unicorn/qemu/tcg/optimize.c
Richard Henderson 1547048a22
tcg: Reorg TCGOp chaining
Instead of using -1 as end of chain, use 0, and link through the 0
entry as a fully circular double-linked list.

Backports commit dcb8e75870e2de199db853697f8839cb603beefe from qemu
2018-02-25 21:44:50 -05:00

1339 lines
41 KiB
C

/*
* Optimizations for Tiny Code Generator for QEMU
*
* Copyright (c) 2010 Samsung Electronics.
* Contributed by Kirill Batuzov <batuzovk@ispras.ru>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "exec/cpu-common.h"
#include "tcg-op.h"
#define CASE_OP_32_64(x) \
glue(glue(case INDEX_op_, x), _i32): \
glue(glue(case INDEX_op_, x), _i64)
static inline bool temp_is_const(TCGContext *s, TCGArg arg)
{
struct tcg_temp_info *temps = s->temps2;
return temps[arg].is_const;
}
static inline bool temp_is_copy(TCGContext *s, TCGArg arg)
{
struct tcg_temp_info *temps = s->temps2;
return temps[arg].next_copy != arg;
}
/* Reset TEMP's state, possibly removing the temp for the list of copies. */
static void reset_temp(TCGContext *s, TCGArg temp)
{
struct tcg_temp_info *temps = s->temps2;
temps[temps[temp].next_copy].prev_copy = temps[temp].prev_copy;
temps[temps[temp].prev_copy].next_copy = temps[temp].next_copy;
temps[temp].next_copy = temp;
temps[temp].prev_copy = temp;
temps[temp].is_const = false;
temps[temp].mask = -1;
}
/* Reset all temporaries, given that there are NB_TEMPS of them. */
static void reset_all_temps(TCGContext *s, int nb_temps)
{
long len = BITS_TO_LONGS(nb_temps) * sizeof(unsigned long);
memset(&s->temps2_used.l, 0, len);
}
/* Initialize and activate a temporary. */
static void init_temp_info(TCGContext *s, TCGArg temp)
{
struct tcg_temp_info *temps = s->temps2;
TCGTempSet *temps_used = &s->temps2_used;
if (!test_bit(temp, temps_used->l)) {
temps[temp].next_copy = temp;
temps[temp].prev_copy = temp;
temps[temp].is_const = false;
temps[temp].mask = -1;
set_bit(temp, temps_used->l);
}
}
static TCGOp *insert_op_before(TCGContext *s, TCGOp *old_op,
TCGOpcode opc, int nargs)
{
int oi = s->gen_next_op_idx;
int pi = s->gen_next_parm_idx;
int prev = old_op->prev;
int next = old_op - s->gen_op_buf;
TCGOp *new_op;
TCGOp new_opp = {0};
tcg_debug_assert(oi < OPC_BUF_SIZE);
tcg_debug_assert(pi + nargs <= OPPARAM_BUF_SIZE);
s->gen_next_op_idx = oi + 1;
s->gen_next_parm_idx = pi + nargs;
new_opp.opc = opc;
new_opp.args = pi;
new_opp.prev = prev;
new_opp.next = next;
new_op = &s->gen_op_buf[oi];
*new_op = new_opp;
s->gen_op_buf[prev].next = oi;
old_op->prev = oi;
return new_op;
}
static int op_bits(TCGContext *s, TCGOpcode op)
{
const TCGOpDef *def = &s->tcg_op_defs[op];
return def->flags & TCG_OPF_64BIT ? 64 : 32;
}
static TCGOpcode op_to_mov(TCGContext *s, TCGOpcode op)
{
switch (op_bits(s, op)) {
case 32:
return INDEX_op_mov_i32;
case 64:
return INDEX_op_mov_i64;
default:
fprintf(stderr, "op_to_mov: unexpected return value of "
"function op_bits.\n");
tcg_abort();
}
}
static TCGOpcode op_to_movi(TCGContext *s, TCGOpcode op)
{
switch (op_bits(s, op)) {
case 32:
return INDEX_op_movi_i32;
case 64:
return INDEX_op_movi_i64;
default:
fprintf(stderr, "op_to_movi: unexpected return value of "
"function op_bits.\n");
tcg_abort();
}
}
static TCGArg find_better_copy(TCGContext *s, TCGArg temp)
{
struct tcg_temp_info *temps = s->temps2;
TCGArg i;
/* If this is already a global, we can't do better. */
if (temp < (unsigned int)s->nb_globals) {
return temp;
}
/* Search for a global first. */
for (i = temps[temp].next_copy ; i != temp ; i = temps[i].next_copy) {
if (i < (unsigned int)s->nb_globals) {
return i;
}
}
/* If it is a temp, search for a temp local. */
if (!s->temps[temp].temp_local) {
for (i = temps[temp].next_copy ; i != temp ; i = temps[i].next_copy) {
if (s->temps[i].temp_local) {
return i;
}
}
}
/* Failure to find a better representation, return the same temp. */
return temp;
}
static bool temps_are_copies(TCGContext *s, TCGArg arg1, TCGArg arg2)
{
struct tcg_temp_info *temps = s->temps2;
TCGArg i;
if (arg1 == arg2) {
return true;
}
if (!temp_is_copy(s, arg1) || !temp_is_copy(s, arg2)) {
return false;
}
for (i = temps[arg1].next_copy ; i != arg1 ; i = temps[i].next_copy) {
if (i == arg2) {
return true;
}
}
return false;
}
static void tcg_opt_gen_movi(TCGContext *s, TCGOp *op, TCGArg *args,
TCGArg dst, TCGArg val)
{
struct tcg_temp_info *temps = s->temps2;
TCGOpcode new_op = op_to_movi(s, op->opc);
tcg_target_ulong mask;
op->opc = new_op;
reset_temp(s, dst);
temps[dst].is_const = true;
temps[dst].val = val;
mask = val;
if (TCG_TARGET_REG_BITS > 32 && new_op == INDEX_op_movi_i32) {
/* High bits of the destination are now garbage. */
mask |= ~0xffffffffull;
}
temps[dst].mask = mask;
args[0] = dst;
args[1] = val;
}
static void tcg_opt_gen_mov(TCGContext *s, TCGOp *op, TCGArg *args,
TCGArg dst, TCGArg src)
{
if (temps_are_copies(s, dst, src)) {
tcg_op_remove(s, op);
return;
}
struct tcg_temp_info *temps = s->temps2;
TCGOpcode new_op = op_to_mov(s, op->opc);
tcg_target_ulong mask;
op->opc = new_op;
reset_temp(s, dst);
mask = temps[src].mask;
if (TCG_TARGET_REG_BITS > 32 && new_op == INDEX_op_mov_i32) {
/* High bits of the destination are now garbage. */
mask |= ~0xffffffffull;
}
temps[dst].mask = mask;
if (s->temps[src].type == s->temps[dst].type) {
temps[dst].next_copy = temps[src].next_copy;
temps[dst].prev_copy = src;
temps[temps[dst].next_copy].prev_copy = dst;
temps[src].next_copy = dst;
temps[dst].is_const = temps[src].is_const;
temps[dst].val = temps[src].val;
}
args[0] = dst;
args[1] = src;
}
static TCGArg do_constant_folding_2(TCGOpcode op, TCGArg x, TCGArg y)
{
uint64_t l64, h64;
switch (op) {
CASE_OP_32_64(add):
return x + y;
CASE_OP_32_64(sub):
return x - y;
CASE_OP_32_64(mul):
return x * y;
CASE_OP_32_64(and):
return x & y;
CASE_OP_32_64(or):
return x | y;
CASE_OP_32_64(xor):
return x ^ y;
case INDEX_op_shl_i32:
return (uint32_t)x << (y & 31);
case INDEX_op_shl_i64:
return (uint64_t)x << (y & 63);
case INDEX_op_shr_i32:
return (uint32_t)x >> (y & 31);
case INDEX_op_shr_i64:
return (uint64_t)x >> (y & 63);
case INDEX_op_sar_i32:
return (int32_t)x >> (y & 31);
case INDEX_op_sar_i64:
return (int64_t)x >> (y & 63);
case INDEX_op_rotr_i32:
return ror32(x, y & 31);
case INDEX_op_rotr_i64:
return (TCGArg)ror64(x, y & 63);
case INDEX_op_rotl_i32:
return rol32(x, y & 31);
case INDEX_op_rotl_i64:
return (TCGArg)rol64(x, y & 63);
CASE_OP_32_64(not):
return ~x;
CASE_OP_32_64(neg):
return 0-x;
CASE_OP_32_64(andc):
return x & ~y;
CASE_OP_32_64(orc):
return x | ~y;
CASE_OP_32_64(eqv):
return ~(x ^ y);
CASE_OP_32_64(nand):
return ~(x & y);
CASE_OP_32_64(nor):
return ~(x | y);
CASE_OP_32_64(ext8s):
return (int8_t)x;
CASE_OP_32_64(ext16s):
return (int16_t)x;
CASE_OP_32_64(ext8u):
return (uint8_t)x;
CASE_OP_32_64(ext16u):
return (uint16_t)x;
case INDEX_op_ext_i32_i64:
case INDEX_op_ext32s_i64:
return (int32_t)x;
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
case INDEX_op_ext32u_i64:
return (uint32_t)x;
case INDEX_op_extrh_i64_i32:
return (uint64_t)x >> 32;
case INDEX_op_muluh_i32:
return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32;
case INDEX_op_mulsh_i32:
return ((int64_t)(int32_t)x * (int32_t)y) >> 32;
case INDEX_op_muluh_i64:
mulu64(&l64, &h64, x, y);
return (TCGArg)h64;
case INDEX_op_mulsh_i64:
muls64(&l64, &h64, x, y);
return (TCGArg)h64;
case INDEX_op_div_i32:
/* Avoid crashing on divide by zero, otherwise undefined. */
return (int32_t)x / ((int32_t)y ? (int32_t)y : 1);
case INDEX_op_divu_i32:
return (uint32_t)x / ((uint32_t)y ? (uint32_t)y : 1);
case INDEX_op_div_i64:
return (int64_t)x / ((int64_t)y ? (int64_t)y : 1);
case INDEX_op_divu_i64:
return (uint64_t)x / ((uint64_t)y ? (uint64_t)y : 1);
case INDEX_op_rem_i32:
return (int32_t)x % ((int32_t)y ? (int32_t)y : 1);
case INDEX_op_remu_i32:
return (uint32_t)x % ((uint32_t)y ? (uint32_t)y : 1);
case INDEX_op_rem_i64:
return (int64_t)x % ((int64_t)y ? (int64_t)y : 1);
case INDEX_op_remu_i64:
return (uint64_t)x % ((uint64_t)y ? (uint64_t)y : 1);
default:
fprintf(stderr,
"Unrecognized operation %d in do_constant_folding.\n", op);
tcg_abort();
}
}
static TCGArg do_constant_folding(TCGContext *s, TCGOpcode op, TCGArg x, TCGArg y)
{
TCGArg res = do_constant_folding_2(op, x, y);
if (op_bits(s, op) == 32) {
res = (int32_t)res;
}
return res;
}
static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c)
{
switch (c) {
case TCG_COND_EQ:
return x == y;
case TCG_COND_NE:
return x != y;
case TCG_COND_LT:
return (int32_t)x < (int32_t)y;
case TCG_COND_GE:
return (int32_t)x >= (int32_t)y;
case TCG_COND_LE:
return (int32_t)x <= (int32_t)y;
case TCG_COND_GT:
return (int32_t)x > (int32_t)y;
case TCG_COND_LTU:
return x < y;
case TCG_COND_GEU:
return x >= y;
case TCG_COND_LEU:
return x <= y;
case TCG_COND_GTU:
return x > y;
default:
tcg_abort();
}
}
static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c)
{
switch (c) {
case TCG_COND_EQ:
return x == y;
case TCG_COND_NE:
return x != y;
case TCG_COND_LT:
return (int64_t)x < (int64_t)y;
case TCG_COND_GE:
return (int64_t)x >= (int64_t)y;
case TCG_COND_LE:
return (int64_t)x <= (int64_t)y;
case TCG_COND_GT:
return (int64_t)x > (int64_t)y;
case TCG_COND_LTU:
return x < y;
case TCG_COND_GEU:
return x >= y;
case TCG_COND_LEU:
return x <= y;
case TCG_COND_GTU:
return x > y;
default:
tcg_abort();
}
}
static bool do_constant_folding_cond_eq(TCGCond c)
{
switch (c) {
case TCG_COND_GT:
case TCG_COND_LTU:
case TCG_COND_LT:
case TCG_COND_GTU:
case TCG_COND_NE:
return 0;
case TCG_COND_GE:
case TCG_COND_GEU:
case TCG_COND_LE:
case TCG_COND_LEU:
case TCG_COND_EQ:
return 1;
default:
tcg_abort();
}
}
/* Return 2 if the condition can't be simplified, and the result
of the condition (0 or 1) if it can */
static TCGArg do_constant_folding_cond(TCGContext *s, TCGOpcode op, TCGArg x,
TCGArg y, TCGCond c)
{
struct tcg_temp_info *temps = s->temps2;
if (temp_is_const(s, x) && temp_is_const(s, y)) {
switch (op_bits(s, op)) {
case 32:
return do_constant_folding_cond_32(temps[x].val, temps[y].val, c);
case 64:
return do_constant_folding_cond_64(temps[x].val, temps[y].val, c);
default:
tcg_abort();
}
} else if (temps_are_copies(s, x, y)) {
return do_constant_folding_cond_eq(c);
} else if (temp_is_const(s, y) && temps[y].val == 0) {
switch (c) {
case TCG_COND_LTU:
return 0;
case TCG_COND_GEU:
return 1;
default:
return 2;
}
} else {
return 2;
}
}
/* Return 2 if the condition can't be simplified, and the result
of the condition (0 or 1) if it can */
static TCGArg do_constant_folding_cond2(TCGContext *s, TCGArg *p1, TCGArg *p2, TCGCond c)
{
struct tcg_temp_info *temps = s->temps2;
TCGArg al = p1[0], ah = p1[1];
TCGArg bl = p2[0], bh = p2[1];
if (temp_is_const(s, bl) && temp_is_const(s, bh)) {
uint64_t b = ((uint64_t)temps[bh].val << 32) | (uint32_t)temps[bl].val;
if (temp_is_const(s, al) && temp_is_const(s, ah)) {
uint64_t a;
a = ((uint64_t)temps[ah].val << 32) | (uint32_t)temps[al].val;
return do_constant_folding_cond_64(a, b, c);
}
if (b == 0) {
switch (c) {
case TCG_COND_LTU:
return 0;
case TCG_COND_GEU:
return 1;
default:
break;
}
}
}
if (temps_are_copies(s, al, bl) && temps_are_copies(s, ah, bh)) {
return do_constant_folding_cond_eq(c);
}
return 2;
}
static bool swap_commutative(TCGContext *s, TCGArg dest, TCGArg *p1, TCGArg *p2)
{
TCGArg a1 = *p1, a2 = *p2;
int sum = 0;
sum += temp_is_const(s, a1);
sum -= temp_is_const(s, a2);
/* Prefer the constant in second argument, and then the form
op a, a, b, which is better handled on non-RISC hosts. */
if (sum > 0 || (sum == 0 && dest == a2)) {
*p1 = a2;
*p2 = a1;
return true;
}
return false;
}
static bool swap_commutative2(TCGContext *s, TCGArg *p1, TCGArg *p2)
{
int sum = 0;
sum += temp_is_const(s, p1[0]);
sum += temp_is_const(s, p1[1]);
sum -= temp_is_const(s, p2[0]);
sum -= temp_is_const(s, p2[1]);
if (sum > 0) {
TCGArg t;
t = p1[0], p1[0] = p2[0], p2[0] = t;
t = p1[1], p1[1] = p2[1], p2[1] = t;
return true;
}
return false;
}
/* Propagate constants and copies, fold constant expressions. */
void tcg_optimize(TCGContext *s)
{
struct tcg_temp_info *temps = s->temps2;
int oi, oi_next, nb_temps, nb_globals;
/* Array VALS has an element for each temp.
If this temp holds a constant then its value is kept in VALS' element.
If this temp is a copy of other ones then the other copies are
available through the doubly linked circular list. */
nb_temps = s->nb_temps;
nb_globals = s->nb_globals;
reset_all_temps(s, nb_temps);
for (oi = s->gen_op_buf[0].next; oi != 0; oi = oi_next) {
tcg_target_ulong mask, partmask, affected;
int nb_oargs, nb_iargs, i;
TCGArg tmp;
TCGOp * const op = &s->gen_op_buf[oi];
TCGArg * const args = &s->gen_opparam_buf[op->args];
TCGOpcode opc = op->opc;
const TCGOpDef *def = &s->tcg_op_defs[opc];
oi_next = op->next;
/* Count the arguments, and initialize the temps that are
going to be used */
if (opc == INDEX_op_call) {
nb_oargs = op->callo;
nb_iargs = op->calli;
for (i = 0; i < nb_oargs + nb_iargs; i++) {
tmp = args[i];
if (tmp != TCG_CALL_DUMMY_ARG) {
init_temp_info(s, tmp);
}
}
} else {
nb_oargs = def->nb_oargs;
nb_iargs = def->nb_iargs;
for (i = 0; i < nb_oargs + nb_iargs; i++) {
init_temp_info(s, args[i]);
}
}
/* Do copy propagation */
for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
if (temp_is_copy(s, args[i])) {
args[i] = find_better_copy(s, args[i]);
}
}
/* For commutative operations make constant second argument */
switch (opc) {
CASE_OP_32_64(add):
CASE_OP_32_64(mul):
CASE_OP_32_64(and):
CASE_OP_32_64(or):
CASE_OP_32_64(xor):
CASE_OP_32_64(eqv):
CASE_OP_32_64(nand):
CASE_OP_32_64(nor):
CASE_OP_32_64(muluh):
CASE_OP_32_64(mulsh):
swap_commutative(s, args[0], &args[1], &args[2]);
break;
CASE_OP_32_64(brcond):
if (swap_commutative(s, -1, &args[0], &args[1])) {
args[2] = tcg_swap_cond(args[2]);
}
break;
CASE_OP_32_64(setcond):
if (swap_commutative(s, args[0], &args[1], &args[2])) {
args[3] = tcg_swap_cond(args[3]);
}
break;
CASE_OP_32_64(movcond):
if (swap_commutative(s, -1, &args[1], &args[2])) {
args[5] = tcg_swap_cond(args[5]);
}
/* For movcond, we canonicalize the "false" input reg to match
the destination reg so that the tcg backend can implement
a "move if true" operation. */
if (swap_commutative(s, args[0], &args[4], &args[3])) {
args[5] = tcg_invert_cond(args[5]);
}
break;
CASE_OP_32_64(add2):
swap_commutative(s, args[0], &args[2], &args[4]);
swap_commutative(s, args[1], &args[3], &args[5]);
break;
CASE_OP_32_64(mulu2):
CASE_OP_32_64(muls2):
swap_commutative(s, args[0], &args[2], &args[3]);
break;
case INDEX_op_brcond2_i32:
if (swap_commutative2(s, &args[0], &args[2])) {
args[4] = tcg_swap_cond(args[4]);
}
break;
case INDEX_op_setcond2_i32:
if (swap_commutative2(s, &args[1], &args[3])) {
args[5] = tcg_swap_cond(args[5]);
}
break;
default:
break;
}
/* Simplify expressions for "shift/rot r, 0, a => movi r, 0",
and "sub r, 0, a => neg r, a" case. */
switch (opc) {
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
if (temp_is_const(s, args[1]) && temps[args[1]].val == 0) {
tcg_opt_gen_movi(s, op, args, args[0], 0);
continue;
}
break;
CASE_OP_32_64(sub):
{
TCGOpcode neg_op;
bool have_neg;
if (temp_is_const(s, args[2])) {
/* Proceed with possible constant folding. */
break;
}
if (opc == INDEX_op_sub_i32) {
neg_op = INDEX_op_neg_i32;
have_neg = TCG_TARGET_HAS_neg_i32;
} else {
neg_op = INDEX_op_neg_i64;
have_neg = TCG_TARGET_HAS_neg_i64;
}
if (!have_neg) {
break;
}
if (temp_is_const(s, args[1]) && temps[args[1]].val == 0) {
op->opc = neg_op;
reset_temp(s, args[0]);
args[1] = args[2];
continue;
}
}
break;
CASE_OP_32_64(xor):
CASE_OP_32_64(nand):
if (!temp_is_const(s, args[1])
&& temp_is_const(s, args[2]) && temps[args[2]].val == -1) {
i = 1;
goto try_not;
}
break;
CASE_OP_32_64(nor):
if (!temp_is_const(s, args[1])
&& temp_is_const(s, args[2]) && temps[args[2]].val == 0) {
i = 1;
goto try_not;
}
break;
CASE_OP_32_64(andc):
if (!temp_is_const(s, args[2])
&& temp_is_const(s, args[1]) && temps[args[1]].val == -1) {
i = 2;
goto try_not;
}
break;
CASE_OP_32_64(orc):
CASE_OP_32_64(eqv):
if (!temp_is_const(s, args[2])
&& temp_is_const(s, args[1]) && temps[args[1]].val == 0) {
i = 2;
goto try_not;
}
break;
try_not:
{
TCGOpcode not_op;
bool have_not;
if (def->flags & TCG_OPF_64BIT) {
not_op = INDEX_op_not_i64;
have_not = TCG_TARGET_HAS_not_i64;
} else {
not_op = INDEX_op_not_i32;
have_not = TCG_TARGET_HAS_not_i32;
}
if (!have_not) {
break;
}
op->opc = not_op;
reset_temp(s, args[0]);
args[1] = args[i];
continue;
}
default:
break;
}
/* Simplify expression for "op r, a, const => mov r, a" cases */
switch (opc) {
CASE_OP_32_64(add):
CASE_OP_32_64(sub):
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
CASE_OP_32_64(or):
CASE_OP_32_64(xor):
CASE_OP_32_64(andc):
if (!temp_is_const(s, args[1])
&& temp_is_const(s, args[2]) && temps[args[2]].val == 0) {
tcg_opt_gen_mov(s, op, args, args[0], args[1]);
continue;
}
break;
CASE_OP_32_64(and):
CASE_OP_32_64(orc):
CASE_OP_32_64(eqv):
if (!temp_is_const(s, args[1])
&& temp_is_const(s, args[2]) && temps[args[2]].val == -1) {
tcg_opt_gen_mov(s, op, args, args[0], args[1]);
continue;
}
break;
default:
break;
}
/* Simplify using known-zero bits. Currently only ops with a single
output argument is supported. */
mask = -1;
affected = -1;
switch (opc) {
CASE_OP_32_64(ext8s):
if ((temps[args[1]].mask & 0x80) != 0) {
break;
}
CASE_OP_32_64(ext8u):
mask = 0xff;
goto and_const;
CASE_OP_32_64(ext16s):
if ((temps[args[1]].mask & 0x8000) != 0) {
break;
}
CASE_OP_32_64(ext16u):
mask = 0xffff;
goto and_const;
case INDEX_op_ext32s_i64:
if ((temps[args[1]].mask & 0x80000000) != 0) {
break;
}
case INDEX_op_ext32u_i64:
mask = 0xffffffffU;
goto and_const;
CASE_OP_32_64(and):
mask = temps[args[2]].mask;
if (temp_is_const(s, args[2])) {
and_const:
affected = temps[args[1]].mask & ~mask;
}
mask = temps[args[1]].mask & mask;
break;
case INDEX_op_ext_i32_i64:
if ((temps[args[1]].mask & 0x80000000) != 0) {
break;
}
case INDEX_op_extu_i32_i64:
/* We do not compute affected as it is a size changing op. */
mask = (uint32_t)temps[args[1]].mask;
break;
CASE_OP_32_64(andc):
/* Known-zeros does not imply known-ones. Therefore unless
args[2] is constant, we can't infer anything from it. */
if (temp_is_const(s, args[2])) {
mask = ~temps[args[2]].mask;
goto and_const;
}
/* But we certainly know nothing outside args[1] may be set. */
mask = temps[args[1]].mask;
break;
case INDEX_op_sar_i32:
if (temp_is_const(s, args[2])) {
tmp = temps[args[2]].val & 31;
mask = (int32_t)temps[args[1]].mask >> tmp;
}
break;
case INDEX_op_sar_i64:
if (temp_is_const(s, args[2])) {
tmp = temps[args[2]].val & 63;
mask = (int64_t)temps[args[1]].mask >> tmp;
}
break;
case INDEX_op_shr_i32:
if (temp_is_const(s, args[2])) {
tmp = temps[args[2]].val & 31;
mask = (uint32_t)temps[args[1]].mask >> tmp;
}
break;
case INDEX_op_shr_i64:
if (temp_is_const(s, args[2])) {
tmp = temps[args[2]].val & 63;
mask = (uint64_t)temps[args[1]].mask >> tmp;
}
break;
case INDEX_op_extrl_i64_i32:
mask = (uint32_t)temps[args[1]].mask;
break;
case INDEX_op_extrh_i64_i32:
mask = (uint64_t)temps[args[1]].mask >> 32;
break;
CASE_OP_32_64(shl):
if (temp_is_const(s, args[2])) {
tmp = temps[args[2]].val & (TCG_TARGET_REG_BITS - 1);
mask = temps[args[1]].mask << tmp;
}
break;
CASE_OP_32_64(neg):
/* Set to 1 all bits to the left of the rightmost. */
mask = 0-(temps[args[1]].mask & (0-temps[args[1]].mask));
break;
CASE_OP_32_64(deposit):
mask = (tcg_target_ulong)deposit64(temps[args[1]].mask, args[3], args[4],
temps[args[2]].mask);
break;
CASE_OP_32_64(or):
CASE_OP_32_64(xor):
mask = temps[args[1]].mask | temps[args[2]].mask;
break;
CASE_OP_32_64(setcond):
case INDEX_op_setcond2_i32:
mask = 1;
break;
CASE_OP_32_64(movcond):
mask = temps[args[3]].mask | temps[args[4]].mask;
break;
CASE_OP_32_64(ld8u):
mask = 0xff;
break;
CASE_OP_32_64(ld16u):
mask = 0xffff;
break;
case INDEX_op_ld32u_i64:
mask = 0xffffffffu;
break;
CASE_OP_32_64(qemu_ld):
{
TCGMemOpIdx oi = args[nb_oargs + nb_iargs];
TCGMemOp mop = get_memop(oi);
if (!(mop & MO_SIGN)) {
mask = (2ULL << ((8 << (mop & MO_SIZE)) - 1)) - 1;
}
}
break;
default:
break;
}
/* 32-bit ops generate 32-bit results. For the result is zero test
below, we can ignore high bits, but for further optimizations we
need to record that the high bits contain garbage. */
partmask = mask;
if (!(def->flags & TCG_OPF_64BIT)) {
mask |= ~(tcg_target_ulong)0xffffffffu;
partmask &= 0xffffffffu;
affected &= 0xffffffffu;
}
if (partmask == 0) {
tcg_debug_assert(nb_oargs == 1);
tcg_opt_gen_movi(s, op, args, args[0], 0);
continue;
}
if (affected == 0) {
tcg_debug_assert(nb_oargs == 1);
tcg_opt_gen_mov(s, op, args, args[0], args[1]);
continue;
}
/* Simplify expression for "op r, a, 0 => movi r, 0" cases */
switch (opc) {
CASE_OP_32_64(and):
CASE_OP_32_64(mul):
CASE_OP_32_64(muluh):
CASE_OP_32_64(mulsh):
if ((temp_is_const(s, args[2]) && temps[args[2]].val == 0)) {
tcg_opt_gen_movi(s, op, args, args[0], 0);
continue;
}
break;
default:
break;
}
/* Simplify expression for "op r, a, a => mov r, a" cases */
switch (opc) {
CASE_OP_32_64(or):
CASE_OP_32_64(and):
if (temps_are_copies(s, args[1], args[2])) {
tcg_opt_gen_mov(s, op, args, args[0], args[1]);
continue;
}
break;
default:
break;
}
/* Simplify expression for "op r, a, a => movi r, 0" cases */
switch (opc) {
CASE_OP_32_64(andc):
CASE_OP_32_64(sub):
CASE_OP_32_64(xor):
if (temps_are_copies(s, args[1], args[2])) {
tcg_opt_gen_movi(s, op, args, args[0], 0);
continue;
}
break;
default:
break;
}
/* Propagate constants through copy operations and do constant
folding. Constants will be substituted to arguments by register
allocator where needed and possible. Also detect copies. */
switch (opc) {
CASE_OP_32_64(mov):
tcg_opt_gen_mov(s, op, args, args[0], args[1]);
break;
CASE_OP_32_64(movi):
tcg_opt_gen_movi(s, op, args, args[0], args[1]);
break;
CASE_OP_32_64(not):
CASE_OP_32_64(neg):
CASE_OP_32_64(ext8s):
CASE_OP_32_64(ext8u):
CASE_OP_32_64(ext16s):
CASE_OP_32_64(ext16u):
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
case INDEX_op_extrh_i64_i32:
if (temp_is_const(s, args[1])) {
tmp = do_constant_folding(s, opc, temps[args[1]].val, 0);
tcg_opt_gen_movi(s, op, args, args[0], tmp);
break;
}
goto do_default;
CASE_OP_32_64(add):
CASE_OP_32_64(sub):
CASE_OP_32_64(mul):
CASE_OP_32_64(or):
CASE_OP_32_64(and):
CASE_OP_32_64(xor):
CASE_OP_32_64(shl):
CASE_OP_32_64(shr):
CASE_OP_32_64(sar):
CASE_OP_32_64(rotl):
CASE_OP_32_64(rotr):
CASE_OP_32_64(andc):
CASE_OP_32_64(orc):
CASE_OP_32_64(eqv):
CASE_OP_32_64(nand):
CASE_OP_32_64(nor):
CASE_OP_32_64(muluh):
CASE_OP_32_64(mulsh):
CASE_OP_32_64(div):
CASE_OP_32_64(divu):
CASE_OP_32_64(rem):
CASE_OP_32_64(remu):
if (temp_is_const(s, args[1]) && temp_is_const(s, args[2])) {
tmp = do_constant_folding(s, opc, temps[args[1]].val,
temps[args[2]].val);
tcg_opt_gen_movi(s, op, args, args[0], tmp);
break;
}
goto do_default;
CASE_OP_32_64(deposit):
if (temp_is_const(s, args[1]) && temp_is_const(s, args[2])) {
tmp = (TCGArg)deposit64(temps[args[1]].val, args[3], args[4],
temps[args[2]].val);
tcg_opt_gen_movi(s, op, args, args[0], tmp);
break;
}
goto do_default;
CASE_OP_32_64(setcond):
tmp = do_constant_folding_cond(s, opc, args[1], args[2], args[3]);
if (tmp != 2) {
tcg_opt_gen_movi(s, op, args, args[0], tmp);
break;
}
goto do_default;
CASE_OP_32_64(brcond):
tmp = do_constant_folding_cond(s, opc, args[0], args[1], args[2]);
if (tmp != 2) {
if (tmp) {
reset_all_temps(s, nb_temps);
op->opc = INDEX_op_br;
args[0] = args[3];
} else {
tcg_op_remove(s, op);
}
break;
}
goto do_default;
CASE_OP_32_64(movcond):
tmp = do_constant_folding_cond(s, opc, args[1], args[2], args[5]);
if (tmp != 2) {
tcg_opt_gen_mov(s, op, args, args[0], args[4-tmp]);
break;
}
goto do_default;
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
if (temp_is_const(s, args[2]) && temp_is_const(s, args[3])
&& temp_is_const(s, args[4]) && temp_is_const(s, args[5])) {
uint32_t al = temps[args[2]].val;
uint32_t ah = temps[args[3]].val;
uint32_t bl = temps[args[4]].val;
uint32_t bh = temps[args[5]].val;
uint64_t a = ((uint64_t)ah << 32) | al;
uint64_t b = ((uint64_t)bh << 32) | bl;
TCGArg rl, rh;
TCGOp *op2 = insert_op_before(s, op, INDEX_op_movi_i32, 2);
TCGArg *args2 = &s->gen_opparam_buf[op2->args];
if (opc == INDEX_op_add2_i32) {
a += b;
} else {
a -= b;
}
rl = args[0];
rh = args[1];
tcg_opt_gen_movi(s, op, args, rl, (int32_t)a);
tcg_opt_gen_movi(s, op2, args2, rh, (int32_t)(a >> 32));
/* We've done all we need to do with the movi. Skip it. */
oi_next = op2->next;
break;
}
goto do_default;
case INDEX_op_mulu2_i32:
if (temp_is_const(s, args[2]) && temp_is_const(s, args[3])) {
uint32_t a = temps[args[2]].val;
uint32_t b = temps[args[3]].val;
uint64_t r = (uint64_t)a * b;
TCGArg rl, rh;
TCGOp *op2 = insert_op_before(s, op, INDEX_op_movi_i32, 2);
TCGArg *args2 = &s->gen_opparam_buf[op2->args];
rl = args[0];
rh = args[1];
tcg_opt_gen_movi(s, op, args, rl, (int32_t)r);
tcg_opt_gen_movi(s, op2, args2, rh, (int32_t)(r >> 32));
/* We've done all we need to do with the movi. Skip it. */
oi_next = op2->next;
break;
}
goto do_default;
case INDEX_op_brcond2_i32:
tmp = do_constant_folding_cond2(s, &args[0], &args[2], args[4]);
if (tmp != 2) {
if (tmp) {
do_brcond_true:
reset_all_temps(s, nb_temps);
op->opc = INDEX_op_br;
args[0] = args[5];
} else {
do_brcond_false:
tcg_op_remove(s, op);
}
} else if ((args[4] == TCG_COND_LT || args[4] == TCG_COND_GE)
&& temp_is_const(s, args[2]) && temps[args[2]].val == 0
&& temp_is_const(s, args[3]) && temps[args[3]].val == 0) {
/* Simplify LT/GE comparisons vs zero to a single compare
vs the high word of the input. */
do_brcond_high:
reset_all_temps(s, nb_temps);
op->opc = INDEX_op_brcond_i32;
args[0] = args[1];
args[1] = args[3];
args[2] = args[4];
args[3] = args[5];
} else if (args[4] == TCG_COND_EQ) {
/* Simplify EQ comparisons where one of the pairs
can be simplified. */
tmp = do_constant_folding_cond(s, INDEX_op_brcond_i32,
args[0], args[2], TCG_COND_EQ);
if (tmp == 0) {
goto do_brcond_false;
} else if (tmp == 1) {
goto do_brcond_high;
}
tmp = do_constant_folding_cond(s, INDEX_op_brcond_i32,
args[1], args[3], TCG_COND_EQ);
if (tmp == 0) {
goto do_brcond_false;
} else if (tmp != 1) {
goto do_default;
}
do_brcond_low:
reset_all_temps(s, nb_temps);
op->opc = INDEX_op_brcond_i32;
args[1] = args[2];
args[2] = args[4];
args[3] = args[5];
} else if (args[4] == TCG_COND_NE) {
/* Simplify NE comparisons where one of the pairs
can be simplified. */
tmp = do_constant_folding_cond(s, INDEX_op_brcond_i32,
args[0], args[2], TCG_COND_NE);
if (tmp == 0) {
goto do_brcond_high;
} else if (tmp == 1) {
goto do_brcond_true;
}
tmp = do_constant_folding_cond(s, INDEX_op_brcond_i32,
args[1], args[3], TCG_COND_NE);
if (tmp == 0) {
goto do_brcond_low;
} else if (tmp == 1) {
goto do_brcond_true;
}
goto do_default;
} else {
goto do_default;
}
break;
case INDEX_op_setcond2_i32:
tmp = do_constant_folding_cond2(s, &args[1], &args[3], args[5]);
if (tmp != 2) {
do_setcond_const:
tcg_opt_gen_movi(s, op, args, args[0], tmp);
} else if ((args[5] == TCG_COND_LT || args[5] == TCG_COND_GE)
&& temp_is_const(s, args[3]) && temps[args[3]].val == 0
&& temp_is_const(s, args[4]) && temps[args[4]].val == 0) {
/* Simplify LT/GE comparisons vs zero to a single compare
vs the high word of the input. */
do_setcond_high:
reset_temp(s, args[0]);
temps[args[0]].mask = 1;
op->opc = INDEX_op_setcond_i32;
args[1] = args[2];
args[2] = args[4];
args[3] = args[5];
} else if (args[5] == TCG_COND_EQ) {
/* Simplify EQ comparisons where one of the pairs
can be simplified. */
tmp = do_constant_folding_cond(s, INDEX_op_setcond_i32,
args[1], args[3], TCG_COND_EQ);
if (tmp == 0) {
goto do_setcond_const;
} else if (tmp == 1) {
goto do_setcond_high;
}
tmp = do_constant_folding_cond(s, INDEX_op_setcond_i32,
args[2], args[4], TCG_COND_EQ);
if (tmp == 0) {
goto do_setcond_high;
} else if (tmp != 1) {
goto do_default;
}
do_setcond_low:
reset_temp(s, args[0]);
temps[args[0]].mask = 1;
op->opc = INDEX_op_setcond_i32;
args[2] = args[3];
args[3] = args[5];
} else if (args[5] == TCG_COND_NE) {
/* Simplify NE comparisons where one of the pairs
can be simplified. */
tmp = do_constant_folding_cond(s, INDEX_op_setcond_i32,
args[1], args[3], TCG_COND_NE);
if (tmp == 0) {
goto do_setcond_high;
} else if (tmp == 1) {
goto do_setcond_const;
}
tmp = do_constant_folding_cond(s, INDEX_op_setcond_i32,
args[2], args[4], TCG_COND_NE);
if (tmp == 0) {
goto do_setcond_low;
} else if (tmp == 1) {
goto do_setcond_const;
}
goto do_default;
} else {
goto do_default;
}
break;
case INDEX_op_call:
if (!(args[nb_oargs + nb_iargs + 1]
& (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) {
for (i = 0; i < nb_globals; i++) {
if (test_bit(i, s->temps2_used.l)) {
reset_temp(s, i);
}
}
}
goto do_reset_output;
default:
do_default:
/* Default case: we know nothing about operation (or were unable
to compute the operation result) so no propagation is done.
We trash everything if the operation is the end of a basic
block, otherwise we only trash the output args. "mask" is
the non-zero bits mask for the first output arg. */
if (def->flags & TCG_OPF_BB_END) {
reset_all_temps(s, nb_temps);
} else {
do_reset_output:
for (i = 0; i < nb_oargs; i++) {
reset_temp(s, args[i]);
/* Save the corresponding known-zero bits mask for the
first output argument (only one supported so far). */
if (i == 0) {
temps[args[i]].mask = mask;
}
}
}
break;
}
}
}