mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-10 21:15:35 +00:00
9e64cba6ec
- UC_ERR_READ_INVALID -> UC_ERR_READ_UNMAPPED - UC_ERR_WRITE_INVALID -> UC_ERR_WRITE_UNMAPPED - UC_ERR_FETCH_INVALID -> UC_ERR_FETCH_UNMAPPED - UC_MEM_READ_INVALID -> UC_MEM_READ_UNMAPPED - UC_MEM_WRITE_INVALID -> UC_MEM_WRITE_UNMAPPED - UC_MEM_FETCH_INVALID -> UC_MEM_FETCH_UNMAPPED - UC_HOOK_MEM_READ_INVALID -> UC_HOOK_MEM_READ_UNMAPPED - UC_HOOK_MEM_WRITE_INVALID -> UC_HOOK_MEM_WRITE_UNMAPPED - UC_HOOK_MEM_FETCH_INVALID -> UC_HOOK_MEM_FETCH_UNMAPPED - UC_HOOK_MEM_INVALID -> UC_HOOK_MEM_UNMAPPED This also renames some newly added macros to use _INVALID postfix: - UC_HOOK_MEM_READ_ERR -> UC_HOOK_MEM_READ_INVALID - UC_HOOK_MEM_WRITE_ERR -> UC_HOOK_MEM_WRITE_INVALID - UC_HOOK_MEM_FETCH_ERR -> UC_HOOK_MEM_FETCH_INVALID - UC_HOOK_MEM_ERR -> UC_HOOK_MEM_INVALID Fixed all the bindings Java, Go & Python.
424 lines
13 KiB
C
424 lines
13 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "config.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
|
|
#include "exec/cputlb.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
//#define DEBUG_TLB
|
|
//#define DEBUG_TLB_CHECK
|
|
|
|
static void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr);
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe);
|
|
static bool qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr, ram_addr_t *addr);
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size);
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr);
|
|
|
|
/* statistics */
|
|
//int tlb_flush_count;
|
|
|
|
/* NOTE:
|
|
* If flush_global is true (the usual case), flush all tlb entries.
|
|
* If flush_global is false, flush (at least) all tlb entries not
|
|
* marked global.
|
|
*
|
|
* Since QEMU doesn't currently implement a global/not-global flag
|
|
* for tlb entries, at the moment tlb_flush() will also flush all
|
|
* tlb entries in the flush_global == false case. This is OK because
|
|
* CPU architectures generally permit an implementation to drop
|
|
* entries from the TLB at any time, so flushing more entries than
|
|
* required is only an efficiency issue, not a correctness issue.
|
|
*/
|
|
void tlb_flush(CPUState *cpu, int flush_global)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush:\n");
|
|
#endif
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
memset(env->tlb_table, -1, sizeof(env->tlb_table));
|
|
memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
|
|
memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
|
|
|
|
env->vtlb_index = 0;
|
|
env->tlb_flush_addr = -1;
|
|
env->tlb_flush_mask = 0;
|
|
//tlb_flush_count++;
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
|
#endif
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_page: forced full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
#endif
|
|
tlb_flush(cpu, 1);
|
|
return;
|
|
}
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
|
}
|
|
|
|
/* check whether there are entries that need to be flushed in the vtlb */
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
/* update the TLBs so that writes to code in the virtual page 'addr'
|
|
can be detected */
|
|
void tlb_protect_code(struct uc_struct *uc, ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_reset_dirty(uc, ram_addr, TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
|
tested for self modifying code */
|
|
void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
|
|
target_ulong vaddr)
|
|
{
|
|
cpu_physical_memory_set_dirty_flag(cpu->uc, ram_addr, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t addr;
|
|
|
|
if (tlb_is_dirty_ram(tlb_entry)) {
|
|
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_tlb_reset_dirty_all(struct uc_struct *uc,
|
|
ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUState *cpu;
|
|
CPUArchState *env;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
|
|
{
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
supplied size is only used by tlb_flush_page. */
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong code_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te;
|
|
hwaddr iotlb, xlat, sz;
|
|
unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
|
|
|
|
assert(size >= TARGET_PAGE_SIZE);
|
|
if (size != TARGET_PAGE_SIZE) {
|
|
tlb_add_large_page(env, vaddr, size);
|
|
}
|
|
|
|
sz = size;
|
|
section = address_space_translate_for_iotlb(cpu->as, paddr,
|
|
&xlat, &sz);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
#endif
|
|
|
|
address = vaddr;
|
|
if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
|
|
/* IO memory case */
|
|
address |= TLB_MMIO;
|
|
addend = 0;
|
|
} else {
|
|
/* TLB_MMIO for rom/romd handled below */
|
|
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
|
|
}
|
|
|
|
code_address = address;
|
|
iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
|
|
prot, &address);
|
|
|
|
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
te = &env->tlb_table[mmu_idx][index];
|
|
|
|
/* do not discard the translation in te, evict it into a victim tlb */
|
|
env->tlb_v_table[mmu_idx][vidx] = *te;
|
|
env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
|
|
|
|
/* refill the tlb */
|
|
env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
|
te->addend = addend - vaddr;
|
|
if (prot & PAGE_READ) {
|
|
te->addr_read = address;
|
|
} else {
|
|
te->addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
te->addr_code = code_address;
|
|
} else {
|
|
te->addr_code = -1;
|
|
}
|
|
if (prot & PAGE_WRITE) {
|
|
if ((memory_region_is_ram(section->mr) && section->readonly)
|
|
|| memory_region_is_romd(section->mr)) {
|
|
/* Write access calls the I/O callback. */
|
|
te->addr_write = address | TLB_MMIO;
|
|
} else if (memory_region_is_ram(section->mr)
|
|
&& cpu_physical_memory_is_clean(cpu->uc, section->mr->ram_addr
|
|
+ xlat)) {
|
|
te->addr_write = address | TLB_NOTDIRTY;
|
|
} else {
|
|
te->addr_write = address;
|
|
}
|
|
} else {
|
|
te->addr_write = -1;
|
|
}
|
|
}
|
|
|
|
/* NOTE: this function can trigger an exception */
|
|
/* NOTE2: the returned address is not exactly the physical address: it
|
|
* is actually a ram_addr_t (in system mode; the user mode emulation
|
|
* version of this function returns a guest virtual address).
|
|
*/
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
|
{
|
|
int mmu_idx, page_index, pd;
|
|
void *p;
|
|
MemoryRegion *mr;
|
|
ram_addr_t ram_addr;
|
|
CPUState *cpu = ENV_GET_CPU(env1);
|
|
|
|
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
mmu_idx = cpu_mmu_index(env1);
|
|
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
|
|
(addr & TARGET_PAGE_MASK))) {
|
|
cpu_ldub_code(env1, addr);
|
|
//check for NX related error from softmmu
|
|
if (env1->invalid_error == UC_ERR_FETCH_PROT) {
|
|
return -1;
|
|
}
|
|
}
|
|
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
|
|
mr = iotlb_to_region(cpu->as, pd);
|
|
if (memory_region_is_unassigned(cpu->uc, mr)) {
|
|
CPUClass *cc = CPU_GET_CLASS(env1->uc, cpu);
|
|
|
|
if (cc->do_unassigned_access) {
|
|
cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
|
|
} else {
|
|
//cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
|
|
// TARGET_FMT_lx "\n", addr); // qq
|
|
env1->invalid_addr = addr;
|
|
env1->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return -1;
|
|
}
|
|
}
|
|
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
|
|
if (!qemu_ram_addr_from_host_nofail(cpu->uc, p, &ram_addr)) {
|
|
env1->invalid_addr = addr;
|
|
env1->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return -1;
|
|
} else
|
|
return ram_addr;
|
|
}
|
|
|
|
static bool qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr, ram_addr_t *ram_addr)
|
|
{
|
|
if (qemu_ram_addr_from_host(uc, ptr, ram_addr) == NULL) {
|
|
// fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
|
{
|
|
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size)
|
|
{
|
|
target_ulong mask = ~(size - 1);
|
|
|
|
if (env->tlb_flush_addr == (target_ulong)-1) {
|
|
env->tlb_flush_addr = vaddr & mask;
|
|
env->tlb_flush_mask = mask;
|
|
return;
|
|
}
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and the cost
|
|
of maintaining a full variable size TLB. */
|
|
mask &= env->tlb_flush_mask;
|
|
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
|
mask <<= 1;
|
|
}
|
|
env->tlb_flush_addr &= mask;
|
|
env->tlb_flush_mask = mask;
|
|
}
|
|
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
|
{
|
|
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
|
}
|
|
|
|
|
|
static void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
|
{
|
|
if (addr == (tlb_entry->addr_read &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_write &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_code &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
}
|
|
}
|
|
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
#undef MMUSUFFIX
|
|
|
|
#define MMUSUFFIX _cmmu
|
|
#undef GETPC_ADJ
|
|
#define GETPC_ADJ 0
|
|
#undef GETRA
|
|
#define GETRA() ((uintptr_t)0)
|
|
#define SOFTMMU_CODE_ACCESS
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|