret = env->mmuregs[3];
|
|
} else if (reg == 0x14) { /* Fault address read */
|
|
ret = env->mmuregs[4];
|
|
}
|
|
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
|
|
}
|
|
break;
|
|
case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
|
|
case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
|
|
case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
|
|
break;
|
|
case ASI_KERNELTXT: /* Supervisor code access */
|
|
switch (size) {
|
|
case 1:
|
|
ret = cpu_ldub_code(env, addr);
|
|
break;
|
|
case 2:
|
|
ret = cpu_lduw_code(env, addr);
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = cpu_ldl_code(env, addr);
|
|
break;
|
|
case 8:
|
|
ret = cpu_ldq_code(env, addr);
|
|
break;
|
|
}
|
|
break;
|
|
case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
|
|
case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
|
|
case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
|
|
case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
|
|
break;
|
|
/* MMU passthrough, 0x100000000 to 0xfffffffff */
|
|
case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
|
|
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
|
|
switch (size) {
|
|
case 1:
|
|
ret = ldub_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32));
|
|
break;
|
|
case 2:
|
|
ret = lduw_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32));
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32));
|
|
break;
|
|
case 8:
|
|
ret = ldq_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32));
|
|
break;
|
|
}
|
|
break;
|
|
case 0x30: /* Turbosparc secondary cache diagnostic */
|
|
case 0x31: /* Turbosparc RAM snoop */
|
|
case 0x32: /* Turbosparc page table descriptor diagnostic */
|
|
case 0x39: /* data cache diagnostic register */
|
|
ret = 0;
|
|
break;
|
|
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
|
|
{
|
|
int reg = (addr >> 8) & 3;
|
|
|
|
switch (reg) {
|
|
case 0: /* Breakpoint Value (Addr) */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 1: /* Breakpoint Mask */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 2: /* Breakpoint Control */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 3: /* Breakpoint Status */
|
|
ret = env->mmubpregs[reg];
|
|
env->mmubpregs[reg] = 0ULL;
|
|
break;
|
|
}
|
|
DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
|
|
ret);
|
|
}
|
|
break;
|
|
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
|
|
ret = env->mmubpctrv;
|
|
break;
|
|
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
|
|
ret = env->mmubpctrc;
|
|
break;
|
|
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
|
|
ret = env->mmubpctrs;
|
|
break;
|
|
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
|
|
ret = env->mmubpaction;
|
|
break;
|
|
case ASI_USERTXT: /* User code access, XXX */
|
|
default:
|
|
cpu_unassigned_access(cs, addr, false, false, asi, size);
|
|
ret = 0;
|
|
break;
|
|
|
|
case ASI_USERDATA: /* User data access */
|
|
case ASI_KERNELDATA: /* Supervisor data access */
|
|
case ASI_P: /* Implicit primary context data access (v9 only?) */
|
|
case ASI_M_BYPASS: /* MMU passthrough */
|
|
case ASI_LEON_BYPASS: /* LEON MMU passthrough */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
}
|
|
if (sign) {
|
|
switch (size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
SPARCCPU *cpu = sparc_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
switch (asi) {
|
|
case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
|
|
/* case ASI_LEON_CACHEREGS: Leon3 cache control */
|
|
switch (addr) {
|
|
case 0x00: /* Leon3 Cache Control */
|
|
case 0x08: /* Leon3 Instruction Cache config */
|
|
case 0x0C: /* Leon3 Date Cache config */
|
|
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
|
|
leon3_cache_control_st(env, addr, val, size);
|
|
}
|
|
break;
|
|
|
|
case 0x01c00000: /* MXCC stream data register 0 */
|
|
if (size == 8) {
|
|
env->mxccdata[0] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00008: /* MXCC stream data register 1 */
|
|
if (size == 8) {
|
|
env->mxccdata[1] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00010: /* MXCC stream data register 2 */
|
|
if (size == 8) {
|
|
env->mxccdata[2] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00018: /* MXCC stream data register 3 */
|
|
if (size == 8) {
|
|
env->mxccdata[3] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00100: /* MXCC stream source */
|
|
if (size == 8) {
|
|
env->mxccregs[0] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
env->mxccdata[0] = ldq_phys(cs->as,
|
|
(env->mxccregs[0] & 0xffffffffULL) +
|
|
0);
|
|
env->mxccdata[1] = ldq_phys(cs->as,
|
|
(env->mxccregs[0] & 0xffffffffULL) +
|
|
8);
|
|
env->mxccdata[2] = ldq_phys(cs->as,
|
|
(env->mxccregs[0] & 0xffffffffULL) +
|
|
16);
|
|
env->mxccdata[3] = ldq_phys(cs->as,
|
|
(env->mxccregs[0] & 0xffffffffULL) +
|
|
24);
|
|
break;
|
|
case 0x01c00200: /* MXCC stream destination */
|
|
if (size == 8) {
|
|
env->mxccregs[1] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
|
|
env->mxccdata[0]);
|
|
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
|
|
env->mxccdata[1]);
|
|
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
|
|
env->mxccdata[2]);
|
|
stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
|
|
env->mxccdata[3]);
|
|
break;
|
|
case 0x01c00a00: /* MXCC control register */
|
|
if (size == 8) {
|
|
env->mxccregs[3] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00a04: /* MXCC control register */
|
|
if (size == 4) {
|
|
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
|
|
| val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00e00: /* MXCC error register */
|
|
/* writing a 1 bit clears the error */
|
|
if (size == 8) {
|
|
env->mxccregs[6] &= ~val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
case 0x01c00f00: /* MBus port address register */
|
|
if (size == 8) {
|
|
env->mxccregs[7] = val;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
}
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"%08x: unimplemented address, size: %d\n", addr,
|
|
size);
|
|
break;
|
|
}
|
|
DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
|
|
asi, size, addr, val);
|
|
#ifdef DEBUG_MXCC
|
|
dump_mxcc(env);
|
|
#endif
|
|
break;
|
|
case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
|
|
case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
|
|
{
|
|
int mmulev;
|
|
|
|
mmulev = (addr >> 8) & 15;
|
|
DPRINTF_MMU("mmu flush level %d\n", mmulev);
|
|
switch (mmulev) {
|
|
case 0: /* flush page */
|
|
tlb_flush_page(CPU(cpu), addr & 0xfffff000);
|
|
break;
|
|
case 1: /* flush segment (256k) */
|
|
case 2: /* flush region (16M) */
|
|
case 3: /* flush context (4G) */
|
|
case 4: /* flush entire */
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
}
|
|
break;
|
|
case ASI_M_MMUREGS: /* write MMU regs */
|
|
case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
|
|
{
|
|
int reg = (addr >> 8) & 0x1f;
|
|
uint32_t oldreg;
|
|
|
|
oldreg = env->mmuregs[reg];
|
|
switch (reg) {
|
|
case 0: /* Control Register */
|
|
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
|
|
(val & 0x00ffffff);
|
|
/* Mappings generated during no-fault mode
|
|
are invalid in normal mode. */
|
|
if ((oldreg ^ env->mmuregs[reg])
|
|
& (MMU_NF | env->def->mmu_bm)) {
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
break;
|
|
case 1: /* Context Table Pointer Register */
|
|
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
|
|
break;
|
|
case 2: /* Context Register */
|
|
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
|
|
if (oldreg != env->mmuregs[reg]) {
|
|
/* we flush when the MMU context changes because
|
|
QEMU has no MMU context support */
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
break;
|
|
case 3: /* Synchronous Fault Status Register with Clear */
|
|
case 4: /* Synchronous Fault Address Register */
|
|
break;
|
|
case 0x10: /* TLB Replacement Control Register */
|
|
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
|
|
break;
|
|
case 0x13: /* Synchronous Fault Status Register with Read
|
|
and Clear */
|
|
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
|
|
break;
|
|
case 0x14: /* Synchronous Fault Address Register */
|
|
env->mmuregs[4] = val;
|
|
break;
|
|
default:
|
|
env->mmuregs[reg] = val;
|
|
break;
|
|
}
|
|
if (oldreg != env->mmuregs[reg]) {
|
|
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
|
|
reg, oldreg, env->mmuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
}
|
|
break;
|
|
case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
|
|
case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
|
|
case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
|
|
break;
|
|
case ASI_M_TXTC_TAG: /* I-cache tag */
|
|
case ASI_M_TXTC_DATA: /* I-cache data */
|
|
case ASI_M_DATAC_TAG: /* D-cache tag */
|
|
case ASI_M_DATAC_DATA: /* D-cache data */
|
|
case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
|
|
case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
|
|
case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
|
|
case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
|
|
case ASI_M_FLUSH_USER: /* I/D-cache flush user */
|
|
break;
|
|
/* MMU passthrough, 0x100000000 to 0xfffffffff */
|
|
case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
|
|
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 2:
|
|
stw_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 4:
|
|
default:
|
|
stl_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 8:
|
|
stq_phys(cs->as, (hwaddr)addr
|
|
| ((hwaddr)(asi & 0xf) << 32), val);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
|
|
case 0x31: /* store buffer data, Ross RT620 I-cache flush or
|
|
Turbosparc snoop RAM */
|
|
case 0x32: /* store buffer control or Turbosparc page table
|
|
descriptor diagnostic */
|
|
case 0x36: /* I-cache flash clear */
|
|
case 0x37: /* D-cache flash clear */
|
|
break;
|
|
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
|
|
{
|
|
int reg = (addr >> 8) & 3;
|
|
|
|
switch (reg) {
|
|
case 0: /* Breakpoint Value (Addr) */
|
|
env->mmubpregs[reg] = (val & 0xfffffffffULL);
|
|
break;
|
|
case 1: /* Breakpoint Mask */
|
|
env->mmubpregs[reg] = (val & 0xfffffffffULL);
|
|
break;
|
|
case 2: /* Breakpoint Control */
|
|
env->mmubpregs[reg] = (val & 0x7fULL);
|
|
break;
|
|
case 3: /* Breakpoint Status */
|
|
env->mmubpregs[reg] = (val & 0xfULL);
|
|
break;
|
|
}
|
|
DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
|
|
env->mmuregs[reg]);
|
|
}
|
|
break;
|
|
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
|
|
env->mmubpctrv = val & 0xffffffff;
|
|
break;
|
|
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
|
|
env->mmubpctrc = val & 0x3;
|
|
break;
|
|
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
|
|
env->mmubpctrs = val & 0x3;
|
|
break;
|
|
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
|
|
env->mmubpaction = val & 0x1fff;
|
|
break;
|
|
case ASI_USERTXT: /* User code access, XXX */
|
|
case ASI_KERNELTXT: /* Supervisor code access, XXX */
|
|
default:
|
|
cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
|
|
addr, true, false, asi, size);
|
|
break;
|
|
|
|
case ASI_USERDATA: /* User data access */
|
|
case ASI_KERNELDATA: /* Supervisor data access */
|
|
case ASI_P:
|
|
case ASI_M_BYPASS: /* MMU passthrough */
|
|
case ASI_LEON_BYPASS: /* LEON MMU passthrough */
|
|
case ASI_M_BCOPY: /* Block copy, sta access */
|
|
case ASI_M_BFILL: /* Block fill, stda access */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
}
|
|
|
|
#endif /* CONFIG_USER_ONLY */
|
|
#else /* TARGET_SPARC64 */
|
|
|
|
/* returns true if access using this ASI is to have address translated by MMU
|
|
otherwise access is to raw physical address */
|
|
static inline int is_translating_asi(int asi)
|
|
{
|
|
#ifdef TARGET_SPARC64
|
|
/* Ultrasparc IIi translating asi
|
|
- note this list is defined by cpu implementation
|
|
*/
|
|
if( (asi >= 0x04 && asi <= 0x11) ||
|
|
(asi >= 0x16 && asi <= 0x19) ||
|
|
(asi >= 0x1E && asi <= 0x1F) ||
|
|
(asi >= 0x24 && asi <= 0x2C) ||
|
|
(asi >= 0x70 && asi <= 0x73) ||
|
|
(asi >= 0x78 && asi <= 0x79) ||
|
|
(asi >= 0x80 && asi <= 0xFF) )
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
/* TODO: check sparc32 bits */
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
|
|
{
|
|
if (AM_CHECK(env1)) {
|
|
addr &= 0xffffffffULL;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static inline target_ulong asi_address_mask(CPUSPARCState *env,
|
|
int asi, target_ulong addr)
|
|
{
|
|
if (is_translating_asi(asi)) {
|
|
addr = address_mask(env, addr);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
int sign = memop & MO_SIGN;
|
|
uint64_t ret = 0;
|
|
|
|
if (asi < 0x80) {
|
|
cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
|
|
}
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
addr = asi_address_mask(env, asi, addr);
|
|
|
|
switch (asi) {
|
|
case ASI_PNF: /* Primary no-fault */
|
|
case ASI_PNFL: /* Primary no-fault LE */
|
|
case ASI_SNF: /* Secondary no-fault */
|
|
case ASI_SNFL: /* Secondary no-fault LE */
|
|
if (page_check_range(addr, size, PAGE_READ) == -1) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
switch (size) {
|
|
case 1:
|
|
ret = cpu_ldub_data(env, addr);
|
|
break;
|
|
case 2:
|
|
ret = cpu_lduw_data(env, addr);
|
|
break;
|
|
case 4:
|
|
ret = cpu_ldl_data(env, addr);
|
|
break;
|
|
case 8:
|
|
ret = cpu_ldq_data(env, addr);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
break;
|
|
|
|
case ASI_P: /* Primary */
|
|
case ASI_PL: /* Primary LE */
|
|
case ASI_S: /* Secondary */
|
|
case ASI_SL: /* Secondary LE */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
break;
|
|
default:
|
|
cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
|
|
break;
|
|
}
|
|
|
|
/* Convert from little endian */
|
|
switch (asi) {
|
|
case ASI_PNFL: /* Primary no-fault LE */
|
|
case ASI_SNFL: /* Secondary no-fault LE */
|
|
switch (size) {
|
|
case 2:
|
|
ret = bswap16(ret);
|
|
break;
|
|
case 4:
|
|
ret = bswap32(ret);
|
|
break;
|
|
case 8:
|
|
ret = bswap64(ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Convert to signed number */
|
|
if (sign) {
|
|
switch (size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read", addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
if (asi < 0x80) {
|
|
cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
|
|
}
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
|
|
switch (asi) {
|
|
case ASI_P: /* Primary */
|
|
case ASI_PL: /* Primary LE */
|
|
case ASI_S: /* Secondary */
|
|
case ASI_SL: /* Secondary LE */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
return;
|
|
|
|
case ASI_PNF: /* Primary no-fault, RO */
|
|
case ASI_SNF: /* Secondary no-fault, RO */
|
|
case ASI_PNFL: /* Primary no-fault LE, RO */
|
|
case ASI_SNFL: /* Secondary no-fault LE, RO */
|
|
default:
|
|
cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_USER_ONLY */
|
|
|
|
uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
int sign = memop & MO_SIGN;
|
|
CPUState *cs = CPU(sparc_env_get_cpu(env));
|
|
uint64_t ret = 0;
|
|
#if defined(DEBUG_ASI)
|
|
target_ulong last_addr = addr;
|
|
#endif
|
|
|
|
asi &= 0xff;
|
|
|
|
do_check_asi(env, asi, GETPC());
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
addr = asi_address_mask(env, asi, addr);
|
|
|
|
switch (asi) {
|
|
case ASI_PNF:
|
|
case ASI_PNFL:
|
|
case ASI_SNF:
|
|
case ASI_SNFL:
|
|
{
|
|
TCGMemOpIdx oi;
|
|
int idx = (env->pstate & PS_PRIV
|
|
? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
|
|
: (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
|
|
|
|
if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
/* exception_index is set in get_physical_address_data. */
|
|
cpu_raise_exception_ra(env, cs->exception_index, GETPC());
|
|
}
|
|
|
|
oi = make_memop_idx(memop, idx);
|
|
switch (size) {
|
|
case 1:
|
|
ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
|
|
break;
|
|
case 2:
|
|
if (asi & 8) {
|
|
ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
|
|
} else {
|
|
ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
|
|
}
|
|
break;
|
|
case 4:
|
|
if (asi & 8) {
|
|
ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
|
|
} else {
|
|
ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
|
|
}
|
|
break;
|
|
case 8:
|
|
if (asi & 8) {
|
|
ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
|
|
} else {
|
|
ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ASI_AIUP: /* As if user primary */
|
|
case ASI_AIUS: /* As if user secondary */
|
|
case ASI_AIUPL: /* As if user primary LE */
|
|
case ASI_AIUSL: /* As if user secondary LE */
|
|
case ASI_P: /* Primary */
|
|
case ASI_S: /* Secondary */
|
|
case ASI_PL: /* Primary LE */
|
|
case ASI_SL: /* Secondary LE */
|
|
case ASI_REAL: /* Bypass */
|
|
case ASI_REAL_IO: /* Bypass, non-cacheable */
|
|
case ASI_REAL_L: /* Bypass LE */
|
|
case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
|
|
case ASI_N: /* Nucleus */
|
|
case ASI_NL: /* Nucleus Little Endian (LE) */
|
|
case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
|
|
case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
|
|
case ASI_TWINX_AIUP: /* As if user primary, twinx */
|
|
case ASI_TWINX_AIUS: /* As if user secondary, twinx */
|
|
case ASI_TWINX_REAL: /* Real address, twinx */
|
|
case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
|
|
case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
|
|
case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
|
|
case ASI_TWINX_N: /* Nucleus, twinx */
|
|
case ASI_TWINX_NL: /* Nucleus, twinx, LE */
|
|
/* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
|
|
case ASI_TWINX_P: /* Primary, twinx */
|
|
case ASI_TWINX_PL: /* Primary, twinx, LE */
|
|
case ASI_TWINX_S: /* Secondary, twinx */
|
|
case ASI_TWINX_SL: /* Secondary, twinx, LE */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
|
|
case ASI_UPA_CONFIG: /* UPA config */
|
|
/* XXX */
|
|
break;
|
|
case ASI_LSU_CONTROL: /* LSU */
|
|
ret = env->lsu;
|
|
break;
|
|
case ASI_IMMU: /* I-MMU regs */
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
/* 0x00 I-TSB Tag Target register */
|
|
ret = ultrasparc_tag_target(env->immu.tag_access);
|
|
break;
|
|
case 3: /* SFSR */
|
|
ret = env->immu.sfsr;
|
|
break;
|
|
case 5: /* TSB access */
|
|
ret = env->immu.tsb;
|
|
break;
|
|
case 6:
|
|
/* 0x30 I-TSB Tag Access register */
|
|
ret = env->immu.tag_access;
|
|
break;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, false, false, 1, size);
|
|
ret = 0;
|
|
}
|
|
break;
|
|
}
|
|
case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
|
|
{
|
|
/* env->immuregs[5] holds I-MMU TSB register value
|
|
env->immuregs[6] holds I-MMU Tag Access register value */
|
|
ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
|
|
break;
|
|
}
|
|
case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
|
|
{
|
|
/* env->immuregs[5] holds I-MMU TSB register value
|
|
env->immuregs[6] holds I-MMU Tag Access register value */
|
|
ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
|
|
break;
|
|
}
|
|
case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->itlb[reg].tte;
|
|
break;
|
|
}
|
|
case ASI_ITLB_TAG_READ: /* I-MMU tag read */
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->itlb[reg].tag;
|
|
break;
|
|
}
|
|
case ASI_DMMU: /* D-MMU regs */
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
/* 0x00 D-TSB Tag Target register */
|
|
ret = ultrasparc_tag_target(env->dmmu.tag_access);
|
|
break;
|
|
case 1: /* 0x08 Primary Context */
|
|
ret = env->dmmu.mmu_primary_context;
|
|
break;
|
|
case 2: /* 0x10 Secondary Context */
|
|
ret = env->dmmu.mmu_secondary_context;
|
|
break;
|
|
case 3: /* SFSR */
|
|
ret = env->dmmu.sfsr;
|
|
break;
|
|
case 4: /* 0x20 SFAR */
|
|
ret = env->dmmu.sfar;
|
|
break;
|
|
case 5: /* 0x28 TSB access */
|
|
ret = env->dmmu.tsb;
|
|
break;
|
|
case 6: /* 0x30 D-TSB Tag Access register */
|
|
ret = env->dmmu.tag_access;
|
|
break;
|
|
case 7:
|
|
ret = env->dmmu.virtual_watchpoint;
|
|
break;
|
|
case 8:
|
|
ret = env->dmmu.physical_watchpoint;
|
|
break;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, false, false, 1, size);
|
|
ret = 0;
|
|
}
|
|
break;
|
|
}
|
|
case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
|
|
{
|
|
/* env->dmmuregs[5] holds D-MMU TSB register value
|
|
env->dmmuregs[6] holds D-MMU Tag Access register value */
|
|
ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
|
|
break;
|
|
}
|
|
case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
|
|
{
|
|
/* env->dmmuregs[5] holds D-MMU TSB register value
|
|
env->dmmuregs[6] holds D-MMU Tag Access register value */
|
|
ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
|
|
break;
|
|
}
|
|
case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->dtlb[reg].tte;
|
|
break;
|
|
}
|
|
case ASI_DTLB_TAG_READ: /* D-MMU tag read */
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->dtlb[reg].tag;
|
|
break;
|
|
}
|
|
case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
|
|
break;
|
|
case ASI_INTR_RECEIVE: /* Interrupt data receive */
|
|
ret = env->ivec_status;
|
|
break;
|
|
case ASI_INTR_R: /* Incoming interrupt vector, RO */
|
|
{
|
|
int reg = (addr >> 4) & 0x3;
|
|
if (reg < 3) {
|
|
ret = env->ivec_data[reg];
|
|
}
|
|
break;
|
|
}
|
|
case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
|
|
if (unlikely((addr >= 0x20) && (addr < 0x30))) {
|
|
/* Hyperprivileged access only */
|
|
cpu_unassigned_access(cs, addr, false, false, 1, size);
|
|
}
|
|
/* fall through */
|
|
case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
|
|
{
|
|
unsigned int i = (addr >> 3) & 0x7;
|
|
ret = env->scratch[i];
|
|
break;
|
|
}
|
|
case ASI_MMU: /* UA2005 Context ID registers */
|
|
switch ((addr >> 3) & 0x3) {
|
|
case 1:
|
|
ret = env->dmmu.mmu_primary_context;
|
|
break;
|
|
case 2:
|
|
ret = env->dmmu.mmu_secondary_context;
|
|
break;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, true, false, 1, size);
|
|
}
|
|
break;
|
|
case ASI_DCACHE_DATA: /* D-cache data */
|
|
case ASI_DCACHE_TAG: /* D-cache tag access */
|
|
case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
|
|
case ASI_AFSR: /* E-cache asynchronous fault status */
|
|
case ASI_AFAR: /* E-cache asynchronous fault address */
|
|
case ASI_EC_TAG_DATA: /* E-cache tag data */
|
|
case ASI_IC_INSTR: /* I-cache instruction access */
|
|
case ASI_IC_TAG: /* I-cache tag access */
|
|
case ASI_IC_PRE_DECODE: /* I-cache predecode */
|
|
case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
|
|
case ASI_EC_W: /* E-cache tag */
|
|
case ASI_EC_R: /* E-cache tag */
|
|
break;
|
|
case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
|
|
case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
|
|
case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
|
|
case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
|
|
case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
|
|
case ASI_INTR_W: /* Interrupt vector, WO */
|
|
default:
|
|
cpu_unassigned_access(cs, addr, false, false, 1, size);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* Convert to signed number */
|
|
if (sign) {
|
|
switch (size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
|
|
int asi, uint32_t memop)
|
|
{
|
|
int size = 1 << (memop & MO_SIZE);
|
|
SPARCCPU *cpu = sparc_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
|
|
asi &= 0xff;
|
|
|
|
do_check_asi(env, asi, GETPC());
|
|
do_check_align(env, addr, size - 1, GETPC());
|
|
addr = asi_address_mask(env, asi, addr);
|
|
|
|
switch (asi) {
|
|
case ASI_AIUP: /* As if user primary */
|
|
case ASI_AIUS: /* As if user secondary */
|
|
case ASI_AIUPL: /* As if user primary LE */
|
|
case ASI_AIUSL: /* As if user secondary LE */
|
|
case ASI_P: /* Primary */
|
|
case ASI_S: /* Secondary */
|
|
case ASI_PL: /* Primary LE */
|
|
case ASI_SL: /* Secondary LE */
|
|
case ASI_REAL: /* Bypass */
|
|
case ASI_REAL_IO: /* Bypass, non-cacheable */
|
|
case ASI_REAL_L: /* Bypass LE */
|
|
case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
|
|
case ASI_N: /* Nucleus */
|
|
case ASI_NL: /* Nucleus Little Endian (LE) */
|
|
case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
|
|
case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
|
|
case ASI_TWINX_AIUP: /* As if user primary, twinx */
|
|
case ASI_TWINX_AIUS: /* As if user secondary, twinx */
|
|
case ASI_TWINX_REAL: /* Real address, twinx */
|
|
case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
|
|
case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
|
|
case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
|
|
case ASI_TWINX_N: /* Nucleus, twinx */
|
|
case ASI_TWINX_NL: /* Nucleus, twinx, LE */
|
|
/* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
|
|
case ASI_TWINX_P: /* Primary, twinx */
|
|
case ASI_TWINX_PL: /* Primary, twinx, LE */
|
|
case ASI_TWINX_S: /* Secondary, twinx */
|
|
case ASI_TWINX_SL: /* Secondary, twinx, LE */
|
|
/* These are always handled inline. */
|
|
g_assert_not_reached();
|
|
return;
|
|
/* these ASIs have different functions on UltraSPARC-IIIi
|
|
* and UA2005 CPUs. Use the explicit numbers to avoid confusion
|
|
*/
|
|
case 0x31:
|
|
case 0x32:
|
|
case 0x39:
|
|
case 0x3a:
|
|
if (cpu_has_hypervisor(env)) {
|
|
/* UA2005
|
|
* ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
|
|
* ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
|
|
* ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
|
|
* ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
|
|
*/
|
|
int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
|
|
env->dmmu.sun4v_tsb_pointers[idx] = val;
|
|
} else {
|
|
helper_raise_exception(env, TT_ILL_INSN);
|
|
}
|
|
break;
|
|
case 0x33:
|
|
case 0x3b:
|
|
if (cpu_has_hypervisor(env)) {
|
|
/* UA2005
|
|
* ASI_DMMU_CTX_ZERO_CONFIG
|
|
* ASI_DMMU_CTX_NONZERO_CONFIG
|
|
*/
|
|
env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
|
|
} else {
|
|
helper_raise_exception(env, TT_ILL_INSN);
|
|
}
|
|
break;
|
|
case 0x35:
|
|
case 0x36:
|
|
case 0x3d:
|
|
case 0x3e:
|
|
if (cpu_has_hypervisor(env)) {
|
|
/* UA2005
|
|
* ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
|
|
* ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
|
|
* ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
|
|
* ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
|
|
*/
|
|
int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
|
|
env->immu.sun4v_tsb_pointers[idx] = val;
|
|
} else {
|
|
helper_raise_exception(env, TT_ILL_INSN);
|
|
}
|
|
break;
|
|
case 0x37:
|
|
case 0x3f:
|
|
if (cpu_has_hypervisor(env)) {
|
|
/* UA2005
|
|
* ASI_IMMU_CTX_ZERO_CONFIG
|
|
* ASI_IMMU_CTX_NONZERO_CONFIG
|
|
*/
|
|
env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
|
|
} else {
|
|
helper_raise_exception(env, TT_ILL_INSN);
|
|
}
|
|
break;
|
|
case ASI_UPA_CONFIG: /* UPA config */
|
|
/* XXX */
|
|
return;
|
|
case ASI_LSU_CONTROL: /* LSU */
|
|
env->lsu = val & (DMMU_E | IMMU_E);
|
|
return;
|
|
case ASI_IMMU: /* I-MMU regs */
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
uint64_t oldreg;
|
|
|
|
oldreg = env->immu.mmuregs[reg];
|
|
switch (reg) {
|
|
case 0: /* RO */
|
|
return;
|
|
case 1: /* Not in I-MMU */
|
|
case 2:
|
|
return;
|
|
case 3: /* SFSR */
|
|
if ((val & 1) == 0) {
|
|
val = 0; /* Clear SFSR */
|
|
}
|
|
env->immu.sfsr = val;
|
|
break;
|
|
case 4: /* RO */
|
|
return;
|
|
case 5: /* TSB access */
|
|
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", env->immu.tsb, val);
|
|
env->immu.tsb = val;
|
|
break;
|
|
case 6: /* Tag access */
|
|
env->immu.tag_access = val;
|
|
break;
|
|
case 7:
|
|
case 8:
|
|
return;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, true, false, 1, size);
|
|
break;
|
|
}
|
|
|
|
if (oldreg != env->immu.mmuregs[reg]) {
|
|
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
return;
|
|
}
|
|
case ASI_ITLB_DATA_IN: /* I-MMU data in */
|
|
/* ignore real translation entries */
|
|
if (!(addr & TLB_UST1_IS_REAL_BIT)) {
|
|
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
|
|
val, "immu", env, addr);
|
|
}
|
|
return;
|
|
case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
|
|
{
|
|
/* TODO: auto demap */
|
|
|
|
unsigned int i = (addr >> 3) & 0x3f;
|
|
|
|
/* ignore real translation entries */
|
|
if (!(addr & TLB_UST1_IS_REAL_BIT)) {
|
|
replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
|
|
sun4v_tte_to_sun4u(env, addr, val), env);
|
|
}
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
return;
|
|
}
|
|
case ASI_IMMU_DEMAP: /* I-MMU demap */
|
|
demap_tlb(env->itlb, addr, "immu", env);
|
|
return;
|
|
case ASI_DMMU: /* D-MMU regs */
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
uint64_t oldreg;
|
|
|
|
oldreg = env->dmmu.mmuregs[reg];
|
|
switch (reg) {
|
|
case 0: /* RO */
|
|
case 4:
|
|
return;
|
|
case 3: /* SFSR */
|
|
if ((val & 1) == 0) {
|
|
val = 0; /* Clear SFSR, Fault address */
|
|
env->dmmu.sfar = 0;
|
|
}
|
|
env->dmmu.sfsr = val;
|
|
break;
|
|
case 1: /* Primary context */
|
|
env->dmmu.mmu_primary_context = val;
|
|
/* can be optimized to only flush MMU_USER_IDX
|
|
and MMU_KERNEL_IDX entries */
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
case 2: /* Secondary context */
|
|
env->dmmu.mmu_secondary_context = val;
|
|
/* can be optimized to only flush MMU_USER_SECONDARY_IDX
|
|
and MMU_KERNEL_SECONDARY_IDX entries */
|
|
tlb_flush(CPU(cpu));
|
|
break;
|
|
case 5: /* TSB access */
|
|
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", env->dmmu.tsb, val);
|
|
env->dmmu.tsb = val;
|
|
break;
|
|
case 6: /* Tag access */
|
|
env->dmmu.tag_access = val;
|
|
break;
|
|
case 7: /* Virtual Watchpoint */
|
|
env->dmmu.virtual_watchpoint = val;
|
|
break;
|
|
case 8: /* Physical Watchpoint */
|
|
env->dmmu.physical_watchpoint = val;
|
|
break;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, true, false, 1, size);
|
|
break;
|
|
}
|
|
|
|
if (oldreg != env->dmmu.mmuregs[reg]) {
|
|
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
return;
|
|
}
|
|
case ASI_DTLB_DATA_IN: /* D-MMU data in */
|
|
/* ignore real translation entries */
|
|
if (!(addr & TLB_UST1_IS_REAL_BIT)) {
|
|
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
|
|
val, "dmmu", env, addr);
|
|
}
|
|
return;
|
|
case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
|
|
{
|
|
unsigned int i = (addr >> 3) & 0x3f;
|
|
|
|
/* ignore real translation entries */
|
|
if (!(addr & TLB_UST1_IS_REAL_BIT)) {
|
|
replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
|
|
sun4v_tte_to_sun4u(env, addr, val), env);
|
|
}
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
|
|
dump_mmu(stdout, fprintf, env);
|
|
#endif
|
|
return;
|
|
}
|
|
case ASI_DMMU_DEMAP: /* D-MMU demap */
|
|
demap_tlb(env->dtlb, addr, "dmmu", env);
|
|
return;
|
|
case ASI_INTR_RECEIVE: /* Interrupt data receive */
|
|
env->ivec_status = val & 0x20;
|
|
return;
|
|
case ASI_MMU: /* UA2005 Context ID registers */
|
|
{
|
|
switch ((addr >> 3) & 0x3) {
|
|
case 1:
|
|
env->dmmu.mmu_primary_context = val;
|
|
env->immu.mmu_primary_context = val;
|
|
tlb_flush_by_mmuidx(CPU(cpu),
|
|
(1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
|
|
break;
|
|
case 2:
|
|
env->dmmu.mmu_secondary_context = val;
|
|
env->immu.mmu_secondary_context = val;
|
|
tlb_flush_by_mmuidx(CPU(cpu),
|
|
(1 << MMU_USER_SECONDARY_IDX) |
|
|
(1 << MMU_KERNEL_SECONDARY_IDX));
|
|
break;
|
|
default:
|
|
cpu_unassigned_access(cs, addr, true, false, 1, size);
|
|
}
|
|
}
|
|
return;
|
|
case ASI_QUEUE: /* UA2005 CPU mondo queue */
|
|
case ASI_DCACHE_DATA: /* D-cache data */
|
|
case ASI_DCACHE_TAG: /* D-cache tag access */
|
|
case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
|
|
case ASI_AFSR: /* E-cache asynchronous fault status */
|
|
case ASI_AFAR: /* E-cache asynchronous fault address */
|
|
case ASI_EC_TAG_DATA: /* E-cache tag data */
|
|
case ASI_IC_INSTR: /* I-cache instruction access */
|
|
case ASI_IC_TAG: /* I-cache tag access */
|
|
case ASI_IC_PRE_DECODE: /* I-cache predecode */
|
|
case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
|
|
case ASI_EC_W: /* E-cache tag */
|
|
case ASI_EC_R: /* E-cache tag */
|
|
return;
|
|
case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
|
|
case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
|
|
case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
|
|
case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
|
|
case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
|
|
case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
|
|
case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
|
|
case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
|
|
case ASI_INTR_R: /* Incoming interrupt vector, RO */
|
|
case ASI_PNF: /* Primary no-fault, RO */
|
|
case ASI_SNF: /* Secondary no-fault, RO */
|
|
case ASI_PNFL: /* Primary no-fault LE, RO */
|
|
case ASI_SNFL: /* Secondary no-fault LE, RO */
|
|
default:
|
|
cpu_unassigned_access(cs, addr, true, false, 1, size);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CONFIG_USER_ONLY */
|
|
#endif /* TARGET_SPARC64 */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#ifndef TARGET_SPARC64
|
|
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
|
|
bool is_write, bool is_exec, int is_asi,
|
|
unsigned size)
|
|
{
|
|
SPARCCPU *cpu = SPARC_CPU(cs->uc, cs);
|
|
CPUSPARCState *env = &cpu->env;
|
|
int fault_type;
|
|
|
|
#ifdef DEBUG_UNASSIGNED
|
|
if (is_asi) {
|
|
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
|
|
" asi 0x%02x from " TARGET_FMT_lx "\n",
|
|
is_exec ? "exec" : is_write ? "write" : "read", size,
|
|
size == 1 ? "" : "s", addr, is_asi, env->pc);
|
|
} else {
|
|
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
|
|
" from " TARGET_FMT_lx "\n",
|
|
is_exec ? "exec" : is_write ? "write" : "read", size,
|
|
size == 1 ? "" : "s", addr, env->pc);
|
|
}
|
|
#endif
|
|
/* Don't overwrite translation and access faults */
|
|
fault_type = (env->mmuregs[3] & 0x1c) >> 2;
|
|
if ((fault_type > 4) || (fault_type == 0)) {
|
|
env->mmuregs[3] = 0; /* Fault status register */
|
|
if (is_asi) {
|
|
env->mmuregs[3] |= 1 << 16;
|
|
}
|
|
if (env->psrs) {
|
|
env->mmuregs[3] |= 1 << 5;
|
|
}
|
|
if (is_exec) {
|
|
env->mmuregs[3] |= 1 << 6;
|
|
}
|
|
if (is_write) {
|
|
env->mmuregs[3] |= 1 << 7;
|
|
}
|
|
env->mmuregs[3] |= (5 << 2) | 2;
|
|
/* SuperSPARC will never place instruction fault addresses in the FAR */
|
|
if (!is_exec) {
|
|
env->mmuregs[4] = addr; /* Fault address register */
|
|
}
|
|
}
|
|
/* overflow (same type fault was not read before another fault) */
|
|
if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
|
|
env->mmuregs[3] |= 1;
|
|
}
|
|
|
|
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
|
|
int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
|
|
cpu_raise_exception_ra(env, tt, GETPC());
|
|
}
|
|
|
|
/* flush neverland mappings created during no-fault mode,
|
|
so the sequential MMU faults report proper fault types */
|
|
if (env->mmuregs[0] & MMU_NF) {
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
#else
|
|
void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
|
|
bool is_write, bool is_exec, int is_asi,
|
|
unsigned size)
|
|
{
|
|
SPARCCPU *cpu = SPARC_CPU(cs->uc, cs);
|
|
CPUSPARCState *env = &cpu->env;
|
|
|
|
#ifdef DEBUG_UNASSIGNED
|
|
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
#endif
|
|
|
|
if (is_exec) { /* XXX has_hypervisor */
|
|
if (env->lsu & (IMMU_E)) {
|
|
cpu_raise_exception_ra(env, TT_CODE_ACCESS, GETPC());
|
|
} else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
|
|
cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, GETPC());
|
|
}
|
|
} else {
|
|
if (env->lsu & (DMMU_E)) {
|
|
cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
|
|
} else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
|
|
cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, GETPC());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
SPARCCPU *cpu = SPARC_CPU(cs->uc, cs);
|
|
CPUSPARCState *env = &cpu->env;
|
|
|
|
#ifdef DEBUG_UNALIGNED
|
|
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
#endif
|
|
cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
|
|
}
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
NULL, it means that the function was called in C code (i.e. not
|
|
from generated code or from helper.c) */
|
|
/* XXX: fix it to restore all registers */
|
|
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
int ret;
|
|
|
|
ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
|
|
if (ret) {
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
}
|
|
#endif
|