unicorn/qemu/target/riscv/pmp.c
Jim Shu d1ee86a6b2 target/riscv: propagate PMP permission to TLB page
Currently, PMP permission checking of TLB page is bypassed if TLB hits
Fix it by propagating PMP permission to TLB page permission.

PMP permission checking also use MMU-style API to change TLB permission
and size.

Backports b297129ae19e26d3cc0e376d2bfc33d76b06d83b
2021-03-30 15:05:40 -04:00

491 lines
13 KiB
C

/*
* QEMU RISC-V PMP (Physical Memory Protection)
*
* Author: Daire McNamara, daire.mcnamara@emdalo.com
* Ivan Griffin, ivan.griffin@emdalo.com
*
* This provides a RISC-V Physical Memory Protection implementation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu-common.h"
#ifndef CONFIG_USER_ONLY
#define RISCV_DEBUG_PMP 0
#define PMP_DEBUG(fmt, ...) \
do { \
if (RISCV_DEBUG_PMP) { \
qemu_log_mask(LOG_TRACE, "%s: " fmt "\n", __func__, ##__VA_ARGS__);\
} \
} while (0)
static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
uint8_t val);
static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
/*
* Accessor method to extract address matching type 'a field' from cfg reg
*/
static inline uint8_t pmp_get_a_field(uint8_t cfg)
{
uint8_t a = cfg >> 3;
return a & 0x3;
}
/*
* Check whether a PMP is locked or not.
*/
static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
{
if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
return 1;
}
/* Top PMP has no 'next' to check */
if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
return 0;
}
/* In TOR mode, need to check the lock bit of the next pmp
* (if there is a next)
*/
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
(PMP_AMATCH_TOR == a_field)) {
return 1;
}
return 0;
}
/*
* Count the number of active rules.
*/
uint32_t pmp_get_num_rules(CPURISCVState *env)
{
return env->pmp_state.num_rules;
}
/*
* Accessor to get the cfg reg for a specific PMP/HART
*/
static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
{
if (pmp_index < MAX_RISCV_PMPS) {
return env->pmp_state.pmp[pmp_index].cfg_reg;
}
return 0;
}
/*
* Accessor to set the cfg reg for a specific PMP/HART
* Bounds checks and relevant lock bit.
*/
static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
{
if (pmp_index < MAX_RISCV_PMPS) {
if (!pmp_is_locked(env, pmp_index)) {
env->pmp_state.pmp[pmp_index].cfg_reg = val;
pmp_update_rule(env, pmp_index);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpcfg write - out of bounds\n");
}
}
static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
{
/*
aaaa...aaa0 8-byte NAPOT range
aaaa...aa01 16-byte NAPOT range
aaaa...a011 32-byte NAPOT range
...
aa01...1111 2^XLEN-byte NAPOT range
a011...1111 2^(XLEN+1)-byte NAPOT range
0111...1111 2^(XLEN+2)-byte NAPOT range
1111...1111 Reserved
*/
if (a == -1) {
*sa = 0u;
*ea = -1;
return;
} else {
target_ulong t1 = ctz64(~a);
target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
*sa = base;
*ea = base + range;
}
}
void pmp_update_rule_nums(CPURISCVState *env)
{
int i;
env->pmp_state.num_rules = 0;
for (i = 0; i < MAX_RISCV_PMPS; i++) {
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
if (PMP_AMATCH_OFF != a_field) {
env->pmp_state.num_rules++;
}
}
}
/* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
* end address values.
* This function is called relatively infrequently whereas the check that
* an address is within a pmp rule is called often, so optimise that one
*/
static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
{
int i;
env->pmp_state.num_rules = 0;
uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
target_ulong prev_addr = 0u;
target_ulong sa = 0u;
target_ulong ea = 0u;
if (pmp_index >= 1u) {
prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
}
switch (pmp_get_a_field(this_cfg)) {
case PMP_AMATCH_OFF:
sa = 0u;
ea = -1;
break;
case PMP_AMATCH_TOR:
sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
ea = (this_addr << 2) - 1u;
break;
case PMP_AMATCH_NA4:
sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
ea = (sa + 4u) - 1u;
break;
case PMP_AMATCH_NAPOT:
pmp_decode_napot(this_addr, &sa, &ea);
break;
default:
sa = 0u;
ea = 0u;
break;
}
env->pmp_state.addr[pmp_index].sa = sa;
env->pmp_state.addr[pmp_index].ea = ea;
for (i = 0; i < MAX_RISCV_PMPS; i++) {
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
if (PMP_AMATCH_OFF != a_field) {
env->pmp_state.num_rules++;
}
}
}
static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
{
int result = 0;
if ((addr >= env->pmp_state.addr[pmp_index].sa)
&& (addr <= env->pmp_state.addr[pmp_index].ea)) {
result = 1;
} else {
result = 0;
}
return result;
}
/*
* Check if the address has required RWX privs when no PMP entry is matched.
*/
static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
target_ulong mode)
{
bool ret;
if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
/*
* Privileged spec v1.10 states if HW doesn't implement any PMP entry
* or no PMP entry matches an M-Mode access, the access succeeds.
*/
ret = true;
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
} else {
/*
* Other modes are not allowed to succeed if they don't * match a rule,
* but there are rules. We've checked for no rule earlier in this
* function.
*/
ret = false;
*allowed_privs = 0;
}
return ret;
}
/*
* Public Interface
*/
/*
* Check if the address has required RWX privs to complete desired operation
*/
bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
target_ulong mode)
{
int i = 0;
int ret = -1;
target_ulong s = 0;
target_ulong e = 0;
/* Short cut if no rules */
if (0 == pmp_get_num_rules(env)) {
return pmp_hart_has_privs_default(env, addr, size, privs,
allowed_privs, mode);
}
/* 1.10 draft priv spec states there is an implicit order
from low to high */
for (i = 0; i < MAX_RISCV_PMPS; i++) {
s = pmp_is_in_range(env, i, addr);
e = pmp_is_in_range(env, i, addr + size - 1);
/* partially inside */
if ((s + e) == 1) {
qemu_log_mask(LOG_GUEST_ERROR,
"pmp violation - access is partially inside\n");
ret = 0;
break;
}
/* fully inside */
const uint8_t a_field =
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
/*
* If the PMP entry is not off and the address is in range, do the priv
* check
*/
if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
if ((mode != PRV_M) || pmp_is_locked(env, i)) {
*allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
}
ret = ((privs & *allowed_privs) == privs);
break;
}
}
/* No rule matched */
if (ret == -1) {
return pmp_hart_has_privs_default(env, addr, size, privs,
allowed_privs, mode);
}
return ret == 1 ? true : false;
}
/*
* Handle a write to a pmpcfg CSP
*/
void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
target_ulong val)
{
int i;
uint8_t cfg_val;
PMP_DEBUG("hart " TARGET_FMT_ld ": reg%d, val: 0x" TARGET_FMT_lx,
env->mhartid, reg_index, val);
if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpcfg write - incorrect address\n");
return;
}
for (i = 0; i < sizeof(target_ulong); i++) {
cfg_val = (val >> 8 * i) & 0xff;
pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
}
}
/*
* Handle a read from a pmpcfg CSP
*/
target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
{
int i;
target_ulong cfg_val = 0;
target_ulong val = 0;
for (i = 0; i < sizeof(target_ulong); i++) {
val = pmp_read_cfg(env, (reg_index * 4) + i);
cfg_val |= (val << (i * 8));
}
PMP_DEBUG("hart " TARGET_FMT_ld ": reg%d, val: 0x" TARGET_FMT_lx,
env->mhartid, reg_index, cfg_val);
return cfg_val;
}
/*
* Handle a write to a pmpaddr CSP
*/
void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
target_ulong val)
{
PMP_DEBUG("hart " TARGET_FMT_ld ": addr%d, val: 0x" TARGET_FMT_lx,
env->mhartid, addr_index, val);
if (addr_index < MAX_RISCV_PMPS) {
if (!pmp_is_locked(env, addr_index)) {
env->pmp_state.pmp[addr_index].addr_reg = val;
pmp_update_rule(env, addr_index);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr write - locked\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr write - out of bounds\n");
}
}
/*
* Handle a read from a pmpaddr CSP
*/
target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
{
PMP_DEBUG("hart " TARGET_FMT_ld ": addr%d, val: 0x" TARGET_FMT_lx,
env->mhartid, addr_index,
env->pmp_state.pmp[addr_index].addr_reg);
if (addr_index < MAX_RISCV_PMPS) {
return env->pmp_state.pmp[addr_index].addr_reg;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"ignoring pmpaddr read - out of bounds\n");
return 0;
}
}
/*
* Calculate the TLB size if the start address or the end address of
* PMP entry is presented in thie TLB page.
*/
static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
target_ulong tlb_sa, target_ulong tlb_ea)
{
target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
return pmp_ea - pmp_sa + 1;
}
if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
return tlb_ea - pmp_sa + 1;
}
if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
return pmp_ea - tlb_sa + 1;
}
return 0;
}
/*
* Check is there a PMP entry which range covers this page. If so,
* try to find the minimum granularity for the TLB size.
*/
bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
target_ulong *tlb_size)
{
int i;
target_ulong val;
target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
for (i = 0; i < MAX_RISCV_PMPS; i++) {
val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
if (val) {
if (*tlb_size == 0 || *tlb_size > val) {
*tlb_size = val;
}
}
}
if (*tlb_size != 0) {
return true;
}
return false;
}
/*
* Convert PMP privilege to TLB page privilege.
*/
int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
{
int prot = 0;
if (pmp_priv & PMP_READ) {
prot |= PAGE_READ;
}
if (pmp_priv & PMP_WRITE) {
prot |= PAGE_WRITE;
}
if (pmp_priv & PMP_EXEC) {
prot |= PAGE_EXEC;
}
return prot;
}
#endif