mirror of
https://github.com/yuzu-emu/unicorn.git
synced 2025-01-11 19:05:36 +00:00
f12f36aebd
Going to approach this problem via __attribute__((always_inline)) instead, but full conversion will take several steps. Backports commit fc1bc777910dc14a3db4e2ad66f3e536effc297d from qemu
1475 lines
49 KiB
C
1475 lines
49 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/cputlb.h"
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/atomic128.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
|
|
/* #define DEBUG_TLB */
|
|
/* #define DEBUG_TLB_LOG */
|
|
|
|
#ifdef DEBUG_TLB
|
|
# define DEBUG_TLB_GATE 1
|
|
# ifdef DEBUG_TLB_LOG
|
|
# define DEBUG_TLB_LOG_GATE 1
|
|
# else
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
# endif
|
|
#else
|
|
# define DEBUG_TLB_GATE 0
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
#endif
|
|
|
|
#define tlb_debug(fmt, ...) do { \
|
|
if (DEBUG_TLB_LOG_GATE) { \
|
|
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
|
|
## __VA_ARGS__); \
|
|
} else if (DEBUG_TLB_GATE) { \
|
|
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
|
|
|
|
void tlb_init(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
|
|
{
|
|
memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
|
|
memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
|
|
env->tlb_d[mmu_idx].large_page_addr = -1;
|
|
env->tlb_d[mmu_idx].large_page_mask = -1;
|
|
env->tlb_d[mmu_idx].vindex = 0;
|
|
}
|
|
|
|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
unsigned long mmu_idx_bitmask = data.host_int;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("mmu_idx:0x%04lx\n", mmu_idx_bitmask);
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
|
|
tlb_flush_one_mmuidx_locked(env, mmu_idx);
|
|
}
|
|
}
|
|
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
|
|
|
|
tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
|
|
}
|
|
|
|
void tlb_flush(CPUState *cpu)
|
|
{
|
|
tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
|
|
target_ulong page)
|
|
{
|
|
return tlb_hit_page(tlb_entry->addr_read, page) ||
|
|
tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
|
|
tlb_hit_page(tlb_entry->addr_code, page);
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
|
|
target_ulong page)
|
|
{
|
|
if (tlb_hit_page_anyprot(tlb_entry, page)) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
|
|
target_ulong page)
|
|
{
|
|
int k;
|
|
//assert_cpu_is_self(ENV_GET_CPU(env));
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry_locked(&env->tlb_v_table[mmu_idx][k], page);
|
|
}
|
|
}
|
|
|
|
static void tlb_flush_page_locked(CPUArchState *env, int midx,
|
|
target_ulong page)
|
|
{
|
|
target_ulong lp_addr = env->tlb_d[midx].large_page_addr;
|
|
target_ulong lp_mask = env->tlb_d[midx].large_page_mask;
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((page & lp_mask) == lp_addr) {
|
|
tlb_debug("forcing full flush midx %d ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
midx, lp_addr, lp_mask);
|
|
tlb_flush_one_mmuidx_locked(env, midx);
|
|
} else {
|
|
tlb_flush_entry_locked(tlb_entry(env, midx, page), page);
|
|
tlb_flush_vtlb_page_locked(env, midx, page);
|
|
}
|
|
}
|
|
|
|
static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong addr = (target_ulong) data.target_ptr;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("page addr:" TARGET_FMT_lx "\n", addr);
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_flush_page_locked(env, mmu_idx, addr);
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
/* As we are going to hijack the bottom bits of the page address for a
|
|
* mmuidx bit mask we need to fail to build if we can't do that
|
|
*/
|
|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
|
|
|
|
static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
|
|
run_on_cpu_data data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
|
|
target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
|
|
unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
|
|
int mmu_idx;
|
|
|
|
tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
|
|
addr, mmu_idx_bitmap);
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
|
|
tlb_flush_page_locked(env, mmu_idx, addr);
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
|
|
{
|
|
target_ulong addr_and_mmu_idx;
|
|
|
|
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
|
|
|
|
/* This should already be page aligned */
|
|
addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
|
|
addr_and_mmu_idx |= idxmap;
|
|
|
|
tlb_flush_page_by_mmuidx_async_work(
|
|
cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
|
|
}
|
|
|
|
/*
|
|
* Dirty write flag handling
|
|
*
|
|
* When the TCG code writes to a location it looks up the address in
|
|
* the TLB and uses that data to compute the final address. If any of
|
|
* the lower bits of the address are set then the slow path is forced.
|
|
* There are a number of reasons to do this but for normal RAM the
|
|
* most usual is detecting writes to code regions which may invalidate
|
|
* generated code.
|
|
*
|
|
* Other vCPUs might be reading their TLBs during guest execution, so we update
|
|
* te->addr_write with atomic_set. We don't need to worry about this for
|
|
* oversized guests as MTTCG is disabled for them.
|
|
*
|
|
* Called with tlb_c.lock held.
|
|
*/
|
|
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
|
|
uintptr_t start, uintptr_t length)
|
|
{
|
|
uintptr_t addr = tlb_entry->addr_write;
|
|
|
|
if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
|
|
addr &= TARGET_PAGE_MASK;
|
|
addr += tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
#if TCG_OVERSIZED_GUEST
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
#else
|
|
atomic_set(&tlb_entry->addr_write,
|
|
tlb_entry->addr_write | TLB_NOTDIRTY);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with tlb_c.lock held.
|
|
* Called only from the vCPU context, i.e. the TLB's owner thread.
|
|
*/
|
|
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
|
|
{
|
|
*d = *s;
|
|
}
|
|
|
|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
|
|
* the target vCPU).
|
|
* We must take tlb_c.lock to avoid racing with another vCPU update. The only
|
|
* thing actually updated is the target TLB entry ->addr_write flags.
|
|
*/
|
|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
|
tlb_reset_dirty_range_locked(&env->tlb_table[mmu_idx][i], start1,
|
|
length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range_locked(&env->tlb_v_table[mmu_idx][i], start1,
|
|
length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
|
|
target_ulong vaddr)
|
|
{
|
|
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int mmu_idx;
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1_locked(&env->tlb_v_table[mmu_idx][k], vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
|
|
target_ulong vaddr, target_ulong size)
|
|
{
|
|
target_ulong lp_addr = env->tlb_d[mmu_idx].large_page_addr;
|
|
target_ulong lp_mask = ~(size - 1);
|
|
|
|
if (lp_addr == (target_ulong)-1) {
|
|
/* No previous large page. */
|
|
lp_addr = vaddr;
|
|
} else {
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and
|
|
the cost of maintaining a full variable size TLB. */
|
|
lp_mask &= env->tlb_d[mmu_idx].large_page_mask;
|
|
while (((lp_addr ^ vaddr) & lp_mask) != 0) {
|
|
lp_mask <<= 1;
|
|
}
|
|
}
|
|
env->tlb_d[mmu_idx].large_page_addr = lp_addr & lp_mask;
|
|
env->tlb_d[mmu_idx].large_page_mask = lp_mask;
|
|
}
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
* is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
* supplied size is only used by tlb_flush_page.
|
|
*
|
|
* Called from TCG-generated code, which is under an RCU read-side
|
|
* critical section.
|
|
*/
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong code_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te;
|
|
hwaddr iotlb, xlat, sz, paddr_page;
|
|
target_ulong vaddr_page;
|
|
unsigned vidx = env->tlb_d[mmu_idx].vindex++ % CPU_VTLB_SIZE;
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
|
|
if (size <= TARGET_PAGE_SIZE) {
|
|
sz = TARGET_PAGE_SIZE;
|
|
} else {
|
|
tlb_add_large_page(env, mmu_idx, vaddr, size);
|
|
sz = size;
|
|
}
|
|
vaddr_page = vaddr & TARGET_PAGE_MASK;
|
|
paddr_page = paddr & TARGET_PAGE_MASK;
|
|
|
|
section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
|
|
&xlat, &sz, attrs, &prot);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
|
|
address = vaddr_page;
|
|
if (size < TARGET_PAGE_SIZE) {
|
|
/*
|
|
* Slow-path the TLB entries; we will repeat the MMU check and TLB
|
|
* fill on every access.
|
|
*/
|
|
address |= TLB_RECHECK;
|
|
}
|
|
if (!memory_region_is_ram(section->mr) &&
|
|
!memory_region_is_romd(section->mr)) {
|
|
/* IO memory case */
|
|
address |= TLB_MMIO;
|
|
addend = 0;
|
|
} else {
|
|
/* TLB_MMIO for rom/romd handled below */
|
|
addend = (uintptr_t)((char*)memory_region_get_ram_ptr(section->mr) + xlat);
|
|
}
|
|
|
|
code_address = address;
|
|
iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
|
|
paddr_page, xlat, prot, &address);
|
|
|
|
index = tlb_index(env, mmu_idx, vaddr_page);
|
|
te = tlb_entry(env, mmu_idx, vaddr_page);
|
|
|
|
/* do not discard the translation in te, evict it into a victim tlb */
|
|
env->tlb_v_table[mmu_idx][vidx] = *te;
|
|
env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
|
|
|
|
/* refill the tlb */
|
|
/*
|
|
* At this point iotlb contains a physical section number in the lower
|
|
* TARGET_PAGE_BITS, and either
|
|
* + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
|
|
* + the offset within section->mr of the page base (otherwise)
|
|
* We subtract the vaddr_page (which is page aligned and thus won't
|
|
* disturb the low bits) to give an offset which can be added to the
|
|
* (non-page-aligned) vaddr of the eventual memory access to get
|
|
* the MemoryRegion offset for the access. Note that the vaddr we
|
|
* subtract here is that of the page base, and not the same as the
|
|
* vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
|
|
*/
|
|
env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
|
|
env->iotlb[mmu_idx][index].attrs = attrs;
|
|
te->addend = addend - vaddr_page;
|
|
if (prot & PAGE_READ) {
|
|
te->addr_read = address;
|
|
} else {
|
|
te->addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
te->addr_code = code_address;
|
|
} else {
|
|
te->addr_code = -1;
|
|
}
|
|
if (prot & PAGE_WRITE) {
|
|
if ((memory_region_is_ram(section->mr) && section->readonly)
|
|
|| memory_region_is_romd(section->mr)) {
|
|
/* Write access calls the I/O callback. */
|
|
te->addr_write = address | TLB_MMIO;
|
|
} else if (memory_region_is_ram(section->mr)) {
|
|
te->addr_write = address | TLB_NOTDIRTY;
|
|
} else {
|
|
te->addr_write = address;
|
|
}
|
|
} else {
|
|
te->addr_write = -1;
|
|
}
|
|
}
|
|
|
|
/* Add a new TLB entry, but without specifying the memory
|
|
* transaction attributes to be used.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
|
|
prot, mmu_idx, size);
|
|
}
|
|
|
|
static inline ram_addr_t qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
ram_addr = qemu_ram_addr_from_host(uc, ptr);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
//error_report("Bad ram pointer %p", ptr);
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
|
|
return ram_addr;
|
|
}
|
|
|
|
/* NOTE: this function can trigger an exception */
|
|
/* NOTE2: the returned address is not exactly the physical address: it
|
|
* is actually a ram_addr_t (in system mode; the user mode emulation
|
|
* version of this function returns a guest virtual address).
|
|
*/
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
|
|
{
|
|
uintptr_t mmu_idx = cpu_mmu_index(env, true);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
void *p;
|
|
MemoryRegion *mr;
|
|
MemoryRegionSection *section;
|
|
ram_addr_t ram_addr;
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUIOTLBEntry *iotlbentry;
|
|
hwaddr physaddr, mr_offset;
|
|
|
|
if (unlikely(!tlb_hit(entry->addr_code, addr))) {
|
|
cpu_ldub_code(env, addr);
|
|
//check for NX related error from softmmu
|
|
if (env->invalid_error == UC_ERR_FETCH_PROT) {
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
}
|
|
|
|
if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
int index;
|
|
target_ulong tlb_addr;
|
|
|
|
tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0);
|
|
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_code;
|
|
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
|
|
/* RAM access. We can't handle this, so for now just stop */
|
|
cpu_abort(cpu, "Unable to handle guest executing from RAM within "
|
|
"a small MPU region at 0x" TARGET_FMT_lx, addr);
|
|
}
|
|
/*
|
|
* Fall through to handle IO accesses (which will almost certainly
|
|
* also result in failure)
|
|
*/
|
|
}
|
|
|
|
iotlbentry = &env->iotlb[mmu_idx][index];
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
if (memory_region_is_unassigned(cpu->uc, mr)) {
|
|
/* Give the new-style cpu_transaction_failed() hook first chance
|
|
* to handle this.
|
|
* This is not the ideal place to detect and generate CPU
|
|
* exceptions for instruction fetch failure (for instance
|
|
* we don't know the length of the access that the CPU would
|
|
* use, and it would be better to go ahead and try the access
|
|
* and use the MemTXResult it produced). However it is the
|
|
* simplest place we have currently available for the check.
|
|
*/
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
|
|
iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
|
|
|
|
cpu_unassigned_access(cpu, addr, false, true, 0, 4);
|
|
/* The CPU's unassigned access hook might have longjumped out
|
|
* with an exception. If it didn't (or there was no hook) then
|
|
* we can't proceed further.
|
|
*/
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
}
|
|
p = (void *)((uintptr_t)addr + entry->addend);
|
|
ram_addr = qemu_ram_addr_from_host_nofail(cpu->uc, p);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return RAM_ADDR_INVALID;
|
|
} else {
|
|
return ram_addr;
|
|
}
|
|
}
|
|
|
|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx, target_ulong addr, uintptr_t retaddr,
|
|
MMUAccessType access_type, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
uint64_t val;
|
|
MemTxResult r;
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
cpu->mem_io_vaddr = addr;
|
|
cpu->mem_io_access_type = access_type;
|
|
|
|
r = memory_region_dispatch_read(mr, mr_offset,
|
|
&val, size, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
|
|
mmu_idx, iotlbentry->attrs, r, retaddr);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx, uint64_t val, target_ulong addr,
|
|
uintptr_t retaddr, int size)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
MemTxResult r;
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
if (mr != &cpu->uc->io_mem_rom && mr != &cpu->uc->io_mem_notdirty && !cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
cpu->mem_io_vaddr = addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
r = memory_region_dispatch_write(mr, mr_offset,
|
|
val, size, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
|
|
mmu_idx, iotlbentry->attrs, r, retaddr);
|
|
}
|
|
}
|
|
|
|
/* Return true if ADDR is present in the victim tlb, and has been copied
|
|
back to the main tlb. */
|
|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
|
|
size_t elt_ofs, target_ulong page)
|
|
{
|
|
size_t vidx;
|
|
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
|
|
CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
|
|
target_ulong cmp;
|
|
|
|
/* elt_ofs might correspond to .addr_write, so use atomic_read */
|
|
#if TCG_OVERSIZED_GUEST
|
|
cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
|
|
#else
|
|
cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
|
|
#endif
|
|
|
|
if (cmp == page) {
|
|
/* Found entry in victim tlb, swap tlb and iotlb. */
|
|
CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
|
|
|
|
copy_tlb_helper_locked(&tmptlb, tlb);
|
|
copy_tlb_helper_locked(tlb, vtlb);
|
|
copy_tlb_helper_locked(vtlb, &tmptlb);
|
|
|
|
CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
|
|
CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
|
|
tmpio = *io; *io = *vio; *vio = tmpio;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Macro to call the above, with local variables from the use context. */
|
|
#define VICTIM_TLB_HIT(TY, ADDR) \
|
|
victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
|
|
(ADDR) & TARGET_PAGE_MASK)
|
|
|
|
/* Probe for whether the specified guest write access is permitted.
|
|
* If it is not permitted then an exception will be taken in the same
|
|
* way as if this were a real write access (and we will not return).
|
|
* Otherwise the function will return, and there will be a valid
|
|
* entry in the TLB for this access.
|
|
*/
|
|
void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
|
|
uintptr_t retaddr)
|
|
{
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
|
|
if (!tlb_hit(tlb_addr_write(entry), addr)) {
|
|
/* TLB entry is for a different page */
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Probe for a read-modify-write atomic operation. Do not allow unaligned
|
|
* operations, or io operations to proceed. Return the host address. */
|
|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
size_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = tlb_addr_write(tlbe);
|
|
TCGMemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
int s_bits = mop & MO_SIZE;
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
|
|
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* Enforce qemu required alignment. */
|
|
if (unlikely(addr & ((1 << s_bits) - 1))) {
|
|
/* We get here if guest alignment was not requested,
|
|
or was not enforced by cpu_unaligned_access above.
|
|
We might widen the access and emulate, but for now
|
|
mark an exception and exit the cpu loop. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Check TLB entry and enforce page permissions. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
tlbe = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Check notdirty */
|
|
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
|
|
tlb_set_dirty(ENV_GET_CPU(env), addr);
|
|
tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
|
|
}
|
|
|
|
/* Notice an IO access or a needs-MMU-lookup access */
|
|
if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
|
|
/* There's really nothing that can be done to
|
|
support this apart from stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Let the guest notice RMW on a write-only page. */
|
|
if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
|
|
mmu_idx, retaddr);
|
|
/* Since we don't support reads and writes to different addresses,
|
|
and we do have the proper page loaded for write, this shouldn't
|
|
ever return. But just in case, handle via stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
return (void *)((uintptr_t)addr + tlbe->addend);
|
|
|
|
stop_the_world:
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
|
|
}
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define NEED_BE_BSWAP 0
|
|
#define NEED_LE_BSWAP 1
|
|
#else
|
|
#define NEED_BE_BSWAP 1
|
|
#define NEED_LE_BSWAP 0
|
|
#endif
|
|
|
|
/*
|
|
* Byte Swap Helper
|
|
*
|
|
* This should all dead code away depending on the build host and
|
|
* access type.
|
|
*/
|
|
|
|
static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
|
|
{
|
|
if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
|
|
switch (size) {
|
|
case 1: return val;
|
|
case 2: return bswap16(val);
|
|
case 4: return bswap32(val);
|
|
case 8: return bswap64(val);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
return val;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load Helpers
|
|
*
|
|
* We support two different access types. SOFTMMU_CODE_ACCESS is
|
|
* specifically for reading instructions from system memory. It is
|
|
* called by the translation loop and in some helpers where the code
|
|
* is disassembled. It shouldn't be called directly by guest code.
|
|
*/
|
|
|
|
static uint64_t load_helper(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr,
|
|
size_t size, bool big_endian,
|
|
bool code_read,
|
|
bool is_softmmu_access)
|
|
{
|
|
uintptr_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
|
const size_t tlb_off = code_read ?
|
|
offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
|
|
const MMUAccessType access_type =
|
|
code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
void *haddr;
|
|
uint64_t res;
|
|
int error_code;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// memory might be still unmapped while reading or fetching
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
if (is_softmmu_access) {
|
|
error_code = UC_ERR_FETCH_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_UNMAPPED, addr, size, 0, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
error_code = UC_ERR_READ_UNMAPPED;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_UNMAPPED, addr, size, 0, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = error_code;
|
|
// printf("***** Invalid fetch (unmapped memory) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (is_softmmu_access) {
|
|
// Unicorn: callback on fetch from NX
|
|
if (mr != NULL && !(mr->perms & UC_PROT_EXEC)) {
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_FETCH_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_FETCH_PROT, addr, size, 0, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_FETCH_PROT;
|
|
// printf("***** Invalid fetch (non-executable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on memory read
|
|
// NOTE: this happens before the actual read, so we cannot tell
|
|
// the callback if read access is succesful, or not.
|
|
// See UC_HOOK_MEM_READ_AFTER & UC_MEM_READ_AFTER if you only care
|
|
// about successful read
|
|
if (!code_read) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ, addr, size, 0, hook->user_data);
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-readable memory
|
|
if (!code_read && mr != NULL && !(mr->perms & UC_PROT_READ)) {
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_READ_PROT, addr, size, 0, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_READ_PROT;
|
|
// printf("***** Invalid memory read (non-readable) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Handle CPU specific unaligned behaviour */
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, access_type,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
|
addr & TARGET_PAGE_MASK)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, size,
|
|
access_type, mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (size - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
if (tlb_addr & TLB_RECHECK) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
tlb_fill(ENV_GET_CPU(env), addr, size,
|
|
access_type, mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
|
|
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
|
tlb_addr &= ~TLB_RECHECK;
|
|
if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
/* RAM access */
|
|
goto do_aligned_access;
|
|
}
|
|
}
|
|
|
|
res = io_readx(env, &env->iotlb[mmu_idx][index], mmu_idx, addr,
|
|
retaddr, access_type, size);
|
|
return handle_bswap(res, size, big_endian);
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (size > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
tcg_target_ulong r1, r2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
addr1 = addr & ~(size - 1);
|
|
addr2 = addr1 + size;
|
|
r1 = load_helper(env, addr1, oi, retaddr, size, big_endian, code_read, is_softmmu_access);
|
|
r2 = load_helper(env, addr2, oi, retaddr, size, big_endian, code_read, is_softmmu_access);
|
|
shift = (addr & (size - 1)) * 8;
|
|
|
|
if (big_endian) {
|
|
/* Big-endian combine. */
|
|
res = (r1 << shift) | (r2 >> ((size * 8) - shift));
|
|
} else {
|
|
/* Little-endian combine. */
|
|
res = (r1 >> shift) | (r2 << ((size * 8) - shift));
|
|
}
|
|
res = res & MAKE_64BIT_MASK(0, size * 8);
|
|
goto finished;
|
|
}
|
|
|
|
do_aligned_access:
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
switch (size) {
|
|
case 1:
|
|
res = ldub_p(haddr);
|
|
break;
|
|
case 2:
|
|
if (big_endian) {
|
|
res = lduw_be_p(haddr);
|
|
} else {
|
|
res = lduw_le_p(haddr);
|
|
}
|
|
break;
|
|
case 4:
|
|
if (big_endian) {
|
|
res = (uint32_t)ldl_be_p(haddr);
|
|
} else {
|
|
res = (uint32_t)ldl_le_p(haddr);
|
|
}
|
|
break;
|
|
case 8:
|
|
if (big_endian) {
|
|
res = ldq_be_p(haddr);
|
|
} else {
|
|
res = ldq_le_p(haddr);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
finished:
|
|
// Unicorn: callback on successful read
|
|
if (!code_read) {
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_READ_AFTER) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
((uc_cb_hookmem_t)hook->callback)(env->uc, UC_MEM_READ_AFTER, addr, size, res, hook->user_data);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* For the benefit of TCG generated code, we want to avoid the
|
|
* complication of ABI-specific return type promotion and always
|
|
* return a value extended to the register size of the host. This is
|
|
* tcg_target_long, except in the case of a 32-bit host and 64-bit
|
|
* data, and for that we always have uint64_t.
|
|
*
|
|
* We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
|
|
*/
|
|
|
|
tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 1, false, false, false);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 2, false, false, false);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 2, true, false, false);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 4, false, false, false);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 4, true, false, false);
|
|
}
|
|
|
|
uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 8, false, false, false);
|
|
}
|
|
|
|
uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 8, true, false, false);
|
|
}
|
|
|
|
/*
|
|
* Provide signed versions of the load routines as well. We can of course
|
|
* avoid this for 64-bit data, or for 32-bit data on 32-bit host.
|
|
*/
|
|
|
|
|
|
tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
/*
|
|
* Store Helpers
|
|
*/
|
|
|
|
static void store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr, size_t size,
|
|
bool big_endian)
|
|
{
|
|
uintptr_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = tlb_addr_write(entry);
|
|
const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
void *haddr;
|
|
struct hook *hook;
|
|
bool handled;
|
|
HOOK_FOREACH_VAR_DECLARE;
|
|
|
|
struct uc_struct *uc = env->uc;
|
|
MemoryRegion *mr = memory_mapping(uc, addr);
|
|
|
|
// Unicorn: callback on memory write
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
((uc_cb_hookmem_t)hook->callback)(uc, UC_MEM_WRITE, addr, size, val, hook->user_data);
|
|
}
|
|
|
|
// Unicorn: callback on invalid memory
|
|
if (mr == NULL) {
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_UNMAPPED) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_UNMAPPED, addr, size, val, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!handled) {
|
|
// save error & quit
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_UNMAPPED;
|
|
// printf("***** Invalid memory write at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
} else {
|
|
env->invalid_error = UC_ERR_OK;
|
|
mr = memory_mapping(uc, addr); // FIXME: what if mr is still NULL at this time?
|
|
}
|
|
}
|
|
|
|
// Unicorn: callback on non-writable memory
|
|
if (mr != NULL && !(mr->perms & UC_PROT_WRITE)) { //non-writable
|
|
handled = false;
|
|
HOOK_FOREACH(uc, hook, UC_HOOK_MEM_WRITE_PROT) {
|
|
if (!HOOK_BOUND_CHECK(hook, addr)) {
|
|
continue;
|
|
}
|
|
if ((handled = ((uc_cb_eventmem_t)hook->callback)(uc, UC_MEM_WRITE_PROT, addr, size, val, hook->user_data))) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (handled) {
|
|
env->invalid_error = UC_ERR_OK;
|
|
} else {
|
|
env->invalid_addr = addr;
|
|
env->invalid_error = UC_ERR_WRITE_PROT;
|
|
// printf("***** Invalid memory write (ro) at " TARGET_FMT_lx "\n", addr);
|
|
cpu_exit(uc->current_cpu);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Handle CPU specific unaligned behaviour */
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
|
addr & TARGET_PAGE_MASK)) {
|
|
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Handle an IO access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
if ((addr & (size - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
if (tlb_addr & TLB_RECHECK) {
|
|
/*
|
|
* This is a TLB_RECHECK access, where the MMU protection
|
|
* covers a smaller range than a target page, and we must
|
|
* repeat the MMU check here. This tlb_fill() call might
|
|
* longjump out if this access should cause a guest exception.
|
|
*/
|
|
tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
|
|
tlb_addr = tlb_addr_write(entry);
|
|
tlb_addr &= ~TLB_RECHECK;
|
|
if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
/* RAM access */
|
|
goto do_aligned_access;
|
|
}
|
|
}
|
|
|
|
io_writex(env, &env->iotlb[mmu_idx][index], mmu_idx,
|
|
handle_bswap(val, size, big_endian),
|
|
addr, retaddr, size);
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (size > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i;
|
|
uintptr_t index2;
|
|
CPUTLBEntry *entry2;
|
|
target_ulong page2, tlb_addr2;
|
|
do_unaligned_access:
|
|
/*
|
|
* Ensure the second page is in the TLB. Note that the first page
|
|
* is already guaranteed to be filled, and that the second page
|
|
* cannot evict the first.
|
|
*/
|
|
page2 = (addr + size) & TARGET_PAGE_MASK;
|
|
index2 = tlb_index(env, mmu_idx, page2);
|
|
entry2 = tlb_entry(env, mmu_idx, page2);
|
|
tlb_addr2 = tlb_addr_write(entry2);
|
|
if (!tlb_hit_page(tlb_addr2, page2)
|
|
&& !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
|
|
page2 & TARGET_PAGE_MASK)) {
|
|
tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/*
|
|
* XXX: not efficient, but simple.
|
|
* This loop must go in the forward direction to avoid issues
|
|
* with self-modifying code in Windows 64-bit.
|
|
*/
|
|
for (i = 0; i < size; ++i) {
|
|
uint8_t val8;
|
|
if (big_endian) {
|
|
/* Big-endian extract. */
|
|
val8 = val >> (((size - 1) * 8) - (i * 8));
|
|
} else {
|
|
/* Little-endian extract. */
|
|
val8 = val >> (i * 8);
|
|
}
|
|
store_helper(env, addr + i, val8, oi, retaddr, 1, big_endian);
|
|
}
|
|
return;
|
|
}
|
|
|
|
do_aligned_access:
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(haddr, val);
|
|
break;
|
|
case 2:
|
|
if (big_endian) {
|
|
stw_be_p(haddr, val);
|
|
} else {
|
|
stw_le_p(haddr, val);
|
|
}
|
|
break;
|
|
case 4:
|
|
if (big_endian) {
|
|
stl_be_p(haddr, val);
|
|
} else {
|
|
stl_le_p(haddr, val);
|
|
}
|
|
break;
|
|
case 8:
|
|
if (big_endian) {
|
|
stq_be_p(haddr, val);
|
|
} else {
|
|
stq_le_p(haddr, val);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 1, false);
|
|
}
|
|
|
|
void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 2, false);
|
|
}
|
|
|
|
void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 2, true);
|
|
}
|
|
|
|
void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 4, false);
|
|
}
|
|
|
|
void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 4, true);
|
|
}
|
|
|
|
void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 8, false);
|
|
}
|
|
|
|
void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, 8, true);
|
|
}
|
|
|
|
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
|
them callable from other helpers. */
|
|
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
|
|
#define ATOMIC_NAME(X) \
|
|
HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
|
|
#define ATOMIC_MMU_CLEANUP do { } while (0)
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
|
|
#define DATA_SIZE 16
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Second set of helpers are directly callable from TCG as helpers. */
|
|
|
|
#undef EXTRA_ARGS
|
|
#undef ATOMIC_NAME
|
|
#undef ATOMIC_MMU_LOOKUP
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi
|
|
#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Code access functions. */
|
|
|
|
uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 1, false, true, true);
|
|
}
|
|
|
|
uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 2, false, true, true);
|
|
}
|
|
|
|
uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 2, true, true, true);
|
|
}
|
|
|
|
uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 4, false, true, true);
|
|
}
|
|
|
|
uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 4, true, true, true);
|
|
}
|
|
|
|
uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 8, false, true, true);
|
|
}
|
|
|
|
uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, 8, true, true, true);
|
|
}
|