mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-23 13:21:03 +00:00
26b36e5ff8
All operations that take a floatx80 as an operand need to have their inputs checked for malformed encodings. In all of these cases, use the function floatx80_invalid_encoding to perform the check. If an invalid operand is found, raise an invalid operation exception, and then return either NaN (for fp-typed results) or the integer indefinite value (the minimum representable signed integer value, for int-typed results). For the non-quiet comparison operations, this touches adjacent code in order to pass style checks. Backports cast correction portion of commit d1eb8f2acba579830cf3798c3c15ce51be852c56m from qemu
777 lines
32 KiB
C
777 lines
32 KiB
C
/*
|
|
* QEMU float support
|
|
*
|
|
* The code in this source file is derived from release 2a of the SoftFloat
|
|
* IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
|
|
* some later contributions) are provided under that license, as detailed below.
|
|
* It has subsequently been modified by contributors to the QEMU Project,
|
|
* so some portions are provided under:
|
|
* the SoftFloat-2a license
|
|
* the BSD license
|
|
* GPL-v2-or-later
|
|
*
|
|
* Any future contributions to this file after December 1st 2014 will be
|
|
* taken to be licensed under the Softfloat-2a license unless specifically
|
|
* indicated otherwise.
|
|
*/
|
|
|
|
/*
|
|
===============================================================================
|
|
This C header file is part of the SoftFloat IEC/IEEE Floating-point
|
|
Arithmetic Package, Release 2a.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
|
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
|
|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) they include prominent notice that the work is derivative, and (2) they
|
|
include prominent notice akin to these four paragraphs for those parts of
|
|
this code that are retained.
|
|
|
|
===============================================================================
|
|
*/
|
|
|
|
/* BSD licensing:
|
|
* Copyright (c) 2006, Fabrice Bellard
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Portions of this work are licensed under the terms of the GNU GPL,
|
|
* version 2 or later. See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#ifndef SOFTFLOAT_H
|
|
#define SOFTFLOAT_H
|
|
|
|
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
|
|
#include <sunmath.h>
|
|
#endif
|
|
|
|
#include "unicorn/platform.h"
|
|
#include "config-host.h"
|
|
#include "qemu/osdep.h"
|
|
|
|
/* This 'flag' type must be able to hold at least 0 and 1. It should
|
|
* probably be replaced with 'bool' but the uses would need to be audited
|
|
* to check that they weren't accidentally relying on it being a larger type.
|
|
*/
|
|
typedef uint8_t flag;
|
|
|
|
#define LIT64( a ) a##LL
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point ordering relations
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_relation_less = -1,
|
|
float_relation_equal = 0,
|
|
float_relation_greater = 1,
|
|
float_relation_unordered = 2
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point types.
|
|
*----------------------------------------------------------------------------*/
|
|
/* Use structures for soft-float types. This prevents accidentally mixing
|
|
them with native int/float types. A sufficiently clever compiler and
|
|
sane ABI should be able to see though these structs. However
|
|
x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
|
|
//#define USE_SOFTFLOAT_STRUCT_TYPES
|
|
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
|
|
typedef struct {
|
|
uint16_t v;
|
|
} float16;
|
|
#define float16_val(x) (((float16)(x)).v)
|
|
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
|
|
#define const_float16(x) { x }
|
|
typedef struct {
|
|
uint32_t v;
|
|
} float32;
|
|
/* The cast ensures an error if the wrong type is passed. */
|
|
#define float32_val(x) (((float32)(x)).v)
|
|
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
|
|
#define const_float32(x) { x }
|
|
typedef struct {
|
|
uint64_t v;
|
|
} float64;
|
|
#define float64_val(x) (((float64)(x)).v)
|
|
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
|
|
#define const_float64(x) { x }
|
|
#else
|
|
typedef uint16_t float16;
|
|
typedef uint32_t float32;
|
|
typedef uint64_t float64;
|
|
#define float16_val(x) (x)
|
|
#define float32_val(x) (x)
|
|
#define float64_val(x) (x)
|
|
#define make_float16(x) (x)
|
|
#define make_float32(x) (x)
|
|
#define make_float64(x) (x)
|
|
#define const_float16(x) (x)
|
|
#define const_float32(x) (x)
|
|
#define const_float64(x) (x)
|
|
#endif
|
|
typedef struct {
|
|
uint64_t low;
|
|
uint16_t high;
|
|
} floatx80;
|
|
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
|
|
#define make_floatx80_init(exp, mant) { mant, exp }
|
|
typedef struct {
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint64_t high, low;
|
|
#else
|
|
uint64_t low, high;
|
|
#endif
|
|
} float128;
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define make_float128(high_, low_) ((float128) { high_, low_ })
|
|
#define make_float128_init(high_, low_) { high_, low_ }
|
|
#else
|
|
#define make_float128(high_, low_) ((float128) { low_, high_ })
|
|
#define make_float128_init(high_, low_) { low_, high_ }
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_tininess_after_rounding = 0,
|
|
float_tininess_before_rounding = 1
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point rounding mode.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_round_nearest_even = 0,
|
|
float_round_down = 1,
|
|
float_round_up = 2,
|
|
float_round_to_zero = 3,
|
|
float_round_ties_away = 4,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point exception flags.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_flag_invalid = 1,
|
|
float_flag_divbyzero = 4,
|
|
float_flag_overflow = 8,
|
|
float_flag_underflow = 16,
|
|
float_flag_inexact = 32,
|
|
float_flag_input_denormal = 64,
|
|
float_flag_output_denormal = 128
|
|
};
|
|
|
|
typedef struct float_status {
|
|
signed char float_detect_tininess;
|
|
signed char float_rounding_mode;
|
|
uint8_t float_exception_flags;
|
|
signed char floatx80_rounding_precision;
|
|
/* should denormalised results go to zero and set the inexact flag? */
|
|
flag flush_to_zero;
|
|
/* should denormalised inputs go to zero and set the input_denormal flag? */
|
|
flag flush_inputs_to_zero;
|
|
flag default_nan_mode;
|
|
flag snan_bit_is_one;
|
|
} float_status;
|
|
|
|
static inline void set_float_detect_tininess(int val, float_status *status)
|
|
{
|
|
status->float_detect_tininess = val;
|
|
}
|
|
static inline void set_float_rounding_mode(int val, float_status *status)
|
|
{
|
|
status->float_rounding_mode = val;
|
|
}
|
|
static inline void set_float_exception_flags(int val, float_status *status)
|
|
{
|
|
status->float_exception_flags = val;
|
|
}
|
|
static inline void set_floatx80_rounding_precision(int val, float_status *status)
|
|
{
|
|
status->floatx80_rounding_precision = val;
|
|
}
|
|
static inline void set_flush_to_zero(flag val, float_status *status)
|
|
{
|
|
status->flush_to_zero = val;
|
|
}
|
|
static inline void set_flush_inputs_to_zero(flag val, float_status *status)
|
|
{
|
|
status->flush_inputs_to_zero = val;
|
|
}
|
|
static inline void set_default_nan_mode(flag val, float_status *status)
|
|
{
|
|
status->default_nan_mode = val;
|
|
}
|
|
static inline void set_snan_bit_is_one(flag val, float_status *status)
|
|
{
|
|
status->snan_bit_is_one = val;
|
|
}
|
|
static inline int get_float_detect_tininess(float_status *status)
|
|
{
|
|
return status->float_detect_tininess;
|
|
}
|
|
static inline int get_float_rounding_mode(float_status *status)
|
|
{
|
|
return status->float_rounding_mode;
|
|
}
|
|
static inline int get_float_exception_flags(float_status *status)
|
|
{
|
|
return status->float_exception_flags;
|
|
}
|
|
static inline int get_floatx80_rounding_precision(float_status *status)
|
|
{
|
|
return status->floatx80_rounding_precision;
|
|
}
|
|
static inline flag get_flush_to_zero(float_status *status)
|
|
{
|
|
return status->flush_to_zero;
|
|
}
|
|
static inline flag get_flush_inputs_to_zero(float_status *status)
|
|
{
|
|
return status->flush_inputs_to_zero;
|
|
}
|
|
static inline flag get_default_nan_mode(float_status *status)
|
|
{
|
|
return status->default_nan_mode;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Routine to raise any or all of the software IEC/IEEE floating-point
|
|
| exception flags.
|
|
*----------------------------------------------------------------------------*/
|
|
void float_raise(uint8_t flags, float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| If `a' is denormal and we are in flush-to-zero mode then set the
|
|
| input-denormal exception and return zero. Otherwise just return the value.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_squash_input_denormal(float32 a, float_status *status);
|
|
float64 float64_squash_input_denormal(float64 a, float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Options to indicate which negations to perform in float*_muladd()
|
|
| Using these differs from negating an input or output before calling
|
|
| the muladd function in that this means that a NaN doesn't have its
|
|
| sign bit inverted before it is propagated.
|
|
| We also support halving the result before rounding, as a special
|
|
| case to support the ARM fused-sqrt-step instruction FRSQRTS.
|
|
*----------------------------------------------------------------------------*/
|
|
enum {
|
|
float_muladd_negate_c = 1,
|
|
float_muladd_negate_product = 2,
|
|
float_muladd_negate_result = 4,
|
|
float_muladd_halve_result = 8,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 int32_to_float32(int32_t, float_status *status);
|
|
float64 int32_to_float64(int32_t, float_status *status);
|
|
float32 uint32_to_float32(uint32_t, float_status *status);
|
|
float64 uint32_to_float64(uint32_t, float_status *status);
|
|
floatx80 int32_to_floatx80(int32_t, float_status *status);
|
|
float128 int32_to_float128(int32_t, float_status *status);
|
|
float32 int64_to_float32(int64_t, float_status *status);
|
|
float64 int64_to_float64(int64_t, float_status *status);
|
|
floatx80 int64_to_floatx80(int64_t, float_status *status);
|
|
float128 int64_to_float128(int64_t, float_status *status);
|
|
float32 uint64_to_float32(uint64_t, float_status *status);
|
|
float64 uint64_to_float64(uint64_t, float_status *status);
|
|
float128 uint64_to_float128(uint64_t, float_status *status);
|
|
|
|
/* We provide the int16 versions for symmetry of API with float-to-int */
|
|
static inline float32 int16_to_float32(int16_t v, float_status *status)
|
|
{
|
|
return int32_to_float32(v, status);
|
|
}
|
|
|
|
static inline float32 uint16_to_float32(uint16_t v, float_status *status)
|
|
{
|
|
return uint32_to_float32(v, status);
|
|
}
|
|
|
|
static inline float64 int16_to_float64(int16_t v, float_status *status)
|
|
{
|
|
return int32_to_float64(v, status);
|
|
}
|
|
|
|
static inline float64 uint16_to_float64(uint16_t v, float_status *status)
|
|
{
|
|
return uint32_to_float64(v, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software half-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float16 float32_to_float16( float32, flag, float_status *status );
|
|
float32 float16_to_float32( float16, flag, float_status *status );
|
|
float16 float64_to_float16(float64 a, flag ieee, float_status *status);
|
|
float64 float16_to_float64(float16 a, flag ieee, float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software half-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
int float16_is_quiet_nan(float16, float_status *status);
|
|
int float16_is_signaling_nan(float16, float_status *status);
|
|
float16 float16_maybe_silence_nan(float16, float_status *status);
|
|
|
|
static inline int float16_is_any_nan(float16 a)
|
|
{
|
|
return ((float16_val(a) & ~0x8000) > 0x7c00);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated half-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
float16 float16_default_nan(float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int16_t float32_to_int16(float32, float_status *status);
|
|
uint16_t float32_to_uint16(float32, float_status *status);
|
|
int16_t float32_to_int16_round_to_zero(float32, float_status *status);
|
|
uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
|
|
int32_t float32_to_int32( float32, float_status *status );
|
|
int32_t float32_to_int32_round_to_zero( float32, float_status *status );
|
|
uint32_t float32_to_uint32( float32, float_status *status );
|
|
uint32_t float32_to_uint32_round_to_zero( float32, float_status *status );
|
|
int64_t float32_to_int64( float32, float_status *status );
|
|
uint64_t float32_to_uint64(float32, float_status *status);
|
|
uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
|
|
int64_t float32_to_int64_round_to_zero( float32, float_status *status );
|
|
float64 float32_to_float64( float32, float_status *status );
|
|
floatx80 float32_to_floatx80( float32, float_status *status );
|
|
float128 float32_to_float128( float32, float_status *status );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_round_to_int( float32, float_status *status );
|
|
float32 float32_add( float32, float32, float_status *status );
|
|
float32 float32_sub( float32, float32, float_status *status );
|
|
float32 float32_mul( float32, float32, float_status *status );
|
|
float32 float32_div( float32, float32, float_status *status );
|
|
float32 float32_rem( float32, float32, float_status *status );
|
|
float32 float32_muladd(float32, float32, float32, int, float_status *status);
|
|
float32 float32_sqrt( float32, float_status *status );
|
|
float32 float32_exp2( float32, float_status *status );
|
|
float32 float32_log2( float32, float_status *status );
|
|
int float32_eq( float32, float32, float_status *status );
|
|
int float32_le( float32, float32, float_status *status );
|
|
int float32_lt( float32, float32, float_status *status );
|
|
int float32_unordered( float32, float32, float_status *status );
|
|
int float32_eq_quiet( float32, float32, float_status *status );
|
|
int float32_le_quiet( float32, float32, float_status *status );
|
|
int float32_lt_quiet( float32, float32, float_status *status );
|
|
int float32_unordered_quiet( float32, float32, float_status *status );
|
|
int float32_compare( float32, float32, float_status *status );
|
|
int float32_compare_quiet( float32, float32, float_status *status );
|
|
float32 float32_min(float32, float32, float_status *status);
|
|
float32 float32_max(float32, float32, float_status *status);
|
|
float32 float32_minnum(float32, float32, float_status *status);
|
|
float32 float32_maxnum(float32, float32, float_status *status);
|
|
float32 float32_minnummag(float32, float32, float_status *status);
|
|
float32 float32_maxnummag(float32, float32, float_status *status);
|
|
int float32_is_quiet_nan(float32, float_status *status);
|
|
int float32_is_signaling_nan(float32, float_status *status);
|
|
float32 float32_maybe_silence_nan(float32, float_status *status);
|
|
float32 float32_scalbn( float32, int, float_status *status );
|
|
|
|
static inline float32 float32_abs(float32 a)
|
|
{
|
|
/* Note that abs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float32(float32_val(a) & 0x7fffffff);
|
|
}
|
|
|
|
static inline float32 float32_chs(float32 a)
|
|
{
|
|
/* Note that chs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float32(float32_val(a) ^ 0x80000000);
|
|
}
|
|
|
|
static inline int float32_is_infinity(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7fffffff) == 0x7f800000;
|
|
}
|
|
|
|
static inline int float32_is_neg(float32 a)
|
|
{
|
|
return float32_val(a) >> 31;
|
|
}
|
|
|
|
static inline int float32_is_zero(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7fffffff) == 0;
|
|
}
|
|
|
|
static inline int float32_is_any_nan(float32 a)
|
|
{
|
|
return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
|
|
}
|
|
|
|
static inline int float32_is_zero_or_denormal(float32 a)
|
|
{
|
|
return (float32_val(a) & 0x7f800000) == 0;
|
|
}
|
|
|
|
static inline float32 float32_set_sign(float32 a, int sign)
|
|
{
|
|
return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
|
|
}
|
|
|
|
#define float32_zero make_float32(0)
|
|
#define float32_one make_float32(0x3f800000)
|
|
#define float32_ln2 make_float32(0x3f317218)
|
|
#define float32_pi make_float32(0x40490fdb)
|
|
#define float32_half make_float32(0x3f000000)
|
|
#define float32_infinity make_float32(0x7f800000)
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated single-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_default_nan(float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int16_t float64_to_int16(float64, float_status *status);
|
|
uint16_t float64_to_uint16(float64, float_status *status);
|
|
int16_t float64_to_int16_round_to_zero(float64, float_status *status);
|
|
uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
|
|
int32_t float64_to_int32( float64, float_status *status );
|
|
int32_t float64_to_int32_round_to_zero( float64, float_status *status );
|
|
uint32_t float64_to_uint32( float64, float_status *status );
|
|
uint32_t float64_to_uint32_round_to_zero( float64, float_status *status );
|
|
int64_t float64_to_int64( float64, float_status *status );
|
|
int64_t float64_to_int64_round_to_zero( float64, float_status *status );
|
|
uint64_t float64_to_uint64 (float64 a, float_status *status);
|
|
uint64_t float64_to_uint64_round_to_zero (float64 a, float_status *status);
|
|
float32 float64_to_float32( float64, float_status *status );
|
|
floatx80 float64_to_floatx80( float64, float_status *status );
|
|
float128 float64_to_float128( float64, float_status *status );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_round_to_int( float64, float_status *status );
|
|
float64 float64_trunc_to_int( float64, float_status *status );
|
|
float64 float64_add( float64, float64, float_status *status );
|
|
float64 float64_sub( float64, float64, float_status *status );
|
|
float64 float64_mul( float64, float64, float_status *status );
|
|
float64 float64_div( float64, float64, float_status *status );
|
|
float64 float64_rem( float64, float64, float_status *status );
|
|
float64 float64_muladd(float64, float64, float64, int, float_status *status);
|
|
float64 float64_sqrt( float64, float_status *status );
|
|
float64 float64_log2( float64, float_status *status );
|
|
int float64_eq( float64, float64, float_status *status );
|
|
int float64_le( float64, float64, float_status *status );
|
|
int float64_lt( float64, float64, float_status *status );
|
|
int float64_unordered( float64, float64, float_status *status );
|
|
int float64_eq_quiet( float64, float64, float_status *status );
|
|
int float64_le_quiet( float64, float64, float_status *status );
|
|
int float64_lt_quiet( float64, float64, float_status *status );
|
|
int float64_unordered_quiet( float64, float64, float_status *status );
|
|
int float64_compare( float64, float64, float_status *status );
|
|
int float64_compare_quiet( float64, float64, float_status *status );
|
|
float64 float64_min(float64, float64, float_status *status);
|
|
float64 float64_max(float64, float64, float_status *status);
|
|
float64 float64_minnum(float64, float64, float_status *status);
|
|
float64 float64_maxnum(float64, float64, float_status *status);
|
|
float64 float64_minnummag(float64, float64, float_status *status);
|
|
float64 float64_maxnummag(float64, float64, float_status *status);
|
|
int float64_is_quiet_nan(float64 a, float_status *status);
|
|
int float64_is_signaling_nan(float64, float_status *status);
|
|
float64 float64_maybe_silence_nan(float64, float_status *status);
|
|
float64 float64_scalbn( float64, int, float_status *status );
|
|
|
|
static inline float64 float64_abs(float64 a)
|
|
{
|
|
/* Note that abs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
|
|
}
|
|
|
|
static inline float64 float64_chs(float64 a)
|
|
{
|
|
/* Note that chs does *not* handle NaN specially, nor does
|
|
* it flush denormal inputs to zero.
|
|
*/
|
|
return make_float64(float64_val(a) ^ 0x8000000000000000LL);
|
|
}
|
|
|
|
static inline int float64_is_infinity(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
|
|
}
|
|
|
|
static inline int float64_is_neg(float64 a)
|
|
{
|
|
return float64_val(a) >> 63;
|
|
}
|
|
|
|
static inline int float64_is_zero(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
|
|
}
|
|
|
|
static inline int float64_is_any_nan(float64 a)
|
|
{
|
|
return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
|
|
}
|
|
|
|
static inline int float64_is_zero_or_denormal(float64 a)
|
|
{
|
|
return (float64_val(a) & 0x7ff0000000000000LL) == 0;
|
|
}
|
|
|
|
static inline float64 float64_set_sign(float64 a, int sign)
|
|
{
|
|
return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
|
|
| ((int64_t)sign << 63));
|
|
}
|
|
|
|
#define float64_zero make_float64(0)
|
|
#define float64_one make_float64(0x3ff0000000000000LL)
|
|
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
|
|
#define float64_pi make_float64(0x400921fb54442d18LL)
|
|
#define float64_half make_float64(0x3fe0000000000000LL)
|
|
#define float64_infinity make_float64(0x7ff0000000000000LL)
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_default_nan(float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int32_t floatx80_to_int32( floatx80, float_status *status );
|
|
int32_t floatx80_to_int32_round_to_zero( floatx80, float_status *status );
|
|
int64_t floatx80_to_int64( floatx80, float_status *status );
|
|
int64_t floatx80_to_int64_round_to_zero( floatx80, float_status *status );
|
|
float32 floatx80_to_float32( floatx80, float_status *status );
|
|
float64 floatx80_to_float64( floatx80, float_status *status );
|
|
float128 floatx80_to_float128( floatx80, float_status *status );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_round_to_int( floatx80, float_status *status );
|
|
floatx80 floatx80_add( floatx80, floatx80, float_status *status );
|
|
floatx80 floatx80_sub( floatx80, floatx80, float_status *status );
|
|
floatx80 floatx80_mul( floatx80, floatx80, float_status *status );
|
|
floatx80 floatx80_div( floatx80, floatx80, float_status *status );
|
|
floatx80 floatx80_rem( floatx80, floatx80, float_status *status );
|
|
floatx80 floatx80_sqrt( floatx80, float_status *status );
|
|
int floatx80_eq( floatx80, floatx80, float_status *status );
|
|
int floatx80_le( floatx80, floatx80, float_status *status );
|
|
int floatx80_lt( floatx80, floatx80, float_status *status );
|
|
int floatx80_unordered( floatx80, floatx80, float_status *status );
|
|
int floatx80_eq_quiet( floatx80, floatx80, float_status *status );
|
|
int floatx80_le_quiet( floatx80, floatx80, float_status *status );
|
|
int floatx80_lt_quiet( floatx80, floatx80, float_status *status );
|
|
int floatx80_unordered_quiet( floatx80, floatx80, float_status *status );
|
|
int floatx80_compare( floatx80, floatx80, float_status *status );
|
|
int floatx80_compare_quiet( floatx80, floatx80, float_status *status );
|
|
int floatx80_is_quiet_nan(floatx80, float_status *status);
|
|
int floatx80_is_signaling_nan(floatx80, float_status *status);
|
|
floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
|
|
floatx80 floatx80_scalbn( floatx80, int, float_status *status );
|
|
|
|
static inline floatx80 floatx80_abs(floatx80 a)
|
|
{
|
|
a.high &= 0x7fff;
|
|
return a;
|
|
}
|
|
|
|
static inline floatx80 floatx80_chs(floatx80 a)
|
|
{
|
|
a.high ^= 0x8000;
|
|
return a;
|
|
}
|
|
|
|
static inline int floatx80_is_infinity(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
|
|
}
|
|
|
|
static inline int floatx80_is_neg(floatx80 a)
|
|
{
|
|
return a.high >> 15;
|
|
}
|
|
|
|
static inline int floatx80_is_zero(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0 && a.low == 0;
|
|
}
|
|
|
|
static inline int floatx80_is_zero_or_denormal(floatx80 a)
|
|
{
|
|
return (a.high & 0x7fff) == 0;
|
|
}
|
|
|
|
static inline int floatx80_is_any_nan(floatx80 a)
|
|
{
|
|
return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Return whether the given value is an invalid floatx80 encoding.
|
|
| Invalid floatx80 encodings arise when the integer bit is not set, but
|
|
| the exponent is not zero. The only times the integer bit is permitted to
|
|
| be zero is in subnormal numbers and the value zero.
|
|
| This includes what the Intel software developer's manual calls pseudo-NaNs,
|
|
| pseudo-infinities and un-normal numbers. It does not include
|
|
| pseudo-denormals, which must still be correctly handled as inputs even
|
|
| if they are never generated as outputs.
|
|
*----------------------------------------------------------------------------*/
|
|
static inline bool floatx80_invalid_encoding(floatx80 a)
|
|
{
|
|
return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
|
|
}
|
|
|
|
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
|
|
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
|
|
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
|
|
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
|
|
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
|
|
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated extended double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_default_nan(float_status *status);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE quadruple-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int32_t float128_to_int32( float128, float_status *status );
|
|
int32_t float128_to_int32_round_to_zero( float128, float_status *status );
|
|
int64_t float128_to_int64( float128, float_status *status );
|
|
int64_t float128_to_int64_round_to_zero( float128, float_status *status );
|
|
float32 float128_to_float32( float128, float_status *status );
|
|
float64 float128_to_float64( float128, float_status *status );
|
|
floatx80 float128_to_floatx80( float128, float_status *status );
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE quadruple-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float128 float128_round_to_int( float128, float_status *status );
|
|
float128 float128_add( float128, float128, float_status *status );
|
|
float128 float128_sub( float128, float128, float_status *status );
|
|
float128 float128_mul( float128, float128, float_status *status );
|
|
float128 float128_div( float128, float128, float_status *status );
|
|
float128 float128_rem( float128, float128, float_status *status );
|
|
float128 float128_sqrt( float128, float_status *status );
|
|
int float128_eq( float128, float128, float_status *status );
|
|
int float128_le( float128, float128, float_status *status );
|
|
int float128_lt( float128, float128, float_status *status );
|
|
int float128_unordered( float128, float128, float_status *status );
|
|
int float128_eq_quiet( float128, float128, float_status *status );
|
|
int float128_le_quiet( float128, float128, float_status *status );
|
|
int float128_lt_quiet( float128, float128, float_status *status );
|
|
int float128_unordered_quiet( float128, float128, float_status *status );
|
|
int float128_compare( float128, float128, float_status *status );
|
|
int float128_compare_quiet( float128, float128, float_status *status );
|
|
int float128_is_quiet_nan(float128, float_status *status);
|
|
int float128_is_signaling_nan(float128, float_status *status);
|
|
float128 float128_maybe_silence_nan(float128, float_status *status);
|
|
float128 float128_scalbn( float128, int, float_status *status );
|
|
|
|
static inline float128 float128_abs(float128 a)
|
|
{
|
|
a.high &= 0x7fffffffffffffffLL;
|
|
return a;
|
|
}
|
|
|
|
static inline float128 float128_chs(float128 a)
|
|
{
|
|
a.high ^= 0x8000000000000000LL;
|
|
return a;
|
|
}
|
|
|
|
static inline int float128_is_infinity(float128 a)
|
|
{
|
|
return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
|
|
}
|
|
|
|
static inline int float128_is_neg(float128 a)
|
|
{
|
|
return a.high >> 63;
|
|
}
|
|
|
|
static inline int float128_is_zero(float128 a)
|
|
{
|
|
return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
|
|
}
|
|
|
|
static inline int float128_is_zero_or_denormal(float128 a)
|
|
{
|
|
return (a.high & 0x7fff000000000000LL) == 0;
|
|
}
|
|
|
|
static inline int float128_is_any_nan(float128 a)
|
|
{
|
|
return ((a.high >> 48) & 0x7fff) == 0x7fff &&
|
|
((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
|
|
}
|
|
|
|
#define float128_zero make_float128(0, 0)
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated quadruple-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
float128 float128_default_nan(float_status *status);
|
|
|
|
#endif /* SOFTFLOAT_H */
|