unicorn/qemu/memory.c
Peter Maydell e1a4e4208f
pc: resizeable ROM blocks
This makes ROM blocks resizeable. This infrastructure is required for other
functionality we have queued.

Backports commit aaf03019175949eda5087329448b8a0033b89479 from qemu
2018-02-17 17:18:38 -05:00

1771 lines
55 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "exec/ioport.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qom/object.h"
#include <assert.h>
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/sysemu.h"
//#define DEBUG_UNASSIGNED
#define RAM_ADDR_INVALID (~(ram_addr_t)0)
// Unicorn engine
MemoryRegion *memory_map(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms)
{
MemoryRegion *ram = g_new(MemoryRegion, 1);
memory_region_init_ram(uc, ram, NULL, "pc.ram", size, perms, &error_abort);
if (ram->ram_addr == -1)
// out of memory
return NULL;
memory_region_add_subregion(get_system_memory(uc), begin, ram);
if (uc->current_cpu)
tlb_flush(uc->current_cpu, 1);
return ram;
}
MemoryRegion *memory_map_ptr(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms, void *ptr)
{
MemoryRegion *ram = g_new(MemoryRegion, 1);
memory_region_init_ram_ptr(uc, ram, NULL, "pc.ram", size, ptr);
ram->perms = perms;
if (ram->ram_addr == -1)
// out of memory
return NULL;
memory_region_add_subregion(get_system_memory(uc), begin, ram);
if (uc->current_cpu)
tlb_flush(uc->current_cpu, 1);
return ram;
}
static void memory_region_update_container_subregions(MemoryRegion *subregion);
void memory_unmap(struct uc_struct *uc, MemoryRegion *mr)
{
int i;
target_ulong addr;
Object *obj;
// Make sure all pages associated with the MemoryRegion are flushed
// Only need to do this if we are in a running state
if (uc->current_cpu) {
for (addr = mr->addr; addr < mr->end; addr += uc->target_page_size) {
tlb_flush_page(uc->current_cpu, addr);
}
}
memory_region_del_subregion(get_system_memory(uc), mr);
for (i = 0; i < uc->mapped_block_count; i++) {
if (uc->mapped_blocks[i] == mr) {
uc->mapped_block_count--;
//shift remainder of array down over deleted pointer
memmove(&uc->mapped_blocks[i], &uc->mapped_blocks[i + 1], sizeof(MemoryRegion*) * (uc->mapped_block_count - i));
mr->destructor(mr);
obj = OBJECT(mr);
obj->ref = 1;
obj->free = g_free;
g_free((char *)mr->name);
mr->name = NULL;
object_property_del_child(mr->uc, qdev_get_machine(mr->uc), obj, &error_abort);
break;
}
}
}
int memory_free(struct uc_struct *uc)
{
MemoryRegion *mr;
Object *obj;
int i;
for (i = 0; i < uc->mapped_block_count; i++) {
mr = uc->mapped_blocks[i];
mr->enabled = false;
memory_region_del_subregion(get_system_memory(uc), mr);
mr->destructor(mr);
obj = OBJECT(mr);
obj->ref = 1;
obj->free = g_free;
object_property_del_child(mr->uc, qdev_get_machine(mr->uc), obj, &error_abort);
}
return 0;
}
static void memory_init(struct uc_struct *uc)
{
}
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
AddrRange ar;
ar.start = start;
ar.size = size;
return ar;
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
static bool memory_listener_match(MemoryListener *listener,
MemoryRegionSection *section)
{
return !listener->address_space_filter
|| listener->address_space_filter == section->address_space;
}
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, ...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &uc->memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##__VA_ARGS__); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &uc->memory_listeners, \
memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##__VA_ARGS__); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, ...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &uc->memory_listeners, link) { \
if (_listener->_callback \
&& memory_listener_match(_listener, _section)) { \
_listener->_callback(_listener, _section, ##__VA_ARGS__); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &uc->memory_listeners, \
memory_listeners, link) { \
if (_listener->_callback \
&& memory_listener_match(_listener, _section)) { \
_listener->_callback(_listener, _section, ##__VA_ARGS__); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
do { MemoryRegionSection _mrs = MemoryRegionSection_make((fr)->mr, as, (fr)->offset_in_region, \
(fr)->addr.size, int128_get64((fr)->addr.start), (fr)->readonly); \
MEMORY_LISTENER_CALL(callback, dir, &_mrs, ##_args); } while(0);
/*
MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
.mr = (fr)->mr, \
.address_space = (as), \
.offset_within_region = (fr)->offset_in_region, \
.size = (fr)->addr.size, \
.offset_within_address_space = int128_get64((fr)->addr.start), \
.readonly = (fr)->readonly, \
}))
*/
typedef struct FlatRange FlatRange;
typedef struct FlatView FlatView;
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool romd_mode;
bool readonly;
};
/* Flattened global view of current active memory hierarchy. Kept in sorted
* order.
*/
struct FlatView {
unsigned ref;
FlatRange *ranges;
unsigned nr;
unsigned nr_allocated;
};
typedef struct AddressSpaceOps AddressSpaceOps;
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->romd_mode == b->romd_mode
&& a->readonly == b->readonly;
}
static void flatview_init(FlatView *view)
{
view->ref = 1;
view->ranges = NULL;
view->nr = 0;
view->nr_allocated = 0;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
memory_region_ref(range->mr);
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
int i;
for (i = 0; i < view->nr; i++) {
memory_region_unref(view->ranges[i].mr);
}
g_free(view->ranges);
g_free(view);
}
static void flatview_ref(FlatView *view)
{
atomic_inc(&view->ref);
}
static void flatview_unref(FlatView *view)
{
if (atomic_fetch_dec(&view->ref) == 1) {
flatview_destroy(view);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->romd_mode == r2->romd_mode
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
case 8:
*data = bswap64(*data);
break;
default:
abort();
}
}
}
static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
// UNICORN: Commented out
//trace_memory_region_ops_read(mr, addr, tmp, size);
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
// UNICORN: Commented out
//if (mr->flush_coalesced_mmio) {
// qemu_flush_coalesced_mmio_buffer();
//}
tmp = mr->ops->read(mr->uc, mr->opaque, addr, size);
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
// UNICORN: commented out
//if (mr->flush_coalesced_mmio) {
// qemu_flush_coalesced_mmio_buffer();
//}
r = mr->ops->read_with_attrs(mr->uc, mr->opaque, addr, &tmp, size, attrs);
// UNICORN: Commented out
//trace_memory_region_ops_read(mr, addr, tmp, size);
*value |= (tmp & mask) << shift;
return r;
}
static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
mr->ops->write(mr->uc, mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
// UNICORN: Commented out
//if (mr->flush_coalesced_mmio) {
// qemu_flush_coalesced_mmio_buffer();
//}
tmp = (*value >> shift) & mask;
// UNICORN: Commented out
//trace_memory_region_ops_write(mr, addr, tmp, size);
return mr->ops->write_with_attrs(mr->uc, mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access)(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = (0-1ULL) >> (64 - access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.dirty_log_mask = mr->dirty_log_mask;
fr.romd_mode = mr->romd_mode;
fr.readonly = readonly;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(MemoryRegion *mr)
{
FlatView *view;
view = g_new(FlatView, 1);
flatview_init(view);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
}
flatview_simplify(view);
return view;
}
static FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
view = as->current_map;
flatview_ref(view);
return view;
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
struct uc_struct *uc = as->uc;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void address_space_update_topology(AddressSpace *as)
{
FlatView *old_view = address_space_get_flatview(as);
FlatView *new_view = generate_memory_topology(as->root);
address_space_update_topology_pass(as, old_view, new_view, false);
address_space_update_topology_pass(as, old_view, new_view, true);
flatview_unref(as->current_map);
as->current_map = new_view;
/* Note that all the old MemoryRegions are still alive up to this
* point. This relieves most MemoryListeners from the need to
* ref/unref the MemoryRegions they get---unless they use them
* outside the iothread mutex, in which case precise reference
* counting is necessary.
*/
flatview_unref(old_view);
}
void memory_region_transaction_begin(struct uc_struct *uc)
{
++uc->memory_region_transaction_depth;
}
static void memory_region_clear_pending(struct uc_struct *uc)
{
uc->memory_region_update_pending = false;
}
void memory_region_transaction_commit(struct uc_struct *uc)
{
AddressSpace *as;
assert(uc->memory_region_transaction_depth);
--uc->memory_region_transaction_depth;
if (!uc->memory_region_transaction_depth) {
if (uc->memory_region_update_pending) {
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) {
address_space_update_topology(as);
}
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
}
memory_region_clear_pending(uc);
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->uc, mr->ram_addr);
}
static void memory_region_destructor_alias(MemoryRegion *mr)
{
memory_region_unref(mr->alias);
}
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
{
qemu_ram_free_from_ptr(mr->uc, mr->ram_addr);
}
static bool memory_region_need_escape(char c)
{
return c == '/' || c == '[' || c == '\\' || c == ']';
}
static char *memory_region_escape_name(const char *name)
{
const char *p;
char *escaped, *q;
uint8_t c;
size_t bytes = 0;
for (p = name; *p; p++) {
bytes += memory_region_need_escape(*p) ? 4 : 1;
}
if (bytes == p - name) {
return g_memdup(name, bytes + 1);
}
escaped = g_malloc(bytes + 1);
for (p = name, q = escaped; *p; p++) {
c = *p;
if (unlikely(memory_region_need_escape(c))) {
*q++ = '\\';
*q++ = 'x';
*q++ = "0123456789abcdef"[c >> 4];
c = "0123456789abcdef"[c & 15];
}
*q++ = c;
}
*q = 0;
return escaped;
}
void memory_region_init(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
if (!owner) {
owner = qdev_get_machine(uc);
uc->owner = owner;
}
object_initialize(uc, mr, sizeof(*mr), TYPE_MEMORY_REGION);
mr->uc = uc;
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->name = g_strdup(name);
if (name) {
char *escaped_name = memory_region_escape_name(name);
char *name_array = g_strdup_printf("%s[*]", escaped_name);
object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
object_unref(uc, OBJECT(mr));
g_free(name_array);
g_free(escaped_name);
}
}
static void memory_region_get_addr(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
uint64_t value = mr->addr;
visit_type_uint64(v, &value, name, errp);
}
static void memory_region_get_container(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
gchar *path = (gchar *)"";
if (mr->container) {
path = object_get_canonical_path(OBJECT(mr->container));
}
visit_type_str(v, &path, name, errp);
if (mr->container) {
g_free(path);
}
}
static Object *memory_region_resolve_container(struct uc_struct *uc, Object *obj, void *opaque,
const char *part)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
return OBJECT(mr->container);
}
static void memory_region_get_priority(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
int32_t value = mr->priority;
visit_type_int32(v, &value, name, errp);
}
static bool memory_region_get_may_overlap(struct uc_struct *uc, Object *obj, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
return mr->may_overlap;
}
static void memory_region_get_size(struct uc_struct *uc, Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
uint64_t value = memory_region_size(mr);
visit_type_uint64(v, &value, name, errp);
}
static void memory_region_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
ObjectProperty *op;
mr->ops = &unassigned_mem_ops;
mr->ram_addr = RAM_ADDR_INVALID;
mr->enabled = true;
mr->romd_mode = true;
mr->global_locking = true;
mr->destructor = memory_region_destructor_none;
QTAILQ_INIT(&mr->subregions);
op = object_property_add(OBJECT(mr), "container",
"link<" TYPE_MEMORY_REGION ">",
memory_region_get_container,
NULL, /* memory_region_set_container */
NULL, NULL, &error_abort);
op->resolve = memory_region_resolve_container;
object_property_add(OBJECT(mr), "addr", "uint64",
memory_region_get_addr,
NULL, /* memory_region_set_addr */
NULL, NULL, &error_abort);
object_property_add(OBJECT(mr), "priority", "uint32",
memory_region_get_priority,
NULL, /* memory_region_set_priority */
NULL, NULL, &error_abort);
object_property_add_bool(mr->uc, OBJECT(mr), "may-overlap",
memory_region_get_may_overlap,
NULL, /* memory_region_set_may_overlap */
&error_abort);
object_property_add(OBJECT(mr), "size", "uint64",
memory_region_get_size,
NULL, /* memory_region_set_size, */
NULL, NULL, &error_abort);
}
static uint64_t unassigned_mem_read(struct uc_struct* uc, hwaddr addr, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
if (uc->current_cpu != NULL) {
cpu_unassigned_access(uc->current_cpu, addr, false, false, 0, size);
}
return 0;
}
static void unassigned_mem_write(struct uc_struct* uc, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
if (uc->current_cpu != NULL) {
cpu_unassigned_access(uc->current_cpu, addr, true, false, 0, size);
}
}
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
NULL,
NULL,
NULL,
NULL,
DEVICE_NATIVE_ENDIAN,
{0,0,false,unassigned_mem_accepts},
};
bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write)
{
int access_size_min, access_size_max;
int access_size, i;
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
if (!mr->ops->valid.accepts) {
return true;
}
access_size_min = mr->ops->valid.min_access_size;
if (!mr->ops->valid.min_access_size) {
access_size_min = 1;
}
access_size_max = mr->ops->valid.max_access_size;
if (!mr->ops->valid.max_access_size) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
for (i = 0; i < size; i += access_size) {
if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
is_write)) {
return false;
}
}
return true;
}
static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
*pval = 0;
if (mr->ops->read) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else if (mr->ops->read_with_attrs) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, pval, size, 1, 4,
memory_region_oldmmio_read_accessor,
mr, attrs);
}
}
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
MemTxResult r;
if (!memory_region_access_valid(mr, addr, size, false)) {
*pval = unassigned_mem_read(mr->uc, addr, size);
return MEMTX_DECODE_ERROR;
}
r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, size);
return r;
}
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
unassigned_mem_write(mr->uc, addr, data, size);
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, size);
if (mr->ops->write) {
return access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else if (mr->ops->write_with_attrs) {
return
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor,
mr, attrs);
}
}
void memory_region_init_io(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(uc, mr, owner, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
}
void memory_region_init_ram(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint32_t perms,
Error **errp)
{
memory_region_init(uc, mr, owner, name, size);
mr->ram = true;
if (!(perms & UC_PROT_WRITE)) {
mr->readonly = true;
}
mr->perms = perms;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_addr = qemu_ram_alloc(size, mr, errp);
mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_init_ram_ptr(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(uc, mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram_from_ptr;
mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
}
void memory_region_init_resizeable_ram(struct uc_struct *uc,
MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint64_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
Error **errp)
{
memory_region_init(uc, mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
mr->dirty_log_mask = tcg_enabled(uc) ? (1 << DIRTY_MEMORY_CODE) : 0;
}
void memory_region_set_skip_dump(MemoryRegion *mr)
{
mr->skip_dump = true;
}
void memory_region_init_alias(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const char *name,
MemoryRegion *orig,
hwaddr offset,
uint64_t size)
{
memory_region_init(uc, mr, owner, name, size);
memory_region_ref(orig);
mr->destructor = memory_region_destructor_alias;
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_reservation(struct uc_struct *uc, MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
memory_region_init_io(uc, mr, owner, &unassigned_mem_ops, mr, name, size);
}
static void memory_region_finalize(struct uc_struct *uc, Object *obj, void *opaque)
{
MemoryRegion *mr = MEMORY_REGION(uc, obj);
assert(!mr->container);
/* We know the region is not visible in any address space (it
* does not have a container and cannot be a root either because
* it has no references, so we can blindly clear mr->enabled.
* memory_region_set_enabled instead could trigger a transaction
* and cause an infinite loop.
*/
mr->enabled = false;
memory_region_transaction_begin(uc);
while (!QTAILQ_EMPTY(&mr->subregions)) {
MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
memory_region_del_subregion(mr, subregion);
}
memory_region_transaction_commit(uc);
mr->destructor(mr);
g_free((char *)mr->name);
}
void memory_region_ref(MemoryRegion *mr)
{
/* MMIO callbacks most likely will access data that belongs
* to the owner, hence the need to ref/unref the owner whenever
* the memory region is in use.
*
* The memory region is a child of its owner. As long as the
* owner doesn't call unparent itself on the memory region,
* ref-ing the owner will also keep the memory region alive.
* Memory regions without an owner are supposed to never go away,
* but we still ref/unref them for debugging purposes.
*/
Object *obj = OBJECT(mr);
if (obj && obj->parent) {
object_ref(obj->parent);
} else {
object_ref(obj);
}
}
void memory_region_unref(MemoryRegion *mr)
{
Object *obj = OBJECT(mr);
if (obj && obj->parent) {
object_unref(mr->uc, obj->parent);
} else {
object_unref(mr->uc, obj);
}
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(const MemoryRegion *mr)
{
if (!mr->name) {
((MemoryRegion *)mr)->name =
object_get_canonical_path_component(OBJECT(mr));
}
return mr->name;
}
bool memory_region_is_ram(MemoryRegion *mr)
{
return mr->ram;
}
bool memory_region_is_skip_dump(MemoryRegion *mr)
{
return mr->skip_dump;
}
uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
{
return mr->dirty_log_mask;
}
bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
{
return memory_region_get_dirty_log_mask(mr) & (1 << client);
}
bool memory_region_is_rom(MemoryRegion *mr)
{
return mr->ram && mr->readonly;
}
bool memory_region_is_iommu(MemoryRegion *mr)
{
return mr->iommu_ops != 0;
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
memory_region_transaction_begin(mr->uc);
mr->readonly = readonly;
if (readonly) {
mr->perms &= ~UC_PROT_WRITE;
}
else {
mr->perms |= UC_PROT_WRITE;
}
mr->uc->memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit(mr->uc);
}
}
void memory_region_set_global_locking(MemoryRegion *mr)
{
mr->global_locking = true;
}
void memory_region_clear_global_locking(MemoryRegion *mr)
{
mr->global_locking = false;
}
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
{
if (mr->romd_mode != romd_mode) {
memory_region_transaction_begin(mr->uc);
mr->romd_mode = romd_mode;
mr->uc->memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit(mr->uc);
}
}
int memory_region_get_fd(MemoryRegion *mr)
{
if (mr->alias) {
return memory_region_get_fd(mr->alias);
}
assert(mr->ram_addr != RAM_ADDR_INVALID);
return qemu_get_ram_fd(mr->uc, mr->ram_addr & TARGET_PAGE_MASK);
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
if (mr->alias) {
return (char*)memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
}
assert(mr->terminates);
return qemu_get_ram_ptr(mr->uc, mr->ram_addr & TARGET_PAGE_MASK);
}
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_addr != RAM_ADDR_INVALID);
return cpu_physical_memory_test_and_clear_dirty(mr->uc, mr->ram_addr + addr,
size, client);
}
static void memory_region_update_container_subregions(MemoryRegion *subregion)
{
hwaddr offset = subregion->addr;
MemoryRegion *mr = subregion->container;
MemoryRegion *other;
memory_region_transaction_begin(mr->uc);
memory_region_ref(subregion);
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->may_overlap || other->may_overlap) {
continue;
}
if (int128_ge(int128_make64(offset),
int128_add(int128_make64(other->addr), other->size))
|| int128_le(int128_add(int128_make64(offset), subregion->size),
int128_make64(other->addr))) {
continue;
}
#if 0
printf("warning: subregion collision %llx/%llx (%s) "
"vs %llx/%llx (%s)\n",
(unsigned long long)offset,
(unsigned long long)int128_get64(subregion->size),
subregion->name,
(unsigned long long)other->addr,
(unsigned long long)int128_get64(other->size),
other->name);
#endif
}
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
mr->uc->memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit(mr->uc);
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
assert(!subregion->container);
subregion->container = mr;
subregion->addr = offset;
subregion->end = offset + int128_get64(subregion->size);
memory_region_update_container_subregions(subregion);
}
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
subregion->may_overlap = false;
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority)
{
subregion->may_overlap = true;
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
memory_region_transaction_begin(mr->uc);
assert(subregion->container == mr);
subregion->container = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_unref(subregion);
mr->uc->memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit(mr->uc);
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
memory_region_transaction_begin(mr->uc);
mr->enabled = enabled;
mr->uc->memory_region_update_pending = true;
memory_region_transaction_commit(mr->uc);
}
void memory_region_set_size(MemoryRegion *mr, uint64_t size)
{
Int128 s = int128_make64(size);
if (size == UINT64_MAX) {
s = int128_2_64();
}
if (int128_eq(s, mr->size)) {
return;
}
memory_region_transaction_begin(mr->uc);
mr->size = s;
mr->uc->memory_region_update_pending = true;
memory_region_transaction_commit(mr->uc);
}
static void memory_region_readd_subregion(MemoryRegion *mr)
{
MemoryRegion *container = mr->container;
if (container) {
memory_region_transaction_begin(mr->uc);
memory_region_ref(mr);
memory_region_del_subregion(container, mr);
mr->container = container;
memory_region_update_container_subregions(mr);
memory_region_unref(mr);
memory_region_transaction_commit(mr->uc);
}
}
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
{
if (addr != mr->addr) {
mr->addr = addr;
memory_region_readd_subregion(mr);
}
}
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
{
assert(mr->alias);
if (offset == mr->alias_offset) {
return;
}
memory_region_transaction_begin(mr->uc);
mr->alias_offset = offset;
mr->uc->memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit(mr->uc);
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_addr;
}
uint64_t memory_region_get_alignment(const MemoryRegion *mr)
{
return mr->align;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
{
return bsearch(&addr, view->ranges, view->nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
bool memory_region_present(MemoryRegion *container, hwaddr addr)
{
MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
if (!mr || (mr == container)) {
return false;
}
memory_region_unref(mr);
return true;
}
bool memory_region_is_mapped(MemoryRegion *mr)
{
return mr->container ? true : false;
}
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret = { NULL };
MemoryRegion *root;
AddressSpace *as;
AddrRange range;
FlatView *view;
FlatRange *fr;
addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
addr += root->addr;
}
as = memory_region_to_address_space(root);
if (!as) {
return ret;
}
range = addrrange_make(int128_make64(addr), int128_make64(size));
view = address_space_get_flatview(as);
fr = flatview_lookup(view, range);
if (!fr) {
flatview_unref(view);
return ret;
}
while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
ret.address_space = as;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = range.size;
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
memory_region_ref(ret.mr);
flatview_unref(view);
return ret;
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->address_space_filter
&& listener->address_space_filter != as) {
return;
}
if (listener->address_space_filter->uc->global_dirty_log) {
if (listener->log_global_start) {
listener->log_global_start(listener);
}
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = MemoryRegionSection_make(
fr->mr,
as,
fr->offset_in_region,
fr->addr.size,
int128_get64(fr->addr.start),
fr->readonly);
if (listener->region_add) {
listener->region_add(listener, &section);
}
}
flatview_unref(view);
}
void memory_listener_register(struct uc_struct* uc, MemoryListener *listener, AddressSpace *filter)
{
MemoryListener *other = NULL;
AddressSpace *as;
listener->address_space_filter = filter;
if (QTAILQ_EMPTY(&uc->memory_listeners)
|| listener->priority >= QTAILQ_LAST(&uc->memory_listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&uc->memory_listeners, listener, link);
} else {
QTAILQ_FOREACH(other, &uc->memory_listeners, link) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link);
}
QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) {
listener_add_address_space(listener, as);
}
}
void memory_listener_unregister(struct uc_struct *uc, MemoryListener *listener)
{
QTAILQ_REMOVE(&uc->memory_listeners, listener, link);
}
void address_space_init(struct uc_struct *uc, AddressSpace *as, MemoryRegion *root, const char *name)
{
if (QTAILQ_EMPTY(&uc->address_spaces)) {
memory_init(uc);
}
memory_region_transaction_begin(uc);
as->uc = uc;
as->root = root;
as->current_map = g_new(FlatView, 1);
flatview_init(as->current_map);
QTAILQ_INSERT_TAIL(&uc->address_spaces, as, address_spaces_link);
as->name = g_strdup(name ? name : "anonymous");
address_space_init_dispatch(as);
uc->memory_region_update_pending |= root->enabled;
memory_region_transaction_commit(uc);
}
void address_space_destroy(AddressSpace *as)
{
MemoryListener *listener;
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin(as->uc);
as->root = NULL;
memory_region_transaction_commit(as->uc);
QTAILQ_REMOVE(&as->uc->address_spaces, as, address_spaces_link);
address_space_unregister(as);
address_space_destroy_dispatch(as);
// TODO(danghvu): why assert fail here?
QTAILQ_FOREACH(listener, &as->uc->memory_listeners, link) {
// assert(listener->address_space_filter != as);
}
flatview_unref(as->current_map);
g_free(as->name);
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
QTAILQ_ENTRY(MemoryRegionList) queue;
};
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
static const TypeInfo memory_region_info = {
TYPE_MEMORY_REGION,
TYPE_OBJECT,
0,
sizeof(MemoryRegion),
NULL,
memory_region_initfn,
NULL,
memory_region_finalize,
};
void memory_register_types(struct uc_struct *uc)
{
type_register_static(uc, &memory_region_info);
}