mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-03-28 09:56:57 +00:00
Commit b00c72180c36 ("target-mips: add PC, XNP reg numbers to RDHWR") changed the rdhwr helpers to use check_hwrena() to check the register being accessed is enabled in CP0_HWREna when used from user mode. If that check fails an EXCP_RI exception is raised at the host PC calculated with GETPC(). However check_hwrena() may not be fully inlined as the do_raise_exception() part of it is common regardless of the arguments. This causes GETPC() to calculate the address in the call in the helper instead of the generated code calling the helper. No TB will be found and the EPC reported with the resulting guest RI exception points to the beginning of the TB instead of the RDHWR instruction. We can't reliably force check_hwrena() to be inlined, and converting it to a macro would be ugly, so instead pass the host PC in as an argument, with each rdhwr helper passing GETPC(). This should avoid any dependence on compiler behaviour, and in practice seems to ensure the full inlining of check_hwrena() on x86_64. This issue causes failures when running a MIPS KVM (trap & emulate) guest in a MIPS QEMU TCG guest, as the inner guest kernel will do a RDHWR of counter, which is disabled in the outer guest's CP0_HWREna by KVM so it can emulate the inner guest's counter. The emulation fails and the RI exception is passed to the inner guest. Backports commit d96391c1ffeb30a0afa695c86579517c69d9a889 from qemu |
||
---|---|---|
bindings | ||
docs | ||
include | ||
msvc | ||
qemu | ||
samples | ||
tests | ||
.appveyor.yml | ||
.gitignore | ||
.travis.yml | ||
AUTHORS.TXT | ||
Brewfile | ||
ChangeLog | ||
config.mk | ||
COPYING | ||
COPYING.LGPL2 | ||
COPYING_GLIB | ||
CREDITS.TXT | ||
install-cmocka-linux.sh | ||
list.c | ||
make.sh | ||
Makefile | ||
msvc.bat | ||
pkgconfig.mk | ||
README.md | ||
uc.c | ||
windows_export.bat |
Unicorn Engine
Unicorn is a lightweight, multi-platform, multi-architecture CPU emulator framework based on QEMU.
Unicorn offers some unparalleled features:
- Multi-architecture: ARM, ARM64 (ARMv8), M68K, MIPS, SPARC, and X86 (16, 32, 64-bit)
- Clean/simple/lightweight/intuitive architecture-neutral API
- Implemented in pure C language, with bindings for Crystal, Clojure, Visual Basic, Perl, Rust, Ruby, Python, Java, .NET, Go, Delphi/Free Pascal and Haskell.
- Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)
- High performance via Just-In-Time compilation
- Support for fine-grained instrumentation at various levels
- Thread-safety by design
- Distributed under free software license GPLv2
Further information is available at http://www.unicorn-engine.org
License
This project is released under the GPL license.
Compilation & Docs
See docs/COMPILE.md file for how to compile and install Unicorn.
More documentation is available in docs/README.md.
Contact
Contact us via mailing list, email or twitter for any questions.
Contribute
If you want to contribute, please pick up something from our Github issues.
We also maintain a list of more challenged problems in a TODO list.
CREDITS.TXT records important contributors of our project.