unicorn/qemu/include/exec/cpu-all.h
Peter Maydell db8b0a82b1
cpu: Support a target CPU having a variable page size
Support target CPUs having a page size which isn't knownn
at compile time. To use this, the CPU implementation should:
* define TARGET_PAGE_BITS_VARY
* not define TARGET_PAGE_BITS
* define TARGET_PAGE_BITS_MIN to the smallest value it
might possibly want for TARGET_PAGE_BITS
* call set_preferred_target_page_bits() in its realize
function to indicate the actual preferred target page
size for the CPU (and report any error from it)

In CONFIG_USER_ONLY, the CPU implementation should continue
to define TARGET_PAGE_BITS appropriately for the guest
OS page size.

Machines which want to take advantage of having the page
size something larger than TARGET_PAGE_BITS_MIN must
set the MachineClass minimum_page_bits field to a value
which they guarantee will be no greater than the preferred
page size for any CPU they create.

Note that changing the target page size by setting
minimum_page_bits is a migration compatibility break
for that machine.

For debugging purposes, attempts to use TARGET_PAGE_SIZE
before it has been finally confirmed will assert.

Backports commit 20bccb82ff3ea09bcb7c4ee226d3160cab15f7da from qemu
2018-02-26 12:29:08 -05:00

353 lines
10 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#include "qemu-common.h"
#include "exec/cpu-common.h"
#include "exec/memory.h"
#include "qemu/thread.h"
#include "qom/cpu.h"
#define EXCP_INTERRUPT 0x10000 /* async interruption */
#define EXCP_HLT 0x10001 /* hlt instruction reached */
#define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */
#define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */
#define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */
/* some important defines:
*
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#define bswaptls(s) bswap64s(s)
#endif
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
/* target-endianness CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include <assert.h>
#include "exec/user/abitypes.h"
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
extern unsigned long reserved_va;
#define GUEST_BASE guest_base
#define RESERVED_VA reserved_va
#else
#define GUEST_BASE 0ul
#define RESERVED_VA 0ul
#endif
#define GUEST_ADDR_MAX (RESERVED_VA ? RESERVED_VA : \
(1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
#else
#include "exec/hwaddr.h"
uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
MemTxAttrs attrs, MemTxResult *result);
void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
MemTxAttrs attrs, MemTxResult *result);
#endif
/* page related stuff */
#ifdef TARGET_PAGE_BITS_VARY
#define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
target_page_bits; })
#else
#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
#endif
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
#define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
qemu_real_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0020
#endif
#if defined(CONFIG_USER_ONLY)
//void page_dump(FILE *f);
int page_get_flags(target_ulong address);
#endif
CPUArchState *cpu_copy(CPUArchState *env);
/* Flags for use in ENV->INTERRUPT_PENDING.
The numbers assigned here are non-sequential in order to preserve
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
the vmstate dump. */
/* External hardware interrupt pending. This is typically used for
interrupts from devices. */
#define CPU_INTERRUPT_HARD 0x0002
/* Exit the current TB. This is typically used when some system-level device
makes some change to the memory mapping. E.g. the a20 line change. */
#define CPU_INTERRUPT_EXITTB 0x0004
/* Halt the CPU. */
#define CPU_INTERRUPT_HALT 0x0020
/* Debug event pending. */
#define CPU_INTERRUPT_DEBUG 0x0080
/* Reset signal. */
#define CPU_INTERRUPT_RESET 0x0400
/* Several target-specific external hardware interrupts. Each target/cpu.h
should define proper names based on these defines. */
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
/* Several target-specific internal interrupts. These differ from the
preceding target-specific interrupts in that they are intended to
originate from within the cpu itself, typically in response to some
instruction being executed. These, therefore, are not masked while
single-stepping within the debugger. */
#define CPU_INTERRUPT_TGT_INT_0 0x0100
#define CPU_INTERRUPT_TGT_INT_1 0x0800
#define CPU_INTERRUPT_TGT_INT_2 0x2000
/* First unused bit: 0x4000. */
/* The set of all bits that should be masked when single-stepping. */
#define CPU_INTERRUPT_SSTEP_MASK \
(CPU_INTERRUPT_HARD \
| CPU_INTERRUPT_TGT_EXT_0 \
| CPU_INTERRUPT_TGT_EXT_1 \
| CPU_INTERRUPT_TGT_EXT_2 \
| CPU_INTERRUPT_TGT_EXT_3 \
| CPU_INTERRUPT_TGT_EXT_4)
#if !defined(CONFIG_USER_ONLY)
/* memory API */
/* Flags stored in the low bits of the TLB virtual address. These are
* defined so that fast path ram access is all zeros.
* The flags all must be between TARGET_PAGE_BITS and
* maximum address alignment bit.
*/
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS - 1))
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS - 2))
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << (TARGET_PAGE_BITS - 3))
/* Use this mask to check interception with an alignment mask
* in a TCG backend.
*/
#define TLB_FLAGS_MASK (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO)
ram_addr_t last_ram_offset(struct uc_struct *uc);
void qemu_mutex_lock_ramlist(struct uc_struct *uc);
void qemu_mutex_unlock_ramlist(struct uc_struct *uc);
#endif /* !CONFIG_USER_ONLY */
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, int is_write);
#endif /* CPU_ALL_H */