unicorn/qemu/target/arm/cpu.c
Aaron Lindsay OS 8d7bb2cab3
target/arm: Don't clear supported PMU events when initializing PMCEID1
A bug was introduced during a respin of:

commit 57a4a11b2b281bb548b419ca81bfafb214e4c77a
target/arm: Add array for supported PMU events, generate PMCEID[01]_EL0

This patch introduced two calls to get_pmceid() during CPU
initialization - one each for PMCEID0 and PMCEID1. In addition to
building the register values, get_pmceid() clears an internal array
mapping event numbers to their implementations (supported_event_map)
before rebuilding it. This is an optimization since much of the logic is
shared. However, since it was called twice, the contents of
supported_event_map reflect only the events in PMCEID1 (the second call
to get_pmceid()).

Fix this bug by moving the initialization of PMCEID0 and PMCEID1 back
into a single function call, and name it more appropriately since it is
doing more than simply generating the contents of the PMCEID[01]
registers.

Backports commit bf8d09694ccc07487cd73d7562081fdaec3370c8 from qemu
2019-01-29 17:12:23 -05:00

1841 lines
60 KiB
C

/*
* QEMU ARM CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*f
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "internals.h"
#include "qemu-common.h"
#include "exec/exec-all.h"
#include "qapi/qmp/qerror.h"
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
#include "fpu/softfloat.h"
#include "uc_priv.h"
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(NULL, cs);
cpu->env.regs[15] = value;
}
static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(NULL, cs);
return !cpu->powered_off
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_EXITTB);
}
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
}
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
}
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Reset a single ARMCPRegInfo register */
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
return;
}
if (ri->resetfn) {
ri->resetfn(&cpu->env, ri);
return;
}
/* A zero offset is never possible as it would be regs[0]
* so we use it to indicate that reset is being handled elsewhere.
* This is basically only used for fields in non-core coprocessors
* (like the pxa2xx ones).
*/
if (!ri->fieldoffset) {
return;
}
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
} else {
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
}
}
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Purely an assertion check: we've already done reset once,
* so now check that running the reset for the cpreg doesn't
* change its value. This traps bugs where two different cpregs
* both try to reset the same state field but to different values.
*/
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
uint64_t oldvalue, newvalue;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
return;
}
oldvalue = read_raw_cp_reg(&cpu->env, ri);
cp_reg_reset(key, value, opaque);
newvalue = read_raw_cp_reg(&cpu->env, ri);
assert(oldvalue == newvalue);
}
/* CPUClass::reset() */
static void arm_cpu_reset(CPUState *s)
{
CPUARMState *env = s->env_ptr;
ARMCPU *cpu = ARM_CPU(env->uc, s);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(env->uc, cpu);
acc->parent_reset(s);
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
cpu->powered_off = cpu->start_powered_off;
s->halted = cpu->start_powered_off;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64 bit CPUs always start in 64 bit mode */
env->aarch64 = 1;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* Enable all PAC instructions */
env->cp15.hcr_el2 |= HCR_API;
env->cp15.scr_el3 |= SCR_API;
/* and to the FP/Neon instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
/* and to the SVE instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
env->cp15.cptr_el[3] |= CPTR_EZ;
/* with maximum vector length */
env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
#else
/* Reset into the highest available EL */
if (arm_feature(env, ARM_FEATURE_EL3)) {
env->pstate = PSTATE_MODE_EL3h;
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
env->pc = cpu->rvbar;
#endif
} else {
#if defined(CONFIG_USER_ONLY)
/* Userspace expects access to cp10 and cp11 for FP/Neon */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
#endif
}
#if defined(CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
/* For user mode we must enable access to coprocessors */
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->cp15.c15_cpar = 3;
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c15_cpar = 1;
}
#else
/*
* If the highest available EL is EL2, AArch32 will start in Hyp
* mode; otherwise it starts in SVC. Note that if we start in
* AArch64 then these values in the uncached_cpsr will be ignored.
*/
if (arm_feature(env, ARM_FEATURE_EL2) &&
!arm_feature(env, ARM_FEATURE_EL3)) {
env->uncached_cpsr = ARM_CPU_MODE_HYP;
} else {
env->uncached_cpsr = ARM_CPU_MODE_SVC;
}
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t initial_msp; /* Loaded from 0x0 */
uint32_t initial_pc; /* Loaded from 0x4 */
uint32_t vecbase = 0;
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->v7m.secure = true;
} else {
/* This bit resets to 0 if security is supported, but 1 if
* it is not. The bit is not present in v7M, but we set it
* here so we can avoid having to make checks on it conditional
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
*/
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
}
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
* that it resets to 1, so QEMU always does that rather than making
* it dependent on CPU model. In v8M it is RES1.
*/
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
}
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
}
/* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff;
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
#if 0
uint8_t *rom;
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
vecbase = env->v7m.vecbase[env->v7m.secure];
rom = rom_ptr(vecbase);
if (rom) {
/* Address zero is covered by ROM which hasn't yet been
* copied into physical memory.
*/
initial_msp = ldl_p(rom);
initial_pc = ldl_p(rom + 4);
} else
#endif
{
/* Address zero not covered by a ROM blob, or the ROM blob
* is in non-modifiable memory and this is a second reset after
* it got copied into memory. In the latter case, rom_ptr
* will return a NULL pointer and we should use ldl_phys instead.
*/
initial_msp = ldl_phys(s->as, vecbase);
initial_pc = ldl_phys(s->as, vecbase + 4);
}
env->regs[13] = initial_msp & 0xFFFFFFFC;
env->regs[15] = initial_pc & ~1;
env->thumb = initial_pc & 1;
}
// Unicorn: force Thumb mode by setting of uc_open()
env->thumb = env->uc->thumb;
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
* executing as AArch32 then check if highvecs are enabled and
* adjust the PC accordingly.
*/
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
env->regs[15] = 0xFFFF0000;
}
/* M profile requires that reset clears the exclusive monitor;
* A profile does not, but clearing it makes more sense than having it
* set with an exclusive access on address zero.
*/
arm_clear_exclusive(env);
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (cpu->pmsav7_dregion > 0) {
if (arm_feature(env, ARM_FEATURE_V8)) {
memset(env->pmsav8.rbar[M_REG_NS], 0,
sizeof(*env->pmsav8.rbar[M_REG_NS])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_NS], 0,
sizeof(*env->pmsav8.rlar[M_REG_NS])
* cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
memset(env->pmsav8.rbar[M_REG_S], 0,
sizeof(*env->pmsav8.rbar[M_REG_S])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_S], 0,
sizeof(*env->pmsav8.rlar[M_REG_S])
* cpu->pmsav7_dregion);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
}
}
env->pmsav7.rnr[M_REG_NS] = 0;
env->pmsav7.rnr[M_REG_S] = 0;
env->pmsav8.mair0[M_REG_NS] = 0;
env->pmsav8.mair0[M_REG_S] = 0;
env->pmsav8.mair1[M_REG_NS] = 0;
env->pmsav8.mair1[M_REG_S] = 0;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
if (cpu->sau_sregion > 0) {
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
}
env->sau.rnr = 0;
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
* the Cortex-M33 does.
*/
env->sau.ctrl = 0;
}
set_flush_to_zero(1, &env->vfp.standard_fp_status);
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status_f16);
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
}
bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUARMState *env = cs->env_ptr;
CPUClass *cc = CPU_GET_CLASS(env->uc, cs);
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint32_t target_el;
uint32_t excp_idx;
bool ret = false;
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el)) {
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
ret = true;
}
}
return ret;
}
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUARMState *env = cs->env_ptr;
CPUClass *cc = CPU_GET_CLASS(env->uc, cs);
bool ret = false;
/* ARMv7-M interrupt masking works differently than -A or -R.
* There is no FIQ/IRQ distinction. Instead of I and F bits
* masking FIQ and IRQ interrupts, an exception is taken only
* if it is higher priority than the current execution priority
* (which depends on state like BASEPRI, FAULTMASK and the
* currently active exception).
*/
if (interrupt_request & CPU_INTERRUPT_HARD
/*&& (armv7m_nvic_can_take_pending_exception(env->nvic)) */) {
cs->exception_index = EXCP_IRQ;
cc->do_interrupt(cs);
ret = true;
}
return ret;
}
#endif
void arm_cpu_update_virq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VIRQ, which is the logical OR of
* the HCR_EL2.VI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
}
}
}
void arm_cpu_update_vfiq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFIQ, which is the logical OR of
* the HCR_EL2.VF bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
}
}
}
static QEMU_UNUSED_FUNC bool arm_cpu_is_big_endian(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(NULL, cs);
CPUARMState *env = &cpu->env;
int cur_el;
// UNICORN: Commented out
//cpu_synchronize_state(cs);
/* In 32bit guest endianness is determined by looking at CPSR's E bit */
if (!is_a64(env)) {
return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
}
cur_el = arm_current_el(env);
if (cur_el == 0) {
return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
}
return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
}
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
#define ARM_CPUS_PER_CLUSTER 8
static void cpreg_hashtable_data_destroy(gpointer data)
{
/*
* Destroy function for cpu->cp_regs hashtable data entries.
* We must free the name string because it was g_strdup()ed in
* add_cpreg_to_hashtable(). It's OK to cast away the 'const'
* from r->name because we know we definitely allocated it.
*/
ARMCPRegInfo *r = data;
g_free((void *)r->name);
g_free(r);
}
static void arm_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
CPUState *cs = CPU(obj);
ARMCPU *cpu = ARM_CPU(uc, obj);
uint32_t Aff1, Aff0;
cs->env_ptr = &cpu->env;
cpu_exec_init(cs, &error_abort, opaque);
cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
g_free, cpreg_hashtable_data_destroy);
QLIST_INIT(&cpu->pre_el_change_hooks);
QLIST_INIT(&cpu->el_change_hooks);
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
* We don't support setting cluster ID ([16..23]) (known as Aff2
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
#if 0
#ifndef CONFIG_USER_ONLY
/* Our inbound IRQ and FIQ lines */
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
arm_gt_stimer_cb, cpu);
//qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
// ARRAY_SIZE(cpu->gt_timer_outputs));
#endif
#endif
/* DTB consumers generally don't in fact care what the 'compatible'
* string is, so always provide some string and trust that a hypothetical
* picky DTB consumer will also provide a helpful error message.
*/
cpu->dtb_compatible = "qemu,unknown";
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
if (tcg_enabled(uc)) {
cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
}
}
static void arm_cpu_post_init(struct uc_struct *uc, Object *obj)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
/* M profile implies PMSA. We have to do this here rather than
* in realize with the other feature-implication checks because
* we look at the PMSA bit to see if we should add some properties.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
set_feature(&cpu->env, ARM_FEATURE_PMSA);
}
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
//qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
// &error_abort);
}
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
//qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
// &error_abort);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
//qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
// &error_abort);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
* prevent "has_el3" from existing on CPUs which cannot support EL3.
*/
//qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
// &error_abort);
#ifndef CONFIG_USER_ONLY
/* Unicorn: if'd out */
#if 0
object_property_add_link(obj, "secure-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_UNREF_ON_RELEASE,
&error_abort);*/
qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
&error_abort);
#endif
#endif
}
}
static void arm_cpu_finalizefn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
ARMELChangeHook *hook, *next;
g_hash_table_destroy(cpu->cp_regs);
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
}
static int arm_cpu_realizefn(struct uc_struct *uc, DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
ARMCPU *cpu = ARM_CPU(uc, dev);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(uc, dev);
CPUARMState *env = &cpu->env;
bool no_aa32 = false;
/* Some features automatically imply others: */
if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V7);
} else {
set_feature(env, ARM_FEATURE_V7VE);
}
}
/*
* There exist AArch64 cpus without AArch32 support. When KVM
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
}
if (arm_feature(env, ARM_FEATURE_V7VE)) {
/* v7 Virtualization Extensions. In real hardware this implies
* EL2 and also the presence of the Security Extensions.
* For QEMU, for backwards-compatibility we implement some
* CPUs or CPU configs which have no actual EL2 or EL3 but do
* include the various other features that V7VE implies.
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
* Security Extensions is ARM_FEATURE_EL3.
*/
assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
set_feature(env, ARM_FEATURE_LPAE);
set_feature(env, ARM_FEATURE_V7);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_MPIDR);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V6K);
} else {
set_feature(env, ARM_FEATURE_V6);
}
/* Always define VBAR for V7 CPUs even if it doesn't exist in
* non-EL3 configs. This is needed by some legacy boards.
*/
set_feature(env, ARM_FEATURE_VBAR);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_MVFR);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
if (!arm_feature(env, ARM_FEATURE_M)) {
assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
set_feature(env, ARM_FEATURE_AUXCR);
}
}
if (arm_feature(env, ARM_FEATURE_V5)) {
set_feature(env, ARM_FEATURE_V4T);
}
if (arm_feature(env, ARM_FEATURE_VFP4)) {
set_feature(env, ARM_FEATURE_VFP3);
set_feature(env, ARM_FEATURE_VFP_FP16);
}
if (arm_feature(env, ARM_FEATURE_VFP3)) {
set_feature(env, ARM_FEATURE_VFP);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
set_feature(env, ARM_FEATURE_V7MP);
set_feature(env, ARM_FEATURE_PXN);
}
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
set_feature(env, ARM_FEATURE_CBAR);
}
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DSP);
}
if (cpu->reset_hivecs) {
cpu->reset_sctlr |= (1 << 13);
}
if (cpu->cfgend) {
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
cpu->reset_sctlr |= SCTLR_EE;
} else {
cpu->reset_sctlr |= SCTLR_B;
}
}
if (!cpu->has_el3) {
/* If the has_el3 CPU property is disabled then we need to disable the
* feature.
*/
unset_feature(env, ARM_FEATURE_EL3);
/* Disable the security extension feature bits in the processor feature
* registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
*/
cpu->id_pfr1 &= ~0xf0;
cpu->isar.id_aa64pfr0 &= ~0xf000;
}
if (!cpu->has_el2) {
unset_feature(env, ARM_FEATURE_EL2);
}
if (!cpu->has_pmu) {
unset_feature(env, ARM_FEATURE_PMU);
}
if (arm_feature(env, ARM_FEATURE_PMU)) {
pmu_init(cpu);
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
} else {
cpu->id_aa64dfr0 &= ~0xf00;
cpu->pmceid0 = 0;
cpu->pmceid1 = 0;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* Disable the hypervisor feature bits in the processor feature
* registers if we don't have EL2. These are id_pfr1[15:12] and
* id_aa64pfr0_el1[11:8].
*/
cpu->isar.id_aa64pfr0 &= ~0xf00;
cpu->id_pfr1 &= ~0xf000;
}
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
* to false or by setting pmsav7-dregion to 0.
*/
if (!cpu->has_mpu) {
cpu->pmsav7_dregion = 0;
}
if (cpu->pmsav7_dregion == 0) {
cpu->has_mpu = false;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7)) {
uint32_t nr = cpu->pmsav7_dregion;
if (nr > 0xff) {
error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32 "\n", nr);
return -1;
}
if (nr) {
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
}
} else {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
}
}
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
uint32_t nr = cpu->sau_sregion;
if (nr > 0xff) {
error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
return -1;
}
if (nr) {
env->sau.rbar = g_new0(uint32_t, nr);
env->sau.rlar = g_new0(uint32_t, nr);
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
set_feature(env, ARM_FEATURE_VBAR);
}
register_cp_regs_for_features(cpu);
arm_cpu_register_gdb_regs_for_features(cpu);
#ifndef CONFIG_USER_ONLY
if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
cs->num_ases = 2;
if (!cpu->secure_memory) {
cpu->secure_memory = cs->memory;
}
cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
cpu->secure_memory);
} else {
cs->num_ases = 1;
}
cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
/* No core_count specified, default to smp_cpus. */
if (cpu->core_count == -1) {
cpu->core_count = smp_cpus;
}
#endif
init_cpreg_list(cpu);
qemu_init_vcpu(cs);
cpu_reset(cs);
acc->parent_realize(uc, dev, errp);
return 0;
}
static ObjectClass *arm_cpu_class_by_name(struct uc_struct *uc, const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
const char *cpunamestr;
cpuname = g_strsplit(cpu_model, ",", 1);
cpunamestr = cpuname[0];
#ifdef CONFIG_USER_ONLY
/* For backwards compatibility usermode emulation allows "-cpu any",
* which has the same semantics as "-cpu max".
*/
if (!strcmp(cpunamestr, "any")) {
cpunamestr = "max";
}
#endif
typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
oc = object_class_by_name(uc, typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(uc, oc, TYPE_ARM_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
/* CPU models. These are not needed for the AArch64 linux-user build. */
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
static void arm926_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm926";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
cpu->midr = 0x41069265;
cpu->reset_fpsid = 0x41011090;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00090078;
/*
* ARMv5 does not have the ID_ISAR registers, but we can still
* set the field to indicate Jazelle support within QEMU.
*/
cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
}
static void arm946_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm946";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_PMSA);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x41059461;
cpu->ctr = 0x0f004006;
cpu->reset_sctlr = 0x00000078;
}
static void arm1026_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm1026";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_AUXCR);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
cpu->midr = 0x4106a262;
cpu->reset_fpsid = 0x410110a0;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00090078;
cpu->reset_auxcr = 1;
/*
* ARMv5 does not have the ID_ISAR registers, but we can still
* set the field to indicate Jazelle support within QEMU.
*/
cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
{
/* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
ARMCPRegInfo ifar = { 0 };
ifar.name = "IFAR";
ifar.cp = 15;
ifar.crn = 6;
ifar.crm = 0;
ifar.opc1 = 0;
ifar.opc2 = 1;
ifar.access = PL1_RW;
ifar.fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
ifar.resetvalue = 0;
define_one_arm_cp_reg(cpu, &ifar);
}
}
static void arm1136_r2_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
/* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
* These ID register values are correct for 1136 but may be wrong
* for 1136_r2 (in particular r0p2 does not actually implement most
* of the ID registers).
*/
cpu->dtb_compatible = "arm,arm1136";
set_feature(&cpu->env, ARM_FEATURE_V6);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
cpu->midr = 0x4107b362;
cpu->reset_fpsid = 0x410120b4;
cpu->isar.mvfr0 = 0x11111111;
cpu->isar.mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0x2;
cpu->id_afr0 = 0x3;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222110;
cpu->isar.id_isar0 = 0x00140011;
cpu->isar.id_isar1 = 0x12002111;
cpu->isar.id_isar2 = 0x11231111;
cpu->isar.id_isar3 = 0x01102131;
cpu->isar.id_isar4 = 0x141;
cpu->reset_auxcr = 7;
}
static void arm1136_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm1136";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_V6);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
cpu->midr = 0x4117b363;
cpu->reset_fpsid = 0x410120b4;
cpu->isar.mvfr0 = 0x11111111;
cpu->isar.mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0x2;
cpu->id_afr0 = 0x3;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222110;
cpu->isar.id_isar0 = 0x00140011;
cpu->isar.id_isar1 = 0x12002111;
cpu->isar.id_isar2 = 0x11231111;
cpu->isar.id_isar3 = 0x01102131;
cpu->isar.id_isar4 = 0x141;
cpu->reset_auxcr = 7;
}
static void arm1176_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm1176";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_VAPA);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->midr = 0x410fb767;
cpu->reset_fpsid = 0x410120b5;
cpu->isar.mvfr0 = 0x11111111;
cpu->isar.mvfr1 = 0x00000000;
cpu->ctr = 0x1dd20d2;
cpu->reset_sctlr = 0x00050078;
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x33;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x01130003;
cpu->id_mmfr1 = 0x10030302;
cpu->id_mmfr2 = 0x01222100;
cpu->isar.id_isar0 = 0x0140011;
cpu->isar.id_isar1 = 0x12002111;
cpu->isar.id_isar2 = 0x11231121;
cpu->isar.id_isar3 = 0x01102131;
cpu->isar.id_isar4 = 0x01141;
cpu->reset_auxcr = 7;
}
static void arm11mpcore_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,arm11mpcore";
set_feature(&cpu->env, ARM_FEATURE_V6K);
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_VAPA);
set_feature(&cpu->env, ARM_FEATURE_MPIDR);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x410fb022;
cpu->reset_fpsid = 0x410120b4;
cpu->isar.mvfr0 = 0x11111111;
cpu->isar.mvfr1 = 0x00000000;
cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
cpu->id_pfr0 = 0x111;
cpu->id_pfr1 = 0x1;
cpu->id_dfr0 = 0;
cpu->id_afr0 = 0x2;
cpu->id_mmfr0 = 0x01100103;
cpu->id_mmfr1 = 0x10020302;
cpu->id_mmfr2 = 0x01222000;
cpu->isar.id_isar0 = 0x00100011;
cpu->isar.id_isar1 = 0x12002111;
cpu->isar.id_isar2 = 0x11221011;
cpu->isar.id_isar3 = 0x01102131;
cpu->isar.id_isar4 = 0x141;
cpu->reset_auxcr = 1;
}
static void cortex_m0_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V6);
set_feature(&cpu->env, ARM_FEATURE_M);
cpu->midr = 0x410cc200;
}
static void cortex_m3_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_M);
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
cpu->midr = 0x410fc231;
cpu->pmsav7_dregion = 8;
cpu->id_pfr0 = 0x00000030;
cpu->id_pfr1 = 0x00000200;
cpu->id_dfr0 = 0x00100000;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x00000030;
cpu->id_mmfr1 = 0x00000000;
cpu->id_mmfr2 = 0x00000000;
cpu->id_mmfr3 = 0x00000000;
cpu->isar.id_isar0 = 0x01141110;
cpu->isar.id_isar1 = 0x02111000;
cpu->isar.id_isar2 = 0x21112231;
cpu->isar.id_isar3 = 0x01111110;
cpu->isar.id_isar4 = 0x01310102;
cpu->isar.id_isar5 = 0x00000000;
cpu->isar.id_isar6 = 0x00000000;
}
static void cortex_m4_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_M);
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
cpu->midr = 0x410fc240; /* r0p0 */
cpu->pmsav7_dregion = 8;
cpu->id_pfr0 = 0x00000030;
cpu->id_pfr1 = 0x00000200;
cpu->id_dfr0 = 0x00100000;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x00000030;
cpu->id_mmfr1 = 0x00000000;
cpu->id_mmfr2 = 0x00000000;
cpu->id_mmfr3 = 0x00000000;
cpu->isar.id_isar0 = 0x01141110;
cpu->isar.id_isar1 = 0x02111000;
cpu->isar.id_isar2 = 0x21112231;
cpu->isar.id_isar3 = 0x01111110;
cpu->isar.id_isar4 = 0x01310102;
cpu->isar.id_isar5 = 0x00000000;
cpu->isar.id_isar6 = 0x00000000;
}
static void cortex_m33_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_M);
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
cpu->midr = 0x410fd213; /* r0p3 */
cpu->pmsav7_dregion = 16;
cpu->sau_sregion = 8;
cpu->id_pfr0 = 0x00000030;
cpu->id_pfr1 = 0x00000210;
cpu->id_dfr0 = 0x00200000;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x00101F40;
cpu->id_mmfr1 = 0x00000000;
cpu->id_mmfr2 = 0x01000000;
cpu->id_mmfr3 = 0x00000000;
cpu->isar.id_isar0 = 0x01101110;
cpu->isar.id_isar1 = 0x02212000;
cpu->isar.id_isar2 = 0x20232232;
cpu->isar.id_isar3 = 0x01111131;
cpu->isar.id_isar4 = 0x01310132;
cpu->isar.id_isar5 = 0x00000000;
cpu->isar.id_isar6 = 0x00000000;
cpu->clidr = 0x00000000;
cpu->ctr = 0x8000c000;
}
static void arm_v7m_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(uc, oc);
#ifndef CONFIG_USER_ONLY
cc->do_interrupt = arm_v7m_cpu_do_interrupt;
#endif
cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
}
static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
/* Dummy the TCM region regs for the moment */
{ "ATCM", 15,9,1, 0,0,0, 0,ARM_CP_CONST, PL1_RW },
{ "BTCM", 15,9,1, 0,0,1, 0,ARM_CP_CONST, PL1_RW },
{ "DCACHE_INVAL", 15,15,5, 0,0,0, 0, ARM_CP_NOP, PL1_W },
REGINFO_SENTINEL
};
static void cortex_r5_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_V7MP);
set_feature(&cpu->env, ARM_FEATURE_PMSA);
cpu->midr = 0x411fc153; /* r1p3 */
cpu->id_pfr0 = 0x0131;
cpu->id_pfr1 = 0x001;
cpu->id_dfr0 = 0x010400;
cpu->id_afr0 = 0x0;
cpu->id_mmfr0 = 0x0210030;
cpu->id_mmfr1 = 0x00000000;
cpu->id_mmfr2 = 0x01200000;
cpu->id_mmfr3 = 0x0211;
cpu->isar.id_isar0 = 0x02101111;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232141;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x0010142;
cpu->isar.id_isar5 = 0x0;
cpu->isar.id_isar6 = 0x0;
cpu->mp_is_up = true;
define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
}
static void cortex_r5f_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cortex_r5_initfn(uc, obj, opaque);
set_feature(&cpu->env, ARM_FEATURE_VFP3);
}
static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
{ "L2LOCKDOWN", 15,9,0, 0,1,0, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "L2AUXCR", 15,9,0, 0,1,2, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
REGINFO_SENTINEL
};
static void cortex_a8_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a8";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_VFP3);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->midr = 0x410fc080;
cpu->reset_fpsid = 0x410330c0;
cpu->isar.mvfr0 = 0x11110222;
cpu->isar.mvfr1 = 0x00011111;
cpu->ctr = 0x82048004;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x1031;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x400;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x31100003;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01202000;
cpu->id_mmfr3 = 0x11;
cpu->isar.id_isar0 = 0x00101111;
cpu->isar.id_isar1 = 0x12112111;
cpu->isar.id_isar2 = 0x21232031;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x00111142;
cpu->dbgdidr = 0x15141000;
cpu->clidr = (1 << 27) | (2 << 24) | 3;
cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
cpu->reset_auxcr = 2;
define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
}
static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
/* power_control should be set to maximum latency. Again,
* default to 0 and set by private hook
*/
{ "A9_PWRCTL", 15,15,0, 0,0,0, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_power_control) },
{ "A9_DIAG", 15,15,0, 0,0,1, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_diagnostic) },
{ "A9_PWRDIAG",15,15,0, 0,0,2, 0,
0, PL1_RW, 0, NULL, 0, offsetof(CPUARMState, cp15.c15_power_diagnostic) },
{ "NEONBUSY", 15,15,1, 0,0,0, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
/* TLB lockdown control */
{ "TLB_LOCKR", 15,15,4, 0,5,2, 0,
ARM_CP_NOP, PL1_W, 0, NULL, 0 },
{ "TLB_LOCKW", 15,15,4, 0,5,4, 0,
ARM_CP_NOP, PL1_W, 0, NULL, 0, },
{ "TLB_VA", 15,15,5, 0,5,2, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "TLB_PA", 15,15,6, 0,5,2, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "TLB_ATTR", 15,15,7, 0,5,2, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
REGINFO_SENTINEL
};
static void cortex_a9_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a9";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_VFP3);
set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_EL3);
/* Note that A9 supports the MP extensions even for
* A9UP and single-core A9MP (which are both different
* and valid configurations; we don't model A9UP).
*/
set_feature(&cpu->env, ARM_FEATURE_V7MP);
set_feature(&cpu->env, ARM_FEATURE_CBAR);
cpu->midr = 0x410fc090;
cpu->reset_fpsid = 0x41033090;
cpu->isar.mvfr0 = 0x11110222;
cpu->isar.mvfr1 = 0x01111111;
cpu->ctr = 0x80038003;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x1031;
cpu->id_pfr1 = 0x11;
cpu->id_dfr0 = 0x000;
cpu->id_afr0 = 0;
cpu->id_mmfr0 = 0x00100103;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01230000;
cpu->id_mmfr3 = 0x00002111;
cpu->isar.id_isar0 = 0x00101111;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x00111142;
cpu->dbgdidr = 0x35141000;
cpu->clidr = (1 << 27) | (1 << 24) | 3;
cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Linux wants the number of processors from here.
* Might as well set the interrupt-controller bit too.
*/
return ((smp_cpus - 1) << 24) | (1 << 23);
}
#endif
static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ "L2CTLR", 15,9,0, 0,1,2, 0,
0, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, a15_l2ctlr_read, arm_cp_write_ignore, },
#endif
{ "L2ECTLR", 15,9,0, 0,1,3, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
REGINFO_SENTINEL
};
static void cortex_a7_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a7";
set_feature(&cpu->env, ARM_FEATURE_V7VE);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
cpu->midr = 0x410fc075;
cpu->reset_fpsid = 0x41023075;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x11111111;
cpu->ctr = 0x84448003;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x00001131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x02010555;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01240000;
cpu->id_mmfr3 = 0x02102211;
/* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
* table 4-41 gives 0x02101110, which includes the arm div insns.
*/
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x10011142;
cpu->dbgdidr = 0x3515f005;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
}
static void cortex_a15_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a15";
set_feature(&cpu->env, ARM_FEATURE_V7VE);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
cpu->midr = 0x412fc0f1;
cpu->reset_fpsid = 0x410430f0;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x11111111;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50078;
cpu->id_pfr0 = 0x00001131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x02010555;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10201105;
cpu->id_mmfr1 = 0x20000000;
cpu->id_mmfr2 = 0x01240000;
cpu->id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x10011142;
cpu->dbgdidr = 0x3515f021;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
}
static void ti925t_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V4T);
set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
cpu->midr = ARM_CPUID_TI925T;
cpu->ctr = 0x5109149;
cpu->reset_sctlr = 0x00000070;
}
static void sa1100_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "intel,sa1100";
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x4401A11B;
cpu->reset_sctlr = 0x00000070;
}
static void sa1110_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
cpu->midr = 0x6901B119;
cpu->reset_sctlr = 0x00000070;
}
static void pxa250_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052100;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa255_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d00;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa260_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052903;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa261_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d05;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa262_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
cpu->midr = 0x69052d06;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270a0_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054110;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270a1_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054111;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270b0_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054112;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270b1_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054113;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270c0_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054114;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
static void pxa270c5_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "marvell,xscale";
set_feature(&cpu->env, ARM_FEATURE_V5);
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
cpu->midr = 0x69054117;
cpu->ctr = 0xd172172;
cpu->reset_sctlr = 0x00000078;
}
#ifndef TARGET_AARCH64
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
* otherwise, a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
* this only needs to handle 32 bits.
*/
static void arm_max_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cortex_a15_initfn(uc, obj, opaque);
/* In future we might add feature bits here even if the
* real-world A15 doesn't implement them.
*/
// Unicorn: We lie and enable them anyway.
/* We don't set these in system emulation mode for the moment,
* since we don't correctly set (all of) the ID registers to
* advertise them.
*/
set_feature(&cpu->env, ARM_FEATURE_V8);
{
uint32_t t;
t = cpu->isar.id_isar5;
t = FIELD_DP32(t, ID_ISAR5, AES, 2);
t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
cpu->isar.id_isar5 = t;
t = cpu->isar.id_isar6;
t = FIELD_DP32(t, ID_ISAR6, DP, 1);
cpu->isar.id_isar6 = t;
t = cpu->id_mmfr4;
t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
cpu->id_mmfr4 = t;
}
}
#endif
#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(struct uc_struct *uc, Object *obj, void *opaque);
void (*class_init)(struct uc_struct *uc, ObjectClass *oc, void *data);
} ARMCPUInfo;
static const ARMCPUInfo arm_cpus[] = {
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
{ "arm926", arm926_initfn },
{ "arm946", arm946_initfn },
{ "arm1026", arm1026_initfn },
/* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
*/
{ "arm1136-r2", arm1136_r2_initfn },
{ "arm1136", arm1136_initfn },
{ "arm1176", arm1176_initfn },
{ "arm11mpcore", arm11mpcore_initfn },
{ "cortex-m0", cortex_m0_initfn, arm_v7m_class_init },
{ "cortex-m3", cortex_m3_initfn, arm_v7m_class_init },
{ "cortex-m4", cortex_m4_initfn, arm_v7m_class_init },
{ "cortex-m33", cortex_m33_initfn, arm_v7m_class_init },
{ "cortex-r5", cortex_r5_initfn },
{ "cortex-r5f", cortex_r5f_initfn },
{ "cortex-a7", cortex_a7_initfn },
{ "cortex-a8", cortex_a8_initfn },
{ "cortex-a9", cortex_a9_initfn },
{ "cortex-a15", cortex_a15_initfn },
{ "ti925t", ti925t_initfn },
{ "sa1100", sa1100_initfn },
{ "sa1110", sa1110_initfn },
{ "pxa250", pxa250_initfn },
{ "pxa255", pxa255_initfn },
{ "pxa260", pxa260_initfn },
{ "pxa261", pxa261_initfn },
{ "pxa262", pxa262_initfn },
/* "pxa270" is an alias for "pxa270-a0" */
{ "pxa270", pxa270a0_initfn },
{ "pxa270-a0", pxa270a0_initfn },
{ "pxa270-a1", pxa270a1_initfn },
{ "pxa270-b0", pxa270b0_initfn },
{ "pxa270-b1", pxa270b1_initfn },
{ "pxa270-c0", pxa270c0_initfn },
{ "pxa270-c5", pxa270c5_initfn },
#ifndef TARGET_AARCH64
{ "max", arm_max_initfn },
#endif
#ifdef CONFIG_USER_ONLY
{ "any", arm_max_initfn },
#endif
#endif
{ NULL }
};
#ifdef CONFIG_USER_ONLY
static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
int rw, int mmu_idx)
{
ARMCPU *cpu = ARM_CPU(NULL, cs);
CPUARMState *env = &cpu->env;
env->exception.vaddress = address;
if (rw == 2) {
cs->exception_index = EXCP_PREFETCH_ABORT;
} else {
cs->exception_index = EXCP_DATA_ABORT;
}
return 1;
}
#endif
static void arm_cpu_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(uc, oc);
CPUClass *cc = CPU_CLASS(uc, acc);
DeviceClass *dc = DEVICE_CLASS(uc, oc);
acc->parent_realize = dc->realize;
dc->realize = arm_cpu_realizefn;
//dc->props = arm_cpu_properties;
acc->parent_reset = cc->reset;
cc->reset = arm_cpu_reset;
cc->class_by_name = arm_cpu_class_by_name;
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
//cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
#else
cc->do_interrupt = arm_cpu_do_interrupt;
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
cc->do_transaction_failed = arm_cpu_do_transaction_failed;
cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
cc->asidx_from_attrs = arm_asidx_from_attrs;
// UNICORN: Commented out
//cc->vmsd = &vmstate_arm_cpu;
//cc->virtio_is_big_endian = arm_cpu_is_big_endian;
#endif
cc->debug_excp_handler = arm_debug_excp_handler;
cc->debug_check_watchpoint = arm_debug_check_watchpoint;
#if !defined(CONFIG_USER_ONLY)
cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
#endif
cc->tcg_initialize = arm_translate_init;
}
static void cpu_register(struct uc_struct *uc, const ARMCPUInfo *info)
{
TypeInfo type_info = { 0 };
type_info.parent = TYPE_ARM_CPU;
type_info.instance_size = sizeof(ARMCPU);
type_info.instance_init = info->initfn;
type_info.class_size = sizeof(ARMCPUClass);
type_info.class_init = info->class_init;
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(uc, &type_info);
g_free((void *)type_info.name);
}
void arm_cpu_register_types(void *opaque)
{
const ARMCPUInfo *info = arm_cpus;
TypeInfo arm_cpu_type_info = {0};
arm_cpu_type_info.name = TYPE_ARM_CPU,
arm_cpu_type_info.parent = TYPE_CPU,
arm_cpu_type_info.instance_userdata = opaque,
arm_cpu_type_info.instance_size = sizeof(ARMCPU),
arm_cpu_type_info.instance_init = arm_cpu_initfn,
arm_cpu_type_info.instance_post_init = arm_cpu_post_init,
arm_cpu_type_info.instance_finalize = arm_cpu_finalizefn,
arm_cpu_type_info.abstract = true,
arm_cpu_type_info.class_size = sizeof(ARMCPUClass),
arm_cpu_type_info.class_init = arm_cpu_class_init,
type_register(opaque, &arm_cpu_type_info);
while (info->name) {
cpu_register(opaque, info);
info++;
}
}