unicorn/qemu/target/i386/mem_helper.c
Thomas Huth b2f1326437
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.

Backports commit fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 from qemu
2018-03-01 22:50:58 -05:00

216 lines
6 KiB
C

/*
* x86 memory access helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qemu/int128.h"
#include "tcg.h"
#include "uc_priv.h"
void helper_cmpxchg8b_unlocked(CPUX86State *env, target_ulong a0)
{
uintptr_t ra = GETPC();
uint64_t oldv, cmpv, newv;
int eflags;
eflags = cpu_cc_compute_all(env, CC_OP);
cmpv = deposit64(env->regs[R_EAX], 32, 32, env->regs[R_EDX]);
newv = deposit64(env->regs[R_EBX], 32, 32, env->regs[R_ECX]);
oldv = cpu_ldq_data_ra(env, a0, ra);
newv = (cmpv == oldv ? newv : oldv);
/* always do the store */
cpu_stq_data_ra(env, a0, newv, ra);
if (oldv == cmpv) {
eflags |= CC_Z;
} else {
env->regs[R_EAX] = (uint32_t)oldv;
env->regs[R_EDX] = (uint32_t)(oldv >> 32);
eflags &= ~CC_Z;
}
CC_SRC = eflags;
}
void helper_cmpxchg8b(CPUX86State *env, target_ulong a0)
{
#ifdef CONFIG_ATOMIC64
uint64_t oldv, cmpv, newv;
int eflags;
eflags = cpu_cc_compute_all(env, CC_OP);
cmpv = deposit64(env->regs[R_EAX], 32, 32, env->regs[R_EDX]);
newv = deposit64(env->regs[R_EBX], 32, 32, env->regs[R_ECX]);
#ifdef CONFIG_USER_ONLY
{
uint64_t *haddr = g2h(a0);
cmpv = cpu_to_le64(cmpv);
newv = cpu_to_le64(newv);
oldv = atomic_cmpxchg__nocheck(haddr, cmpv, newv);
oldv = le64_to_cpu(oldv);
}
#else
{
uintptr_t ra = GETPC();
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_TEQ, mem_idx);
oldv = helper_atomic_cmpxchgq_le_mmu(env, a0, cmpv, newv, oi, ra);
}
#endif
if (oldv == cmpv) {
eflags |= CC_Z;
} else {
env->regs[R_EAX] = (uint32_t)oldv;
env->regs[R_EDX] = (uint32_t)(oldv >> 32);
eflags &= ~CC_Z;
}
CC_SRC = eflags;
#else
cpu_loop_exit_atomic(ENV_GET_CPU(env), GETPC());
#endif /* CONFIG_ATOMIC64 */
}
#ifdef TARGET_X86_64
void helper_cmpxchg16b_unlocked(CPUX86State *env, target_ulong a0)
{
uintptr_t ra = GETPC();
Int128 oldv, cmpv, newv;
uint64_t o0, o1;
int eflags;
bool success;
if ((a0 & 0xf) != 0) {
raise_exception_ra(env, EXCP0D_GPF, GETPC());
}
eflags = cpu_cc_compute_all(env, CC_OP);
cmpv = int128_make128(env->regs[R_EAX], env->regs[R_EDX]);
newv = int128_make128(env->regs[R_EBX], env->regs[R_ECX]);
o0 = cpu_ldq_data_ra(env, a0 + 0, ra);
o1 = cpu_ldq_data_ra(env, a0 + 8, ra);
oldv = int128_make128(o0, o1);
success = int128_eq(oldv, cmpv);
if (!success) {
newv = oldv;
}
cpu_stq_data_ra(env, a0 + 0, int128_getlo(newv), ra);
cpu_stq_data_ra(env, a0 + 8, int128_gethi(newv), ra);
if (success) {
eflags |= CC_Z;
} else {
env->regs[R_EAX] = int128_getlo(oldv);
env->regs[R_EDX] = int128_gethi(oldv);
eflags &= ~CC_Z;
}
CC_SRC = eflags;
}
void helper_cmpxchg16b(CPUX86State *env, target_ulong a0)
{
uintptr_t ra = GETPC();
if ((a0 & 0xf) != 0) {
raise_exception_ra(env, EXCP0D_GPF, ra);
} else {
#ifndef CONFIG_ATOMIC128
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
int eflags = cpu_cc_compute_all(env, CC_OP);
Int128 cmpv = int128_make128(env->regs[R_EAX], env->regs[R_EDX]);
Int128 newv = int128_make128(env->regs[R_EBX], env->regs[R_ECX]);
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
Int128 oldv = helper_atomic_cmpxchgo_le_mmu(env, a0, cmpv,
newv, oi, ra);
if (int128_eq(oldv, cmpv)) {
eflags |= CC_Z;
} else {
env->regs[R_EAX] = int128_getlo(oldv);
env->regs[R_EDX] = int128_gethi(oldv);
eflags &= ~CC_Z;
}
CC_SRC = eflags;
#endif
}
}
#endif
void helper_boundw(CPUX86State *env, target_ulong a0, int v)
{
int low, high;
low = cpu_ldsw_data_ra(env, a0, GETPC());
high = cpu_ldsw_data_ra(env, a0 + 2, GETPC());
v = (int16_t)v;
if (v < low || v > high) {
if (env->hflags & HF_MPX_EN_MASK) {
env->bndcs_regs.sts = 0;
}
raise_exception_ra(env, EXCP05_BOUND, GETPC());
}
}
void helper_boundl(CPUX86State *env, target_ulong a0, int v)
{
int low, high;
low = cpu_ldl_data_ra(env, a0, GETPC());
high = cpu_ldl_data_ra(env, a0 + 4, GETPC());
if (v < low || v > high) {
if (env->hflags & HF_MPX_EN_MASK) {
env->bndcs_regs.sts = 0;
}
raise_exception_ra(env, EXCP05_BOUND, GETPC());
}
}
#if !defined(CONFIG_USER_ONLY)
/* try to fill the TLB and return an exception if error. If retaddr is
* NULL, it means that the function was called in C code (i.e. not
* from generated code or from helper.c)
*/
/* XXX: fix it to restore all registers */
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
int ret;
ret = x86_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
if (ret) {
X86CPU *cpu = X86_CPU(cs->uc, cs);
CPUX86State *env = &cpu->env;
raise_exception_err_ra(env, cs->exception_index, env->error_code, retaddr);
}
}
#endif