Merge yuzu-emu#12461

This commit is contained in:
yuzubot 2024-02-28 00:57:36 +00:00
parent dc94882c90
commit aa76d24901
43 changed files with 12434 additions and 1238 deletions

View file

@ -314,3 +314,10 @@ endif()
if (NOT TARGET SimpleIni::SimpleIni) if (NOT TARGET SimpleIni::SimpleIni)
add_subdirectory(simpleini) add_subdirectory(simpleini)
endif() endif()
# sse2neon
if (ARCHITECTURE_arm64 AND NOT TARGET sse2neon)
add_library(sse2neon INTERFACE)
target_include_directories(sse2neon INTERFACE sse2neon)
endif()

9285
externals/sse2neon/sse2neon.h vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -165,6 +165,7 @@ else()
if (MINGW) if (MINGW)
add_definitions(-DMINGW_HAS_SECURE_API) add_definitions(-DMINGW_HAS_SECURE_API)
add_compile_options("-msse4.1")
if (MINGW_STATIC_BUILD) if (MINGW_STATIC_BUILD)
add_definitions(-DQT_STATICPLUGIN) add_definitions(-DQT_STATICPLUGIN)

View file

@ -43,6 +43,8 @@ public:
DeviceMemoryManager(const DeviceMemory& device_memory); DeviceMemoryManager(const DeviceMemory& device_memory);
~DeviceMemoryManager(); ~DeviceMemoryManager();
static constexpr bool HAS_FLUSH_INVALIDATION = true;
void BindInterface(DeviceInterface* device_inter); void BindInterface(DeviceInterface* device_inter);
DAddr Allocate(size_t size); DAddr Allocate(size_t size);

View file

@ -44,15 +44,32 @@ public:
GuestMemory() = delete; GuestMemory() = delete;
explicit GuestMemory(M& memory, u64 addr, std::size_t size, explicit GuestMemory(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr) Common::ScratchBuffer<T>* backup = nullptr)
: m_memory{memory}, m_addr{addr}, m_size{size} { : m_memory{&memory}, m_addr{addr}, m_size{size} {
static_assert(FLAGS & GuestMemoryFlags::Read || FLAGS & GuestMemoryFlags::Write); static_assert(FLAGS & GuestMemoryFlags::Read || FLAGS & GuestMemoryFlags::Write);
if constexpr (FLAGS & GuestMemoryFlags::Read) { if constexpr (!(FLAGS & GuestMemoryFlags::Read)) {
if (!this->TrySetSpan()) {
if (backup) {
backup->resize_destructive(this->size());
m_data_span = *backup;
m_span_valid = true;
m_is_data_copy = true;
} else {
m_data_copy.resize(this->size());
m_data_span = std::span(m_data_copy);
m_span_valid = true;
m_is_data_copy = true;
}
}
} else if constexpr (FLAGS & GuestMemoryFlags::Read) {
Read(addr, size, backup); Read(addr, size, backup);
} }
} }
~GuestMemory() = default; ~GuestMemory() = default;
GuestMemory(GuestMemory&& rhs) = default;
GuestMemory& operator=(GuestMemory&& rhs) = default;
T* data() noexcept { T* data() noexcept {
return m_data_span.data(); return m_data_span.data();
} }
@ -109,8 +126,8 @@ public:
} }
if (this->TrySetSpan()) { if (this->TrySetSpan()) {
if constexpr (FLAGS & GuestMemoryFlags::Safe) { if constexpr (FLAGS & GuestMemoryFlags::Safe && M::HAS_FLUSH_INVALIDATION) {
m_memory.FlushRegion(m_addr, this->size_bytes()); m_memory->FlushRegion(m_addr, this->size_bytes());
} }
} else { } else {
if (backup) { if (backup) {
@ -123,9 +140,9 @@ public:
m_is_data_copy = true; m_is_data_copy = true;
m_span_valid = true; m_span_valid = true;
if constexpr (FLAGS & GuestMemoryFlags::Safe) { if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.ReadBlock(m_addr, this->data(), this->size_bytes()); m_memory->ReadBlock(m_addr, this->data(), this->size_bytes());
} else { } else {
m_memory.ReadBlockUnsafe(m_addr, this->data(), this->size_bytes()); m_memory->ReadBlockUnsafe(m_addr, this->data(), this->size_bytes());
} }
} }
return m_data_span; return m_data_span;
@ -133,18 +150,19 @@ public:
void Write(std::span<T> write_data) noexcept { void Write(std::span<T> write_data) noexcept {
if constexpr (FLAGS & GuestMemoryFlags::Cached) { if constexpr (FLAGS & GuestMemoryFlags::Cached) {
m_memory.WriteBlockCached(m_addr, write_data.data(), this->size_bytes()); m_memory->WriteBlockCached(m_addr, write_data.data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) { } else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.WriteBlock(m_addr, write_data.data(), this->size_bytes()); m_memory->WriteBlock(m_addr, write_data.data(), this->size_bytes());
} else { } else {
m_memory.WriteBlockUnsafe(m_addr, write_data.data(), this->size_bytes()); m_memory->WriteBlockUnsafe(m_addr, write_data.data(), this->size_bytes());
} }
} }
bool TrySetSpan() noexcept { bool TrySetSpan() noexcept {
if (u8* ptr = m_memory.GetSpan(m_addr, this->size_bytes()); ptr) { if (u8* ptr = m_memory->GetSpan(m_addr, this->size_bytes()); ptr) {
m_data_span = {reinterpret_cast<T*>(ptr), this->size()}; m_data_span = {reinterpret_cast<T*>(ptr), this->size()};
m_span_valid = true; m_span_valid = true;
m_is_data_copy = false;
return true; return true;
} }
return false; return false;
@ -159,7 +177,7 @@ protected:
return m_addr_changed; return m_addr_changed;
} }
M& m_memory; M* m_memory;
u64 m_addr{}; u64 m_addr{};
size_t m_size{}; size_t m_size{};
std::span<T> m_data_span{}; std::span<T> m_data_span{};
@ -175,17 +193,7 @@ public:
GuestMemoryScoped() = delete; GuestMemoryScoped() = delete;
explicit GuestMemoryScoped(M& memory, u64 addr, std::size_t size, explicit GuestMemoryScoped(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr) Common::ScratchBuffer<T>* backup = nullptr)
: GuestMemory<M, T, FLAGS>(memory, addr, size, backup) { : GuestMemory<M, T, FLAGS>(memory, addr, size, backup) {}
if constexpr (!(FLAGS & GuestMemoryFlags::Read)) {
if (!this->TrySetSpan()) {
if (backup) {
this->m_data_span = *backup;
this->m_span_valid = true;
this->m_is_data_copy = true;
}
}
}
}
~GuestMemoryScoped() { ~GuestMemoryScoped() {
if constexpr (FLAGS & GuestMemoryFlags::Write) { if constexpr (FLAGS & GuestMemoryFlags::Write) {
@ -196,15 +204,17 @@ public:
if (this->AddressChanged() || this->IsDataCopy()) { if (this->AddressChanged() || this->IsDataCopy()) {
ASSERT(this->m_span_valid); ASSERT(this->m_span_valid);
if constexpr (FLAGS & GuestMemoryFlags::Cached) { if constexpr (FLAGS & GuestMemoryFlags::Cached) {
this->m_memory.WriteBlockCached(this->m_addr, this->data(), this->size_bytes()); this->m_memory->WriteBlockCached(this->m_addr, this->data(),
this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) { } else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
this->m_memory.WriteBlock(this->m_addr, this->data(), this->size_bytes()); this->m_memory->WriteBlock(this->m_addr, this->data(), this->size_bytes());
} else { } else {
this->m_memory.WriteBlockUnsafe(this->m_addr, this->data(), this->size_bytes()); this->m_memory->WriteBlockUnsafe(this->m_addr, this->data(),
this->size_bytes());
} }
} else if constexpr ((FLAGS & GuestMemoryFlags::Safe) || } else if constexpr ((FLAGS & GuestMemoryFlags::Safe) ||
(FLAGS & GuestMemoryFlags::Cached)) { (FLAGS & GuestMemoryFlags::Cached)) {
this->m_memory.InvalidateRegion(this->m_addr, this->size_bytes()); this->m_memory->InvalidateRegion(this->m_addr, this->size_bytes());
} }
} }
} }

View file

@ -68,10 +68,7 @@ public:
const SyncpointManager& GetSyncpointManager() const; const SyncpointManager& GetSyncpointManager() const;
struct Host1xDeviceFileData { struct Host1xDeviceFileData {
std::unordered_map<DeviceFD, u32> fd_to_id{};
std::deque<u32> syncpts_accumulated{}; std::deque<u32> syncpts_accumulated{};
u32 nvdec_next_id{};
u32 vic_next_id{};
}; };
Host1xDeviceFileData& Host1xDeviceFile(); Host1xDeviceFileData& Host1xDeviceFile();

View file

@ -8,6 +8,7 @@
#include "core/hle/service/nvdrv/core/container.h" #include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h" #include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_nvdec.h" #include "core/hle/service/nvdrv/devices/nvhost_nvdec.h"
#include "video_core/host1x/host1x.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"
namespace Service::Nvidia::Devices { namespace Service::Nvidia::Devices {
@ -21,13 +22,8 @@ NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> in
switch (command.group) { switch (command.group) {
case 0x0: case 0x0:
switch (command.cmd) { switch (command.cmd) {
case 0x1: { case 0x1:
auto& host1x_file = core.Host1xDeviceFile();
if (!host1x_file.fd_to_id.contains(fd)) {
host1x_file.fd_to_id[fd] = host1x_file.nvdec_next_id++;
}
return WrapFixedVariable(this, &nvhost_nvdec::Submit, input, output, fd); return WrapFixedVariable(this, &nvhost_nvdec::Submit, input, output, fd);
}
case 0x2: case 0x2:
return WrapFixed(this, &nvhost_nvdec::GetSyncpoint, input, output); return WrapFixed(this, &nvhost_nvdec::GetSyncpoint, input, output);
case 0x3: case 0x3:
@ -72,15 +68,12 @@ void nvhost_nvdec::OnOpen(NvCore::SessionId session_id, DeviceFD fd) {
LOG_INFO(Service_NVDRV, "NVDEC video stream started"); LOG_INFO(Service_NVDRV, "NVDEC video stream started");
system.SetNVDECActive(true); system.SetNVDECActive(true);
sessions[fd] = session_id; sessions[fd] = session_id;
host1x.StartDevice(fd, Tegra::Host1x::ChannelType::NvDec, channel_syncpoint);
} }
void nvhost_nvdec::OnClose(DeviceFD fd) { void nvhost_nvdec::OnClose(DeviceFD fd) {
LOG_INFO(Service_NVDRV, "NVDEC video stream ended"); LOG_INFO(Service_NVDRV, "NVDEC video stream ended");
auto& host1x_file = core.Host1xDeviceFile(); host1x.StopDevice(fd, Tegra::Host1x::ChannelType::NvDec);
const auto iter = host1x_file.fd_to_id.find(fd);
if (iter != host1x_file.fd_to_id.end()) {
system.GPU().ClearCdmaInstance(iter->second);
}
system.SetNVDECActive(false); system.SetNVDECActive(false);
auto it = sessions.find(fd); auto it = sessions.find(fd);
if (it != sessions.end()) { if (it != sessions.end()) {

View file

@ -55,8 +55,9 @@ std::size_t WriteVectors(std::span<u8> dst, const std::vector<T>& src, std::size
nvhost_nvdec_common::nvhost_nvdec_common(Core::System& system_, NvCore::Container& core_, nvhost_nvdec_common::nvhost_nvdec_common(Core::System& system_, NvCore::Container& core_,
NvCore::ChannelType channel_type_) NvCore::ChannelType channel_type_)
: nvdevice{system_}, core{core_}, syncpoint_manager{core.GetSyncpointManager()}, : nvdevice{system_}, host1x{system_.Host1x()}, core{core_},
nvmap{core.GetNvMapFile()}, channel_type{channel_type_} { syncpoint_manager{core.GetSyncpointManager()}, nvmap{core.GetNvMapFile()},
channel_type{channel_type_} {
auto& syncpts_accumulated = core.Host1xDeviceFile().syncpts_accumulated; auto& syncpts_accumulated = core.Host1xDeviceFile().syncpts_accumulated;
if (syncpts_accumulated.empty()) { if (syncpts_accumulated.empty()) {
channel_syncpoint = syncpoint_manager.AllocateSyncpoint(false); channel_syncpoint = syncpoint_manager.AllocateSyncpoint(false);
@ -95,24 +96,24 @@ NvResult nvhost_nvdec_common::Submit(IoctlSubmit& params, std::span<u8> data, De
offset += SliceVectors(data, syncpt_increments, params.syncpoint_count, offset); offset += SliceVectors(data, syncpt_increments, params.syncpoint_count, offset);
offset += SliceVectors(data, fence_thresholds, params.fence_count, offset); offset += SliceVectors(data, fence_thresholds, params.fence_count, offset);
auto& gpu = system.GPU();
auto* session = core.GetSession(sessions[fd]); auto* session = core.GetSession(sessions[fd]);
if (gpu.UseNvdec()) { for (std::size_t i = 0; i < syncpt_increments.size(); i++) {
for (std::size_t i = 0; i < syncpt_increments.size(); i++) { const SyncptIncr& syncpt_incr = syncpt_increments[i];
const SyncptIncr& syncpt_incr = syncpt_increments[i]; fence_thresholds[i] =
fence_thresholds[i] = syncpoint_manager.IncrementSyncpointMaxExt(syncpt_incr.id, syncpt_incr.increments);
syncpoint_manager.IncrementSyncpointMaxExt(syncpt_incr.id, syncpt_incr.increments);
}
} }
for (const auto& cmd_buffer : command_buffers) { for (const auto& cmd_buffer : command_buffers) {
const auto object = nvmap.GetHandle(cmd_buffer.memory_id); const auto object = nvmap.GetHandle(cmd_buffer.memory_id);
ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;); ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;);
Tegra::ChCommandHeaderList cmdlist(cmd_buffer.word_count); Core::Memory::CpuGuestMemory<Tegra::ChCommandHeader,
session->process->GetMemory().ReadBlock(object->address + cmd_buffer.offset, cmdlist.data(), Core::Memory::GuestMemoryFlags::SafeRead>
cmdlist.size() * sizeof(u32)); cmdlist(session->process->GetMemory(), object->address + cmd_buffer.offset,
gpu.PushCommandBuffer(core.Host1xDeviceFile().fd_to_id[fd], cmdlist); cmd_buffer.word_count);
host1x.PushEntries(fd, std::move(cmdlist));
} }
// Some games expect command_buffers to be written back // Some games expect command_buffers to be written back
offset = 0; offset = 0;
offset += WriteVectors(data, command_buffers, offset); offset += WriteVectors(data, command_buffers, offset);

View file

@ -119,6 +119,7 @@ protected:
Kernel::KEvent* QueryEvent(u32 event_id) override; Kernel::KEvent* QueryEvent(u32 event_id) override;
Tegra::Host1x::Host1x& host1x;
u32 channel_syncpoint; u32 channel_syncpoint;
s32_le nvmap_fd{}; s32_le nvmap_fd{};
u32_le submit_timeout{}; u32_le submit_timeout{};

View file

@ -7,6 +7,7 @@
#include "core/hle/service/nvdrv/core/container.h" #include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h" #include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_vic.h" #include "core/hle/service/nvdrv/devices/nvhost_vic.h"
#include "video_core/host1x/host1x.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"
namespace Service::Nvidia::Devices { namespace Service::Nvidia::Devices {
@ -21,13 +22,8 @@ NvResult nvhost_vic::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
switch (command.group) { switch (command.group) {
case 0x0: case 0x0:
switch (command.cmd) { switch (command.cmd) {
case 0x1: { case 0x1:
auto& host1x_file = core.Host1xDeviceFile();
if (!host1x_file.fd_to_id.contains(fd)) {
host1x_file.fd_to_id[fd] = host1x_file.vic_next_id++;
}
return WrapFixedVariable(this, &nvhost_vic::Submit, input, output, fd); return WrapFixedVariable(this, &nvhost_vic::Submit, input, output, fd);
}
case 0x2: case 0x2:
return WrapFixed(this, &nvhost_vic::GetSyncpoint, input, output); return WrapFixed(this, &nvhost_vic::GetSyncpoint, input, output);
case 0x3: case 0x3:
@ -70,14 +66,11 @@ NvResult nvhost_vic::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> inpu
void nvhost_vic::OnOpen(NvCore::SessionId session_id, DeviceFD fd) { void nvhost_vic::OnOpen(NvCore::SessionId session_id, DeviceFD fd) {
sessions[fd] = session_id; sessions[fd] = session_id;
host1x.StartDevice(fd, Tegra::Host1x::ChannelType::VIC, channel_syncpoint);
} }
void nvhost_vic::OnClose(DeviceFD fd) { void nvhost_vic::OnClose(DeviceFD fd) {
auto& host1x_file = core.Host1xDeviceFile(); host1x.StopDevice(fd, Tegra::Host1x::ChannelType::VIC);
const auto iter = host1x_file.fd_to_id.find(fd);
if (iter != host1x_file.fd_to_id.end()) {
system.GPU().ClearCdmaInstance(iter->second);
}
sessions.erase(fd); sessions.erase(fd);
} }

View file

@ -64,6 +64,8 @@ public:
Memory(Memory&&) = default; Memory(Memory&&) = default;
Memory& operator=(Memory&&) = delete; Memory& operator=(Memory&&) = delete;
static constexpr bool HAS_FLUSH_INVALIDATION = false;
/** /**
* Resets the state of the Memory system. * Resets the state of the Memory system.
*/ */

View file

@ -60,8 +60,8 @@ add_library(video_core STATIC
framebuffer_config.h framebuffer_config.h
fsr.cpp fsr.cpp
fsr.h fsr.h
host1x/codecs/codec.cpp host1x/codecs/decoder.cpp
host1x/codecs/codec.h host1x/codecs/decoder.h
host1x/codecs/h264.cpp host1x/codecs/h264.cpp
host1x/codecs/h264.h host1x/codecs/h264.h
host1x/codecs/vp8.cpp host1x/codecs/vp8.cpp
@ -80,8 +80,6 @@ add_library(video_core STATIC
host1x/nvdec.cpp host1x/nvdec.cpp
host1x/nvdec.h host1x/nvdec.h
host1x/nvdec_common.h host1x/nvdec_common.h
host1x/sync_manager.cpp
host1x/sync_manager.h
host1x/syncpoint_manager.cpp host1x/syncpoint_manager.cpp
host1x/syncpoint_manager.h host1x/syncpoint_manager.h
host1x/vic.cpp host1x/vic.cpp
@ -392,4 +390,8 @@ if (ANDROID AND ARCHITECTURE_arm64)
target_link_libraries(video_core PRIVATE adrenotools) target_link_libraries(video_core PRIVATE adrenotools)
endif() endif()
if (ARCHITECTURE_arm64)
target_link_libraries(video_core PRIVATE sse2neon)
endif()
create_target_directory_groups(video_core) create_target_directory_groups(video_core)

View file

@ -2,136 +2,130 @@
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
#include <bit> #include <bit>
#include "common/thread.h"
#include "core/core.h"
#include "video_core/cdma_pusher.h" #include "video_core/cdma_pusher.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/host1x/control.h" #include "video_core/host1x/control.h"
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/host1x/nvdec.h" #include "video_core/host1x/nvdec.h"
#include "video_core/host1x/nvdec_common.h" #include "video_core/host1x/nvdec_common.h"
#include "video_core/host1x/sync_manager.h"
#include "video_core/host1x/vic.h" #include "video_core/host1x/vic.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
namespace Tegra { namespace Tegra {
CDmaPusher::CDmaPusher(Host1x::Host1x& host1x_)
: host1x{host1x_}, nvdec_processor(std::make_shared<Host1x::Nvdec>(host1x)), CDmaPusher::CDmaPusher(Host1x::Host1x& host1x_, s32 id)
vic_processor(std::make_unique<Host1x::Vic>(host1x, nvdec_processor)), : host1x{host1x_}, memory_manager{host1x.GMMU()},
host1x_processor(std::make_unique<Host1x::Control>(host1x)), host_processor{std::make_unique<Host1x::Control>(host1x_)}, current_class{
sync_manager(std::make_unique<Host1x::SyncptIncrManager>(host1x)) {} static_cast<ChClassId>(id)} {
thread = std::jthread([this](std::stop_token stop_token) { ProcessEntries(stop_token); });
}
CDmaPusher::~CDmaPusher() = default; CDmaPusher::~CDmaPusher() = default;
void CDmaPusher::ProcessEntries(ChCommandHeaderList&& entries) { void CDmaPusher::ProcessEntries(std::stop_token stop_token) {
for (const auto& value : entries) { Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
if (mask != 0) { ChCommandHeaderList command_list{host1x.System().ApplicationMemory(), 0, 0};
const auto lbs = static_cast<u32>(std::countr_zero(mask)); u32 count{};
mask &= ~(1U << lbs); u32 method_offset{};
ExecuteCommand(offset + lbs, value.raw); u32 mask{};
continue; bool incrementing{};
} else if (count != 0) {
--count; while (!stop_token.stop_requested()) {
ExecuteCommand(offset, value.raw); {
if (incrementing) { std::unique_lock l{command_mutex};
++offset; Common::CondvarWait(command_cv, l, stop_token,
[this]() { return command_lists.size() > 0; });
if (stop_token.stop_requested()) {
return;
} }
continue;
command_list = std::move(command_lists.front());
command_lists.pop_front();
} }
const auto mode = value.submission_mode.Value();
switch (mode) { size_t i = 0;
case ChSubmissionMode::SetClass: { for (const auto value : command_list) {
mask = value.value & 0x3f; i++;
offset = value.method_offset; if (mask != 0) {
current_class = static_cast<ChClassId>((value.value >> 6) & 0x3ff); const auto lbs = static_cast<u32>(std::countr_zero(mask));
break; mask &= ~(1U << lbs);
} ExecuteCommand(method_offset + lbs, value.raw);
case ChSubmissionMode::Incrementing: continue;
case ChSubmissionMode::NonIncrementing: } else if (count != 0) {
count = value.value; --count;
offset = value.method_offset; ExecuteCommand(method_offset, value.raw);
incrementing = mode == ChSubmissionMode::Incrementing; if (incrementing) {
break; ++method_offset;
case ChSubmissionMode::Mask: }
mask = value.value; continue;
offset = value.method_offset; }
break; const auto mode = value.submission_mode.Value();
case ChSubmissionMode::Immediate: { switch (mode) {
const u32 data = value.value & 0xfff; case ChSubmissionMode::SetClass: {
offset = value.method_offset; mask = value.value & 0x3f;
ExecuteCommand(offset, data); method_offset = value.method_offset;
break; current_class = static_cast<ChClassId>((value.value >> 6) & 0x3ff);
} break;
default: }
UNIMPLEMENTED_MSG("ChSubmission mode {} is not implemented!", static_cast<u32>(mode)); case ChSubmissionMode::Incrementing:
break; case ChSubmissionMode::NonIncrementing:
count = value.value;
method_offset = value.method_offset;
incrementing = mode == ChSubmissionMode::Incrementing;
break;
case ChSubmissionMode::Mask:
mask = value.value;
method_offset = value.method_offset;
break;
case ChSubmissionMode::Immediate: {
const u32 data = value.value & 0xfff;
method_offset = value.method_offset;
ExecuteCommand(method_offset, data);
break;
}
default:
LOG_ERROR(HW_GPU, "Bad command at index {} (bytes 0x{:X}), buffer size {}", i - 1,
(i - 1) * sizeof(u32), command_list.size());
UNIMPLEMENTED_MSG("ChSubmission mode {} is not implemented!",
static_cast<u32>(mode));
break;
}
} }
} }
} }
void CDmaPusher::ExecuteCommand(u32 state_offset, u32 data) { void CDmaPusher::ExecuteCommand(u32 method, u32 arg) {
switch (current_class) { switch (current_class) {
case ChClassId::NvDec:
ThiStateWrite(nvdec_thi_state, offset, data);
switch (static_cast<ThiMethod>(offset)) {
case ThiMethod::IncSyncpt: {
LOG_DEBUG(Service_NVDRV, "NVDEC Class IncSyncpt Method");
const auto syncpoint_id = static_cast<u32>(data & 0xFF);
const auto cond = static_cast<u32>((data >> 8) & 0xFF);
if (cond == 0) {
sync_manager->Increment(syncpoint_id);
} else {
sync_manager->SignalDone(
sync_manager->IncrementWhenDone(static_cast<u32>(current_class), syncpoint_id));
}
break;
}
case ThiMethod::SetMethod1:
LOG_DEBUG(Service_NVDRV, "NVDEC method 0x{:X}",
static_cast<u32>(nvdec_thi_state.method_0));
nvdec_processor->ProcessMethod(nvdec_thi_state.method_0, data);
break;
default:
break;
}
break;
case ChClassId::GraphicsVic:
ThiStateWrite(vic_thi_state, static_cast<u32>(state_offset), {data});
switch (static_cast<ThiMethod>(state_offset)) {
case ThiMethod::IncSyncpt: {
LOG_DEBUG(Service_NVDRV, "VIC Class IncSyncpt Method");
const auto syncpoint_id = static_cast<u32>(data & 0xFF);
const auto cond = static_cast<u32>((data >> 8) & 0xFF);
if (cond == 0) {
sync_manager->Increment(syncpoint_id);
} else {
sync_manager->SignalDone(
sync_manager->IncrementWhenDone(static_cast<u32>(current_class), syncpoint_id));
}
break;
}
case ThiMethod::SetMethod1:
LOG_DEBUG(Service_NVDRV, "VIC method 0x{:X}, Args=({})",
static_cast<u32>(vic_thi_state.method_0), data);
vic_processor->ProcessMethod(static_cast<Host1x::Vic::Method>(vic_thi_state.method_0),
data);
break;
default:
break;
}
break;
case ChClassId::Control: case ChClassId::Control:
// This device is mainly for syncpoint synchronization LOG_TRACE(Service_NVDRV, "Class {} method 0x{:X} arg 0x{:X}",
LOG_DEBUG(Service_NVDRV, "Host1X Class Method"); static_cast<u32>(current_class), method, arg);
host1x_processor->ProcessMethod(static_cast<Host1x::Control::Method>(offset), data); host_processor->ProcessMethod(static_cast<Host1x::Control::Method>(method), arg);
break; break;
default: default:
UNIMPLEMENTED_MSG("Current class not implemented {:X}", static_cast<u32>(current_class)); thi_regs.reg_array[method] = arg;
break; switch (static_cast<ThiMethod>(method)) {
case ThiMethod::IncSyncpt: {
const auto syncpoint_id = static_cast<u32>(arg & 0xFF);
[[maybe_unused]] const auto cond = static_cast<u32>((arg >> 8) & 0xFF);
LOG_TRACE(Service_NVDRV, "Class {} IncSyncpt Method, syncpt {} cond {}",
static_cast<u32>(current_class), syncpoint_id, cond);
auto& syncpoint_manager = host1x.GetSyncpointManager();
syncpoint_manager.IncrementGuest(syncpoint_id);
syncpoint_manager.IncrementHost(syncpoint_id);
break;
}
case ThiMethod::SetMethod1:
LOG_TRACE(Service_NVDRV, "Class {} method 0x{:X} arg 0x{:X}",
static_cast<u32>(current_class), static_cast<u32>(thi_regs.method_0), arg);
ProcessMethod(thi_regs.method_0, arg);
break;
default:
break;
}
} }
} }
void CDmaPusher::ThiStateWrite(ThiRegisters& state, u32 state_offset, u32 argument) {
u8* const offset_ptr = reinterpret_cast<u8*>(&state) + sizeof(u32) * state_offset;
std::memcpy(offset_ptr, &argument, sizeof(u32));
}
} // namespace Tegra } // namespace Tegra

View file

@ -3,12 +3,18 @@
#pragma once #pragma once
#include <condition_variable>
#include <deque>
#include <memory> #include <memory>
#include <mutex>
#include <thread>
#include <vector> #include <vector>
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/polyfill_thread.h"
#include "core/memory.h"
namespace Tegra { namespace Tegra {
@ -62,23 +68,31 @@ struct ChCommand {
std::vector<u32> arguments; std::vector<u32> arguments;
}; };
using ChCommandHeaderList = std::vector<ChCommandHeader>; using ChCommandHeaderList =
Core::Memory::CpuGuestMemory<Tegra::ChCommandHeader, Core::Memory::GuestMemoryFlags::SafeRead>;
struct ThiRegisters { struct ThiRegisters {
u32_le increment_syncpt{}; static constexpr std::size_t NUM_REGS = 0x20;
INSERT_PADDING_WORDS(1);
u32_le increment_syncpt_error{}; union {
u32_le ctx_switch_incremement_syncpt{}; struct {
INSERT_PADDING_WORDS(4); u32_le increment_syncpt;
u32_le ctx_switch{}; INSERT_PADDING_WORDS_NOINIT(1);
INSERT_PADDING_WORDS(1); u32_le increment_syncpt_error;
u32_le ctx_syncpt_eof{}; u32_le ctx_switch_incremement_syncpt;
INSERT_PADDING_WORDS(5); INSERT_PADDING_WORDS_NOINIT(4);
u32_le method_0{}; u32_le ctx_switch;
u32_le method_1{}; INSERT_PADDING_WORDS_NOINIT(1);
INSERT_PADDING_WORDS(12); u32_le ctx_syncpt_eof;
u32_le int_status{}; INSERT_PADDING_WORDS_NOINIT(5);
u32_le int_mask{}; u32_le method_0;
u32_le method_1;
INSERT_PADDING_WORDS_NOINIT(12);
u32_le int_status;
u32_le int_mask;
};
std::array<u32, NUM_REGS> reg_array;
};
}; };
enum class ThiMethod : u32 { enum class ThiMethod : u32 {
@ -89,32 +103,39 @@ enum class ThiMethod : u32 {
class CDmaPusher { class CDmaPusher {
public: public:
explicit CDmaPusher(Host1x::Host1x& host1x); CDmaPusher() = delete;
~CDmaPusher(); virtual ~CDmaPusher();
/// Process the command entry void PushEntries(ChCommandHeaderList&& entries) {
void ProcessEntries(ChCommandHeaderList&& entries); std::scoped_lock l{command_mutex};
command_lists.push_back(std::move(entries));
command_cv.notify_one();
}
protected:
explicit CDmaPusher(Host1x::Host1x& host1x, s32 id);
virtual void ProcessMethod(u32 method, u32 arg) = 0;
Host1x::Host1x& host1x;
Tegra::MemoryManager& memory_manager;
private: private:
/// Process the command entry
void ProcessEntries(std::stop_token stop_token);
/// Invoke command class devices to execute the command based on the current state /// Invoke command class devices to execute the command based on the current state
void ExecuteCommand(u32 state_offset, u32 data); void ExecuteCommand(u32 state_offset, u32 data);
/// Write arguments value to the ThiRegisters member at the specified offset std::unique_ptr<Host1x::Control> host_processor;
void ThiStateWrite(ThiRegisters& state, u32 offset, u32 argument);
Host1x::Host1x& host1x; std::mutex command_mutex;
std::shared_ptr<Tegra::Host1x::Nvdec> nvdec_processor; std::condition_variable_any command_cv;
std::unique_ptr<Tegra::Host1x::Vic> vic_processor; std::deque<ChCommandHeaderList> command_lists;
std::unique_ptr<Tegra::Host1x::Control> host1x_processor; std::jthread thread;
std::unique_ptr<Host1x::SyncptIncrManager> sync_manager;
ChClassId current_class{};
ThiRegisters vic_thi_state{};
ThiRegisters nvdec_thi_state{};
u32 count{}; ThiRegisters thi_regs{};
u32 offset{}; ChClassId current_class;
u32 mask{};
bool incrementing{};
}; };
} // namespace Tegra } // namespace Tegra

View file

@ -250,30 +250,6 @@ struct GPU::Impl {
gpu_thread.SubmitList(channel, std::move(entries)); gpu_thread.SubmitList(channel, std::move(entries));
} }
/// Push GPU command buffer entries to be processed
void PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) {
if (!use_nvdec) {
return;
}
if (!cdma_pushers.contains(id)) {
cdma_pushers.insert_or_assign(id, std::make_unique<Tegra::CDmaPusher>(host1x));
}
// SubmitCommandBuffer would make the nvdec operations async, this is not currently working
// TODO(ameerj): RE proper async nvdec operation
// gpu_thread.SubmitCommandBuffer(std::move(entries));
cdma_pushers[id]->ProcessEntries(std::move(entries));
}
/// Frees the CDMAPusher instance to free up resources
void ClearCdmaInstance(u32 id) {
const auto iter = cdma_pushers.find(id);
if (iter != cdma_pushers.end()) {
cdma_pushers.erase(iter);
}
}
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(DAddr addr, u64 size) { void FlushRegion(DAddr addr, u64 size) {
gpu_thread.FlushRegion(addr, size); gpu_thread.FlushRegion(addr, size);
@ -362,7 +338,6 @@ struct GPU::Impl {
Core::System& system; Core::System& system;
Host1x::Host1x& host1x; Host1x::Host1x& host1x;
std::map<u32, std::unique_ptr<Tegra::CDmaPusher>> cdma_pushers;
std::unique_ptr<VideoCore::RendererBase> renderer; std::unique_ptr<VideoCore::RendererBase> renderer;
VideoCore::RasterizerInterface* rasterizer = nullptr; VideoCore::RasterizerInterface* rasterizer = nullptr;
const bool use_nvdec; const bool use_nvdec;
@ -556,14 +531,6 @@ void GPU::PushGPUEntries(s32 channel, Tegra::CommandList&& entries) {
impl->PushGPUEntries(channel, std::move(entries)); impl->PushGPUEntries(channel, std::move(entries));
} }
void GPU::PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries) {
impl->PushCommandBuffer(id, entries);
}
void GPU::ClearCdmaInstance(u32 id) {
impl->ClearCdmaInstance(id);
}
VideoCore::RasterizerDownloadArea GPU::OnCPURead(PAddr addr, u64 size) { VideoCore::RasterizerDownloadArea GPU::OnCPURead(PAddr addr, u64 size) {
return impl->OnCPURead(addr, size); return impl->OnCPURead(addr, size);
} }

View file

@ -234,15 +234,6 @@ public:
/// Push GPU command entries to be processed /// Push GPU command entries to be processed
void PushGPUEntries(s32 channel, Tegra::CommandList&& entries); void PushGPUEntries(s32 channel, Tegra::CommandList&& entries);
/// Push GPU command buffer entries to be processed
void PushCommandBuffer(u32 id, Tegra::ChCommandHeaderList& entries);
/// Frees the CDMAPusher instance to free up resources
void ClearCdmaInstance(u32 id);
/// Swap buffers (render frame)
void SwapBuffers(const Tegra::FramebufferConfig* framebuffer);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
[[nodiscard]] VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size); [[nodiscard]] VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size);

View file

@ -12,6 +12,7 @@
#include "video_core/dma_pusher.h" #include "video_core/dma_pusher.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
#include "video_core/gpu_thread.h" #include "video_core/gpu_thread.h"
#include "video_core/host1x/host1x.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"
namespace VideoCommon::GPUThread { namespace VideoCommon::GPUThread {

View file

@ -1,113 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/settings.h"
#include "video_core/host1x/codecs/codec.h"
#include "video_core/host1x/codecs/h264.h"
#include "video_core/host1x/codecs/vp8.h"
#include "video_core/host1x/codecs/vp9.h"
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
namespace Tegra {
Codec::Codec(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs)
: host1x(host1x_), state{regs}, h264_decoder(std::make_unique<Decoder::H264>(host1x)),
vp8_decoder(std::make_unique<Decoder::VP8>(host1x)),
vp9_decoder(std::make_unique<Decoder::VP9>(host1x)) {}
Codec::~Codec() = default;
void Codec::Initialize() {
initialized = decode_api.Initialize(current_codec);
}
void Codec::SetTargetCodec(Host1x::NvdecCommon::VideoCodec codec) {
if (current_codec != codec) {
current_codec = codec;
LOG_INFO(Service_NVDRV, "NVDEC video codec initialized to {}", GetCurrentCodecName());
}
}
void Codec::Decode() {
const bool is_first_frame = !initialized;
if (is_first_frame) {
Initialize();
}
if (!initialized) {
return;
}
// Assemble bitstream.
bool vp9_hidden_frame = false;
size_t configuration_size = 0;
const auto packet_data = [&]() {
switch (current_codec) {
case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
return h264_decoder->ComposeFrame(state, &configuration_size, is_first_frame);
case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
return vp8_decoder->ComposeFrame(state);
case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
vp9_decoder->ComposeFrame(state);
vp9_hidden_frame = vp9_decoder->WasFrameHidden();
return vp9_decoder->GetFrameBytes();
default:
ASSERT(false);
return std::span<const u8>{};
}
}();
// Send assembled bitstream to decoder.
if (!decode_api.SendPacket(packet_data, configuration_size)) {
return;
}
// Only receive/store visible frames.
if (vp9_hidden_frame) {
return;
}
// Receive output frames from decoder.
decode_api.ReceiveFrames(frames);
while (frames.size() > 10) {
LOG_DEBUG(HW_GPU, "ReceiveFrames overflow, dropped frame");
frames.pop();
}
}
std::unique_ptr<FFmpeg::Frame> Codec::GetCurrentFrame() {
// Sometimes VIC will request more frames than have been decoded.
// in this case, return a blank frame and don't overwrite previous data.
if (frames.empty()) {
return {};
}
auto frame = std::move(frames.front());
frames.pop();
return frame;
}
Host1x::NvdecCommon::VideoCodec Codec::GetCurrentCodec() const {
return current_codec;
}
std::string_view Codec::GetCurrentCodecName() const {
switch (current_codec) {
case Host1x::NvdecCommon::VideoCodec::None:
return "None";
case Host1x::NvdecCommon::VideoCodec::H264:
return "H264";
case Host1x::NvdecCommon::VideoCodec::VP8:
return "VP8";
case Host1x::NvdecCommon::VideoCodec::H265:
return "H265";
case Host1x::NvdecCommon::VideoCodec::VP9:
return "VP9";
default:
return "Unknown";
}
}
} // namespace Tegra

View file

@ -1,63 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <optional>
#include <string_view>
#include <queue>
#include "common/common_types.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
#include "video_core/host1x/nvdec_common.h"
namespace Tegra {
namespace Decoder {
class H264;
class VP8;
class VP9;
} // namespace Decoder
namespace Host1x {
class Host1x;
} // namespace Host1x
class Codec {
public:
explicit Codec(Host1x::Host1x& host1x, const Host1x::NvdecCommon::NvdecRegisters& regs);
~Codec();
/// Initialize the codec, returning success or failure
void Initialize();
/// Sets NVDEC video stream codec
void SetTargetCodec(Host1x::NvdecCommon::VideoCodec codec);
/// Call decoders to construct headers, decode AVFrame with ffmpeg
void Decode();
/// Returns next decoded frame
[[nodiscard]] std::unique_ptr<FFmpeg::Frame> GetCurrentFrame();
/// Returns the value of current_codec
[[nodiscard]] Host1x::NvdecCommon::VideoCodec GetCurrentCodec() const;
/// Return name of the current codec
[[nodiscard]] std::string_view GetCurrentCodecName() const;
private:
bool initialized{};
Host1x::NvdecCommon::VideoCodec current_codec{Host1x::NvdecCommon::VideoCodec::None};
FFmpeg::DecodeApi decode_api;
Host1x::Host1x& host1x;
const Host1x::NvdecCommon::NvdecRegisters& state;
std::unique_ptr<Decoder::H264> h264_decoder;
std::unique_ptr<Decoder::VP8> vp8_decoder;
std::unique_ptr<Decoder::VP9> vp9_decoder;
std::queue<std::unique_ptr<FFmpeg::Frame>> frames{};
};
} // namespace Tegra

View file

@ -0,0 +1,71 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/settings.h"
#include "video_core/host1x/codecs/decoder.h"
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
namespace Tegra {
Decoder::Decoder(Host1x::Host1x& host1x_, s32 id_, const Host1x::NvdecCommon::NvdecRegisters& regs_,
Host1x::FrameQueue& frame_queue_)
: host1x(host1x_), memory_manager{host1x.GMMU()}, regs{regs_}, id{id_}, frame_queue{
frame_queue_} {}
Decoder::~Decoder() = default;
void Decoder::Decode() {
if (!initialized) {
return;
}
const auto packet_data = ComposeFrame();
// Send assembled bitstream to decoder.
if (!decode_api.SendPacket(packet_data)) {
return;
}
// Only receive/store visible frames.
if (vp9_hidden_frame) {
return;
}
// Receive output frames from decoder.
auto frame = decode_api.ReceiveFrame();
if (IsInterlaced()) {
auto [luma_top, luma_bottom, chroma_top, chroma_bottom] = GetInterlacedOffsets();
auto frame_copy = frame;
if (!frame.get()) {
LOG_ERROR(HW_GPU,
"Nvdec {} dailed to decode interlaced frame for top 0x{:X} bottom 0x{:X}", id,
luma_top, luma_bottom);
}
if (UsingDecodeOrder()) {
frame_queue.PushDecodeOrder(id, luma_top, std::move(frame));
frame_queue.PushDecodeOrder(id, luma_bottom, std::move(frame_copy));
} else {
frame_queue.PushPresentOrder(id, luma_top, std::move(frame));
frame_queue.PushPresentOrder(id, luma_bottom, std::move(frame_copy));
}
} else {
auto [luma_offset, chroma_offset] = GetProgressiveOffsets();
if (!frame.get()) {
LOG_ERROR(HW_GPU, "Nvdec {} failed to decode progressive frame for luma 0x{:X}", id,
luma_offset);
}
if (UsingDecodeOrder()) {
frame_queue.PushDecodeOrder(id, luma_offset, std::move(frame));
} else {
frame_queue.PushPresentOrder(id, luma_offset, std::move(frame));
}
}
}
} // namespace Tegra

View file

@ -0,0 +1,64 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <mutex>
#include <optional>
#include <string_view>
#include <unordered_map>
#include <queue>
#include "common/common_types.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
#include "video_core/host1x/nvdec_common.h"
namespace Tegra {
namespace Host1x {
class Host1x;
class FrameQueue;
} // namespace Host1x
class Decoder {
public:
virtual ~Decoder();
/// Call decoders to construct headers, decode AVFrame with ffmpeg
void Decode();
bool UsingDecodeOrder() const {
return decode_api.UsingDecodeOrder();
}
/// Returns the value of current_codec
[[nodiscard]] Host1x::NvdecCommon::VideoCodec GetCurrentCodec() const {
return codec;
}
/// Return name of the current codec
[[nodiscard]] virtual std::string_view GetCurrentCodecName() const = 0;
protected:
explicit Decoder(Host1x::Host1x& host1x, s32 id,
const Host1x::NvdecCommon::NvdecRegisters& regs,
Host1x::FrameQueue& frame_queue);
virtual std::span<const u8> ComposeFrame() = 0;
virtual std::tuple<u64, u64> GetProgressiveOffsets() = 0;
virtual std::tuple<u64, u64, u64, u64> GetInterlacedOffsets() = 0;
virtual bool IsInterlaced() = 0;
Host1x::Host1x& host1x;
Tegra::MemoryManager& memory_manager;
const Host1x::NvdecCommon::NvdecRegisters& regs;
s32 id;
Host1x::FrameQueue& frame_queue;
Host1x::NvdecCommon::VideoCodec codec;
FFmpeg::DecodeApi decode_api;
bool initialized{};
bool vp9_hidden_frame{};
};
} // namespace Tegra

View file

@ -1,5 +1,5 @@
// SPDX-FileCopyrightText: Ryujinx Team and Contributors // SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: GPL-2.0-or-later
#include <array> #include <array>
#include <bit> #include <bit>
@ -10,7 +10,7 @@
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
namespace Tegra::Decoder { namespace Tegra::Decoders {
namespace { namespace {
// ZigZag LUTs from libavcodec. // ZigZag LUTs from libavcodec.
constexpr std::array<u8, 64> zig_zag_direct{ constexpr std::array<u8, 64> zig_zag_direct{
@ -25,23 +25,56 @@ constexpr std::array<u8, 16> zig_zag_scan{
}; };
} // Anonymous namespace } // Anonymous namespace
H264::H264(Host1x::Host1x& host1x_) : host1x{host1x_} {} H264::H264(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs_, s32 id_,
Host1x::FrameQueue& frame_queue_)
: Decoder{host1x_, id_, regs_, frame_queue_} {
codec = Host1x::NvdecCommon::VideoCodec::H264;
initialized = decode_api.Initialize(codec);
}
H264::~H264() = default; H264::~H264() = default;
std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state, std::tuple<u64, u64> H264::GetProgressiveOffsets() {
size_t* out_configuration_size, bool is_first_frame) { auto pic_idx{current_context.h264_parameter_set.curr_pic_idx};
H264DecoderContext context; auto luma{regs.surface_luma_offsets[pic_idx].Address() +
host1x.GMMU().ReadBlock(state.picture_info_offset, &context, sizeof(H264DecoderContext)); current_context.h264_parameter_set.luma_frame_offset.Address()};
auto chroma{regs.surface_chroma_offsets[pic_idx].Address() +
current_context.h264_parameter_set.chroma_frame_offset.Address()};
return {luma, chroma};
}
const s64 frame_number = context.h264_parameter_set.frame_number.Value(); std::tuple<u64, u64, u64, u64> H264::GetInterlacedOffsets() {
auto pic_idx{current_context.h264_parameter_set.curr_pic_idx};
auto luma_top{regs.surface_luma_offsets[pic_idx].Address() +
current_context.h264_parameter_set.luma_top_offset.Address()};
auto luma_bottom{regs.surface_luma_offsets[pic_idx].Address() +
current_context.h264_parameter_set.luma_bot_offset.Address()};
auto chroma_top{regs.surface_chroma_offsets[pic_idx].Address() +
current_context.h264_parameter_set.chroma_top_offset.Address()};
auto chroma_bottom{regs.surface_chroma_offsets[pic_idx].Address() +
current_context.h264_parameter_set.chroma_bot_offset.Address()};
return {luma_top, luma_bottom, chroma_top, chroma_bottom};
}
bool H264::IsInterlaced() {
return current_context.h264_parameter_set.luma_top_offset.Address() != 0 ||
current_context.h264_parameter_set.luma_bot_offset.Address() != 0;
}
std::span<const u8> H264::ComposeFrame() {
memory_manager.ReadBlock(regs.picture_info_offset.Address(), &current_context,
sizeof(H264DecoderContext));
const s64 frame_number = current_context.h264_parameter_set.frame_number.Value();
if (!is_first_frame && frame_number != 0) { if (!is_first_frame && frame_number != 0) {
frame.resize_destructive(context.stream_len); frame_scratch.resize_destructive(current_context.stream_len);
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size()); memory_manager.ReadBlock(regs.frame_bitstream_offset.Address(), frame_scratch.data(),
*out_configuration_size = 0; frame_scratch.size());
return frame; return frame_scratch;
} }
is_first_frame = false;
// Encode header // Encode header
H264BitWriter writer{}; H264BitWriter writer{};
writer.WriteU(1, 24); writer.WriteU(1, 24);
@ -53,7 +86,7 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
writer.WriteU(31, 8); writer.WriteU(31, 8);
writer.WriteUe(0); writer.WriteUe(0);
const u32 chroma_format_idc = const u32 chroma_format_idc =
static_cast<u32>(context.h264_parameter_set.chroma_format_idc.Value()); static_cast<u32>(current_context.h264_parameter_set.chroma_format_idc.Value());
writer.WriteUe(chroma_format_idc); writer.WriteUe(chroma_format_idc);
if (chroma_format_idc == 3) { if (chroma_format_idc == 3) {
writer.WriteBit(false); writer.WriteBit(false);
@ -61,42 +94,44 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteBit(false); // QpprimeYZeroTransformBypassFlag writer.WriteBit(current_context.qpprime_y_zero_transform_bypass_flag.Value() != 0);
writer.WriteBit(false); // Scaling matrix present flag writer.WriteBit(false); // Scaling matrix present flag
writer.WriteUe(static_cast<u32>(context.h264_parameter_set.log2_max_frame_num_minus4.Value())); writer.WriteUe(
static_cast<u32>(current_context.h264_parameter_set.log2_max_frame_num_minus4.Value()));
const auto order_cnt_type = const auto order_cnt_type =
static_cast<u32>(context.h264_parameter_set.pic_order_cnt_type.Value()); static_cast<u32>(current_context.h264_parameter_set.pic_order_cnt_type.Value());
writer.WriteUe(order_cnt_type); writer.WriteUe(order_cnt_type);
if (order_cnt_type == 0) { if (order_cnt_type == 0) {
writer.WriteUe(context.h264_parameter_set.log2_max_pic_order_cnt_lsb_minus4); writer.WriteUe(current_context.h264_parameter_set.log2_max_pic_order_cnt_lsb_minus4);
} else if (order_cnt_type == 1) { } else if (order_cnt_type == 1) {
writer.WriteBit(context.h264_parameter_set.delta_pic_order_always_zero_flag != 0); writer.WriteBit(current_context.h264_parameter_set.delta_pic_order_always_zero_flag != 0);
writer.WriteSe(0); writer.WriteSe(0);
writer.WriteSe(0); writer.WriteSe(0);
writer.WriteUe(0); writer.WriteUe(0);
} }
const s32 pic_height = context.h264_parameter_set.frame_height_in_map_units / const s32 pic_height = current_context.h264_parameter_set.frame_height_in_mbs /
(context.h264_parameter_set.frame_mbs_only_flag ? 1 : 2); (current_context.h264_parameter_set.frame_mbs_only_flag ? 1 : 2);
// TODO (ameerj): Where do we get this number, it seems to be particular for each stream u32 max_num_ref_frames =
const auto nvdec_decoding = Settings::values.nvdec_emulation.GetValue(); std::max(std::max(current_context.h264_parameter_set.num_refidx_l0_default_active,
const bool uses_gpu_decoding = nvdec_decoding == Settings::NvdecEmulation::Gpu; current_context.h264_parameter_set.num_refidx_l1_default_active) +
const u32 max_num_ref_frames = uses_gpu_decoding ? 6u : 16u; 1,
4);
writer.WriteUe(max_num_ref_frames); writer.WriteUe(max_num_ref_frames);
writer.WriteBit(false); writer.WriteBit(false);
writer.WriteUe(context.h264_parameter_set.pic_width_in_mbs - 1); writer.WriteUe(current_context.h264_parameter_set.pic_width_in_mbs - 1);
writer.WriteUe(pic_height - 1); writer.WriteUe(pic_height - 1);
writer.WriteBit(context.h264_parameter_set.frame_mbs_only_flag != 0); writer.WriteBit(current_context.h264_parameter_set.frame_mbs_only_flag != 0);
if (!context.h264_parameter_set.frame_mbs_only_flag) { if (!current_context.h264_parameter_set.frame_mbs_only_flag) {
writer.WriteBit(context.h264_parameter_set.flags.mbaff_frame.Value() != 0); writer.WriteBit(current_context.h264_parameter_set.flags.mbaff_frame.Value() != 0);
} }
writer.WriteBit(context.h264_parameter_set.flags.direct_8x8_inference.Value() != 0); writer.WriteBit(current_context.h264_parameter_set.flags.direct_8x8_inference.Value() != 0);
writer.WriteBit(false); // Frame cropping flag writer.WriteBit(false); // Frame cropping flag
writer.WriteBit(false); // VUI parameter present flag writer.WriteBit(false); // VUI parameter present flag
@ -111,57 +146,59 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteBit(context.h264_parameter_set.entropy_coding_mode_flag != 0); writer.WriteBit(current_context.h264_parameter_set.entropy_coding_mode_flag != 0);
writer.WriteBit(context.h264_parameter_set.pic_order_present_flag != 0); writer.WriteBit(current_context.h264_parameter_set.pic_order_present_flag != 0);
writer.WriteUe(0); writer.WriteUe(0);
writer.WriteUe(context.h264_parameter_set.num_refidx_l0_default_active); writer.WriteUe(current_context.h264_parameter_set.num_refidx_l0_default_active);
writer.WriteUe(context.h264_parameter_set.num_refidx_l1_default_active); writer.WriteUe(current_context.h264_parameter_set.num_refidx_l1_default_active);
writer.WriteBit(context.h264_parameter_set.flags.weighted_pred.Value() != 0); writer.WriteBit(current_context.h264_parameter_set.flags.weighted_pred.Value() != 0);
writer.WriteU(static_cast<s32>(context.h264_parameter_set.weighted_bipred_idc.Value()), 2); writer.WriteU(static_cast<s32>(current_context.h264_parameter_set.weighted_bipred_idc.Value()),
s32 pic_init_qp = static_cast<s32>(context.h264_parameter_set.pic_init_qp_minus26.Value()); 2);
s32 pic_init_qp =
static_cast<s32>(current_context.h264_parameter_set.pic_init_qp_minus26.Value());
writer.WriteSe(pic_init_qp); writer.WriteSe(pic_init_qp);
writer.WriteSe(0); writer.WriteSe(0);
s32 chroma_qp_index_offset = s32 chroma_qp_index_offset =
static_cast<s32>(context.h264_parameter_set.chroma_qp_index_offset.Value()); static_cast<s32>(current_context.h264_parameter_set.chroma_qp_index_offset.Value());
writer.WriteSe(chroma_qp_index_offset); writer.WriteSe(chroma_qp_index_offset);
writer.WriteBit(context.h264_parameter_set.deblocking_filter_control_present_flag != 0); writer.WriteBit(current_context.h264_parameter_set.deblocking_filter_control_present_flag != 0);
writer.WriteBit(context.h264_parameter_set.flags.constrained_intra_pred.Value() != 0); writer.WriteBit(current_context.h264_parameter_set.flags.constrained_intra_pred.Value() != 0);
writer.WriteBit(context.h264_parameter_set.redundant_pic_cnt_present_flag != 0); writer.WriteBit(current_context.h264_parameter_set.redundant_pic_cnt_present_flag != 0);
writer.WriteBit(context.h264_parameter_set.transform_8x8_mode_flag != 0); writer.WriteBit(current_context.h264_parameter_set.transform_8x8_mode_flag != 0);
writer.WriteBit(true); // pic_scaling_matrix_present_flag writer.WriteBit(true); // pic_scaling_matrix_present_flag
for (s32 index = 0; index < 6; index++) { for (s32 index = 0; index < 6; index++) {
writer.WriteBit(true); writer.WriteBit(true);
std::span<const u8> matrix{context.weight_scale}; std::span<const u8> matrix{current_context.weight_scale_4x4};
writer.WriteScalingList(scan, matrix, index * 16, 16); writer.WriteScalingList(scan_scratch, matrix, index * 16, 16);
} }
if (context.h264_parameter_set.transform_8x8_mode_flag) { if (current_context.h264_parameter_set.transform_8x8_mode_flag) {
for (s32 index = 0; index < 2; index++) { for (s32 index = 0; index < 2; index++) {
writer.WriteBit(true); writer.WriteBit(true);
std::span<const u8> matrix{context.weight_scale_8x8}; std::span<const u8> matrix{current_context.weight_scale_8x8};
writer.WriteScalingList(scan, matrix, index * 64, 64); writer.WriteScalingList(scan_scratch, matrix, index * 64, 64);
} }
} }
s32 chroma_qp_index_offset2 = s32 chroma_qp_index_offset2 =
static_cast<s32>(context.h264_parameter_set.second_chroma_qp_index_offset.Value()); static_cast<s32>(current_context.h264_parameter_set.second_chroma_qp_index_offset.Value());
writer.WriteSe(chroma_qp_index_offset2); writer.WriteSe(chroma_qp_index_offset2);
writer.End(); writer.End();
const auto& encoded_header = writer.GetByteArray(); const auto& encoded_header = writer.GetByteArray();
frame.resize(encoded_header.size() + context.stream_len); frame_scratch.resize(encoded_header.size() + current_context.stream_len);
std::memcpy(frame.data(), encoded_header.data(), encoded_header.size()); std::memcpy(frame_scratch.data(), encoded_header.data(), encoded_header.size());
*out_configuration_size = encoded_header.size(); memory_manager.ReadBlock(regs.frame_bitstream_offset.Address(),
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, frame.data() + encoded_header.size(), frame_scratch.data() + encoded_header.size(),
context.stream_len); current_context.stream_len);
return frame; return frame_scratch;
} }
H264BitWriter::H264BitWriter() = default; H264BitWriter::H264BitWriter() = default;
@ -278,4 +315,4 @@ void H264BitWriter::Flush() {
buffer = 0; buffer = 0;
buffer_pos = 0; buffer_pos = 0;
} }
} // namespace Tegra::Decoder } // namespace Tegra::Decoders

View file

@ -1,5 +1,5 @@
// SPDX-FileCopyrightText: Ryujinx Team and Contributors // SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: GPL-2.0-or-later
#pragma once #pragma once
@ -10,6 +10,7 @@
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "video_core/host1x/codecs/decoder.h"
#include "video_core/host1x/nvdec_common.h" #include "video_core/host1x/nvdec_common.h"
namespace Tegra { namespace Tegra {
@ -18,7 +19,7 @@ namespace Host1x {
class Host1x; class Host1x;
} // namespace Host1x } // namespace Host1x
namespace Decoder { namespace Decoders {
class H264BitWriter { class H264BitWriter {
public: public:
@ -60,123 +61,213 @@ private:
std::vector<u8> byte_array; std::vector<u8> byte_array;
}; };
class H264 { struct Offset {
public: constexpr u32 Address() const noexcept {
explicit H264(Host1x::Host1x& host1x); return offset << 8;
~H264(); }
/// Compose the H264 frame for FFmpeg decoding
[[nodiscard]] std::span<const u8> ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state,
size_t* out_configuration_size,
bool is_first_frame = false);
private: private:
Common::ScratchBuffer<u8> frame; u32 offset;
Common::ScratchBuffer<u8> scan; };
Host1x::Host1x& host1x; static_assert(std::is_trivial_v<Offset>, "Offset must be trivial");
static_assert(sizeof(Offset) == 0x4, "Offset has the wrong size!");
struct H264ParameterSet { struct H264ParameterSet {
s32 log2_max_pic_order_cnt_lsb_minus4; ///< 0x00 s32 log2_max_pic_order_cnt_lsb_minus4; ///< 0x00
s32 delta_pic_order_always_zero_flag; ///< 0x04 s32 delta_pic_order_always_zero_flag; ///< 0x04
s32 frame_mbs_only_flag; ///< 0x08 s32 frame_mbs_only_flag; ///< 0x08
u32 pic_width_in_mbs; ///< 0x0C u32 pic_width_in_mbs; ///< 0x0C
u32 frame_height_in_map_units; ///< 0x10 u32 frame_height_in_mbs; ///< 0x10
union { ///< 0x14 union { ///< 0x14
BitField<0, 2, u32> tile_format; BitField<0, 2, u32> tile_format;
BitField<2, 3, u32> gob_height; BitField<2, 3, u32> gob_height;
}; BitField<5, 27, u32> reserved_surface_format;
u32 entropy_coding_mode_flag; ///< 0x18
s32 pic_order_present_flag; ///< 0x1C
s32 num_refidx_l0_default_active; ///< 0x20
s32 num_refidx_l1_default_active; ///< 0x24
s32 deblocking_filter_control_present_flag; ///< 0x28
s32 redundant_pic_cnt_present_flag; ///< 0x2C
u32 transform_8x8_mode_flag; ///< 0x30
u32 pitch_luma; ///< 0x34
u32 pitch_chroma; ///< 0x38
u32 luma_top_offset; ///< 0x3C
u32 luma_bot_offset; ///< 0x40
u32 luma_frame_offset; ///< 0x44
u32 chroma_top_offset; ///< 0x48
u32 chroma_bot_offset; ///< 0x4C
u32 chroma_frame_offset; ///< 0x50
u32 hist_buffer_size; ///< 0x54
union { ///< 0x58
union {
BitField<0, 1, u64> mbaff_frame;
BitField<1, 1, u64> direct_8x8_inference;
BitField<2, 1, u64> weighted_pred;
BitField<3, 1, u64> constrained_intra_pred;
BitField<4, 1, u64> ref_pic;
BitField<5, 1, u64> field_pic;
BitField<6, 1, u64> bottom_field;
BitField<7, 1, u64> second_field;
} flags;
BitField<8, 4, u64> log2_max_frame_num_minus4;
BitField<12, 2, u64> chroma_format_idc;
BitField<14, 2, u64> pic_order_cnt_type;
BitField<16, 6, s64> pic_init_qp_minus26;
BitField<22, 5, s64> chroma_qp_index_offset;
BitField<27, 5, s64> second_chroma_qp_index_offset;
BitField<32, 2, u64> weighted_bipred_idc;
BitField<34, 7, u64> curr_pic_idx;
BitField<41, 5, u64> curr_col_idx;
BitField<46, 16, u64> frame_number;
BitField<62, 1, u64> frame_surfaces;
BitField<63, 1, u64> output_memory_layout;
};
}; };
static_assert(sizeof(H264ParameterSet) == 0x60, "H264ParameterSet is an invalid size"); u32 entropy_coding_mode_flag; ///< 0x18
s32 pic_order_present_flag; ///< 0x1C
struct H264DecoderContext { s32 num_refidx_l0_default_active; ///< 0x20
INSERT_PADDING_WORDS_NOINIT(18); ///< 0x0000 s32 num_refidx_l1_default_active; ///< 0x24
u32 stream_len; ///< 0x0048 s32 deblocking_filter_control_present_flag; ///< 0x28
INSERT_PADDING_WORDS_NOINIT(3); ///< 0x004C s32 redundant_pic_cnt_present_flag; ///< 0x2C
H264ParameterSet h264_parameter_set; ///< 0x0058 u32 transform_8x8_mode_flag; ///< 0x30
INSERT_PADDING_WORDS_NOINIT(66); ///< 0x00B8 u32 pitch_luma; ///< 0x34
std::array<u8, 0x60> weight_scale; ///< 0x01C0 u32 pitch_chroma; ///< 0x38
std::array<u8, 0x80> weight_scale_8x8; ///< 0x0220 Offset luma_top_offset; ///< 0x3C
Offset luma_bot_offset; ///< 0x40
Offset luma_frame_offset; ///< 0x44
Offset chroma_top_offset; ///< 0x48
Offset chroma_bot_offset; ///< 0x4C
Offset chroma_frame_offset; ///< 0x50
u32 hist_buffer_size; ///< 0x54
union { ///< 0x58
union {
BitField<0, 1, u64> mbaff_frame;
BitField<1, 1, u64> direct_8x8_inference;
BitField<2, 1, u64> weighted_pred;
BitField<3, 1, u64> constrained_intra_pred;
BitField<4, 1, u64> ref_pic;
BitField<5, 1, u64> field_pic;
BitField<6, 1, u64> bottom_field;
BitField<7, 1, u64> second_field;
} flags;
BitField<8, 4, u64> log2_max_frame_num_minus4;
BitField<12, 2, u64> chroma_format_idc;
BitField<14, 2, u64> pic_order_cnt_type;
BitField<16, 6, s64> pic_init_qp_minus26;
BitField<22, 5, s64> chroma_qp_index_offset;
BitField<27, 5, s64> second_chroma_qp_index_offset;
BitField<32, 2, u64> weighted_bipred_idc;
BitField<34, 7, u64> curr_pic_idx;
BitField<41, 5, u64> curr_col_idx;
BitField<46, 16, u64> frame_number;
BitField<62, 1, u64> frame_surfaces;
BitField<63, 1, u64> output_memory_layout;
}; };
static_assert(sizeof(H264DecoderContext) == 0x2A0, "H264DecoderContext is an invalid size"); };
static_assert(sizeof(H264ParameterSet) == 0x60, "H264ParameterSet is an invalid size");
#define ASSERT_POSITION(field_name, position) \ #define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(H264ParameterSet, field_name) == position, \ static_assert(offsetof(H264ParameterSet, field_name) == position, \
"Field " #field_name " has invalid position") "Field " #field_name " has invalid position")
ASSERT_POSITION(log2_max_pic_order_cnt_lsb_minus4, 0x00); ASSERT_POSITION(log2_max_pic_order_cnt_lsb_minus4, 0x00);
ASSERT_POSITION(delta_pic_order_always_zero_flag, 0x04); ASSERT_POSITION(delta_pic_order_always_zero_flag, 0x04);
ASSERT_POSITION(frame_mbs_only_flag, 0x08); ASSERT_POSITION(frame_mbs_only_flag, 0x08);
ASSERT_POSITION(pic_width_in_mbs, 0x0C); ASSERT_POSITION(pic_width_in_mbs, 0x0C);
ASSERT_POSITION(frame_height_in_map_units, 0x10); ASSERT_POSITION(frame_height_in_mbs, 0x10);
ASSERT_POSITION(tile_format, 0x14); ASSERT_POSITION(tile_format, 0x14);
ASSERT_POSITION(entropy_coding_mode_flag, 0x18); ASSERT_POSITION(entropy_coding_mode_flag, 0x18);
ASSERT_POSITION(pic_order_present_flag, 0x1C); ASSERT_POSITION(pic_order_present_flag, 0x1C);
ASSERT_POSITION(num_refidx_l0_default_active, 0x20); ASSERT_POSITION(num_refidx_l0_default_active, 0x20);
ASSERT_POSITION(num_refidx_l1_default_active, 0x24); ASSERT_POSITION(num_refidx_l1_default_active, 0x24);
ASSERT_POSITION(deblocking_filter_control_present_flag, 0x28); ASSERT_POSITION(deblocking_filter_control_present_flag, 0x28);
ASSERT_POSITION(redundant_pic_cnt_present_flag, 0x2C); ASSERT_POSITION(redundant_pic_cnt_present_flag, 0x2C);
ASSERT_POSITION(transform_8x8_mode_flag, 0x30); ASSERT_POSITION(transform_8x8_mode_flag, 0x30);
ASSERT_POSITION(pitch_luma, 0x34); ASSERT_POSITION(pitch_luma, 0x34);
ASSERT_POSITION(pitch_chroma, 0x38); ASSERT_POSITION(pitch_chroma, 0x38);
ASSERT_POSITION(luma_top_offset, 0x3C); ASSERT_POSITION(luma_top_offset, 0x3C);
ASSERT_POSITION(luma_bot_offset, 0x40); ASSERT_POSITION(luma_bot_offset, 0x40);
ASSERT_POSITION(luma_frame_offset, 0x44); ASSERT_POSITION(luma_frame_offset, 0x44);
ASSERT_POSITION(chroma_top_offset, 0x48); ASSERT_POSITION(chroma_top_offset, 0x48);
ASSERT_POSITION(chroma_bot_offset, 0x4C); ASSERT_POSITION(chroma_bot_offset, 0x4C);
ASSERT_POSITION(chroma_frame_offset, 0x50); ASSERT_POSITION(chroma_frame_offset, 0x50);
ASSERT_POSITION(hist_buffer_size, 0x54); ASSERT_POSITION(hist_buffer_size, 0x54);
ASSERT_POSITION(flags, 0x58); ASSERT_POSITION(flags, 0x58);
#undef ASSERT_POSITION #undef ASSERT_POSITION
struct DpbEntry {
union {
BitField<0, 7, u32> index;
BitField<7, 5, u32> col_idx;
BitField<12, 2, u32> state;
BitField<14, 1, u32> is_long_term;
BitField<15, 1, u32> non_existing;
BitField<16, 1, u32> is_field;
BitField<17, 4, u32> top_field_marking;
BitField<21, 4, u32> bottom_field_marking;
BitField<25, 1, u32> output_memory_layout;
BitField<26, 6, u32> reserved;
} flags;
std::array<u32, 2> field_order_cnt;
u32 frame_idx;
};
static_assert(sizeof(DpbEntry) == 0x10, "DpbEntry has the wrong size!");
struct DisplayParam {
union {
BitField<0, 1, u32> enable_tf_output;
BitField<1, 1, u32> vc1_map_y_flag;
BitField<2, 3, u32> map_y_value;
BitField<5, 1, u32> vc1_map_uv_flag;
BitField<6, 3, u32> map_uv_value;
BitField<9, 8, u32> out_stride;
BitField<17, 3, u32> tiling_format;
BitField<20, 1, u32> output_structure; // 0=frame, 1=field
BitField<21, 11, u32> reserved0;
};
std::array<s32, 2> output_top;
std::array<s32, 2> output_bottom;
union {
BitField<0, 1, u32> enable_histogram;
BitField<1, 12, u32> histogram_start_x;
BitField<13, 12, u32> histogram_start_y;
BitField<25, 7, u32> reserved1;
};
union {
BitField<0, 12, u32> histogram_end_x;
BitField<12, 12, u32> histogram_end_y;
BitField<24, 8, u32> reserved2;
};
};
static_assert(sizeof(DisplayParam) == 0x1C, "DisplayParam has the wrong size!");
struct H264DecoderContext {
INSERT_PADDING_WORDS_NOINIT(13); ///< 0x0000
std::array<u8, 16> eos; ///< 0x0034
u8 explicit_eos_present_flag; ///< 0x0044
u8 hint_dump_en; ///< 0x0045
INSERT_PADDING_BYTES_NOINIT(2); ///< 0x0046
u32 stream_len; ///< 0x0048
u32 slice_count; ///< 0x004C
u32 mbhist_buffer_size; ///< 0x0050
u32 gptimer_timeout_value; ///< 0x0054
H264ParameterSet h264_parameter_set; ///< 0x0058
std::array<s32, 2> curr_field_order_cnt; ///< 0x00B8
std::array<DpbEntry, 16> dpb; ///< 0x00C0
std::array<u8, 0x60> weight_scale_4x4; ///< 0x01C0
std::array<u8, 0x80> weight_scale_8x8; ///< 0x0220
std::array<u8, 2> num_inter_view_refs_lX; ///< 0x02A0
std::array<u8, 14> reserved2; ///< 0x02A2
std::array<std::array<s8, 16>, 2> inter_view_refidx_lX; ///< 0x02B0
union { ///< 0x02D0
BitField<0, 1, u32> lossless_ipred8x8_filter_enable;
BitField<1, 1, u32> qpprime_y_zero_transform_bypass_flag;
BitField<2, 30, u32> reserved3;
};
DisplayParam display_param; ///< 0x02D4
std::array<u32, 3> reserved4; ///< 0x02F0
};
static_assert(sizeof(H264DecoderContext) == 0x2FC, "H264DecoderContext is an invalid size");
#define ASSERT_POSITION(field_name, position) \ #define ASSERT_POSITION(field_name, position) \
static_assert(offsetof(H264DecoderContext, field_name) == position, \ static_assert(offsetof(H264DecoderContext, field_name) == position, \
"Field " #field_name " has invalid position") "Field " #field_name " has invalid position")
ASSERT_POSITION(stream_len, 0x48); ASSERT_POSITION(stream_len, 0x48);
ASSERT_POSITION(h264_parameter_set, 0x58); ASSERT_POSITION(h264_parameter_set, 0x58);
ASSERT_POSITION(weight_scale, 0x1C0); ASSERT_POSITION(dpb, 0xC0);
ASSERT_POSITION(weight_scale_4x4, 0x1C0);
#undef ASSERT_POSITION #undef ASSERT_POSITION
class H264 final : public Decoder {
public:
explicit H264(Host1x::Host1x& host1x, const Host1x::NvdecCommon::NvdecRegisters& regs, s32 id,
Host1x::FrameQueue& frame_queue);
~H264() override;
H264(const H264&) = delete;
H264& operator=(const H264&) = delete;
H264(H264&&) = delete;
H264& operator=(H264&&) = delete;
/// Compose the H264 frame for FFmpeg decoding
[[nodiscard]] std::span<const u8> ComposeFrame() override;
std::tuple<u64, u64> GetProgressiveOffsets() override;
std::tuple<u64, u64, u64, u64> GetInterlacedOffsets() override;
bool IsInterlaced() override;
std::string_view GetCurrentCodecName() const override {
return "H264";
}
private:
bool is_first_frame{true};
Common::ScratchBuffer<u8> frame_scratch;
Common::ScratchBuffer<u8> scan_scratch;
H264DecoderContext current_context{};
}; };
} // namespace Decoder } // namespace Decoders
} // namespace Tegra } // namespace Tegra

View file

@ -7,47 +7,70 @@
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
namespace Tegra::Decoder { namespace Tegra::Decoders {
VP8::VP8(Host1x::Host1x& host1x_) : host1x{host1x_} {} VP8::VP8(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs_, s32 id_,
Host1x::FrameQueue& frame_queue_)
: Decoder{host1x_, id_, regs_, frame_queue_} {
codec = Host1x::NvdecCommon::VideoCodec::VP8;
initialized = decode_api.Initialize(codec);
}
VP8::~VP8() = default; VP8::~VP8() = default;
std::span<const u8> VP8::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state) { std::tuple<u64, u64> VP8::GetProgressiveOffsets() {
VP8PictureInfo info; auto luma{regs.surface_luma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
host1x.GMMU().ReadBlock(state.picture_info_offset, &info, sizeof(VP8PictureInfo)); auto chroma{regs.surface_chroma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
return {luma, chroma};
}
const bool is_key_frame = info.key_frame == 1u; std::tuple<u64, u64, u64, u64> VP8::GetInterlacedOffsets() {
const auto bitstream_size = static_cast<size_t>(info.vld_buffer_size); auto luma_top{regs.surface_luma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
auto luma_bottom{
regs.surface_luma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
auto chroma_top{
regs.surface_chroma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
auto chroma_bottom{
regs.surface_chroma_offsets[static_cast<u32>(Vp8SurfaceIndex::Current)].Address()};
return {luma_top, luma_bottom, chroma_top, chroma_bottom};
}
std::span<const u8> VP8::ComposeFrame() {
memory_manager.ReadBlock(regs.picture_info_offset.Address(), &current_context,
sizeof(VP8PictureInfo));
const bool is_key_frame = current_context.key_frame == 1u;
const auto bitstream_size = static_cast<size_t>(current_context.vld_buffer_size);
const size_t header_size = is_key_frame ? 10u : 3u; const size_t header_size = is_key_frame ? 10u : 3u;
frame.resize(header_size + bitstream_size); frame_scratch.resize(header_size + bitstream_size);
// Based on page 30 of the VP8 specification. // Based on page 30 of the VP8 specification.
// https://datatracker.ietf.org/doc/rfc6386/ // https://datatracker.ietf.org/doc/rfc6386/
frame[0] = is_key_frame ? 0u : 1u; // 1-bit frame type (0: keyframe, 1: interframes). frame_scratch[0] = is_key_frame ? 0u : 1u; // 1-bit frame type (0: keyframe, 1: interframes).
frame[0] |= static_cast<u8>((info.version & 7u) << 1u); // 3-bit version number frame_scratch[0] |=
frame[0] |= static_cast<u8>(1u << 4u); // 1-bit show_frame flag static_cast<u8>((current_context.version & 7u) << 1u); // 3-bit version number
frame_scratch[0] |= static_cast<u8>(1u << 4u); // 1-bit show_frame flag
// The next 19-bits are the first partition size // The next 19-bits are the first partition size
frame[0] |= static_cast<u8>((info.first_part_size & 7u) << 5u); frame_scratch[0] |= static_cast<u8>((current_context.first_part_size & 7u) << 5u);
frame[1] = static_cast<u8>((info.first_part_size & 0x7f8u) >> 3u); frame_scratch[1] = static_cast<u8>((current_context.first_part_size & 0x7f8u) >> 3u);
frame[2] = static_cast<u8>((info.first_part_size & 0x7f800u) >> 11u); frame_scratch[2] = static_cast<u8>((current_context.first_part_size & 0x7f800u) >> 11u);
if (is_key_frame) { if (is_key_frame) {
frame[3] = 0x9du; frame_scratch[3] = 0x9du;
frame[4] = 0x01u; frame_scratch[4] = 0x01u;
frame[5] = 0x2au; frame_scratch[5] = 0x2au;
// TODO(ameerj): Horizontal/Vertical Scale // TODO(ameerj): Horizontal/Vertical Scale
// 16 bits: (2 bits Horizontal Scale << 14) | Width (14 bits) // 16 bits: (2 bits Horizontal Scale << 14) | Width (14 bits)
frame[6] = static_cast<u8>(info.frame_width & 0xff); frame_scratch[6] = static_cast<u8>(current_context.frame_width & 0xff);
frame[7] = static_cast<u8>(((info.frame_width >> 8) & 0x3f)); frame_scratch[7] = static_cast<u8>(((current_context.frame_width >> 8) & 0x3f));
// 16 bits:(2 bits Vertical Scale << 14) | Height (14 bits) // 16 bits:(2 bits Vertical Scale << 14) | Height (14 bits)
frame[8] = static_cast<u8>(info.frame_height & 0xff); frame_scratch[8] = static_cast<u8>(current_context.frame_height & 0xff);
frame[9] = static_cast<u8>(((info.frame_height >> 8) & 0x3f)); frame_scratch[9] = static_cast<u8>(((current_context.frame_height >> 8) & 0x3f));
} }
const u64 bitstream_offset = state.frame_bitstream_offset; const u64 bitstream_offset = regs.frame_bitstream_offset.Address();
host1x.GMMU().ReadBlock(bitstream_offset, frame.data() + header_size, bitstream_size); memory_manager.ReadBlock(bitstream_offset, frame_scratch.data() + header_size, bitstream_size);
return frame; return frame_scratch;
} }
} // namespace Tegra::Decoder } // namespace Tegra::Decoders

View file

@ -9,6 +9,7 @@
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "video_core/host1x/codecs/decoder.h"
#include "video_core/host1x/nvdec_common.h" #include "video_core/host1x/nvdec_common.h"
namespace Tegra { namespace Tegra {
@ -17,20 +18,41 @@ namespace Host1x {
class Host1x; class Host1x;
} // namespace Host1x } // namespace Host1x
namespace Decoder { namespace Decoders {
enum class Vp8SurfaceIndex : u32 {
Last = 0,
Golden = 1,
AltRef = 2,
Current = 3,
};
class VP8 { class VP8 final : public Decoder {
public: public:
explicit VP8(Host1x::Host1x& host1x); explicit VP8(Host1x::Host1x& host1x, const Host1x::NvdecCommon::NvdecRegisters& regs, s32 id,
~VP8(); Host1x::FrameQueue& frame_queue);
~VP8() override;
/// Compose the VP8 frame for FFmpeg decoding VP8(const VP8&) = delete;
[[nodiscard]] std::span<const u8> ComposeFrame( VP8& operator=(const VP8&) = delete;
const Host1x::NvdecCommon::NvdecRegisters& state);
VP8(VP8&&) = delete;
VP8& operator=(VP8&&) = delete;
[[nodiscard]] std::span<const u8> ComposeFrame() override;
std::tuple<u64, u64> GetProgressiveOffsets() override;
std::tuple<u64, u64, u64, u64> GetInterlacedOffsets() override;
bool IsInterlaced() override {
return false;
}
std::string_view GetCurrentCodecName() const override {
return "VP8";
}
private: private:
Common::ScratchBuffer<u8> frame; Common::ScratchBuffer<u8> frame_scratch;
Host1x::Host1x& host1x;
struct VP8PictureInfo { struct VP8PictureInfo {
INSERT_PADDING_WORDS_NOINIT(14); INSERT_PADDING_WORDS_NOINIT(14);
@ -73,7 +95,9 @@ private:
INSERT_PADDING_WORDS_NOINIT(3); INSERT_PADDING_WORDS_NOINIT(3);
}; };
static_assert(sizeof(VP8PictureInfo) == 0xc0, "PictureInfo is an invalid size"); static_assert(sizeof(VP8PictureInfo) == 0xc0, "PictureInfo is an invalid size");
VP8PictureInfo current_context{};
}; };
} // namespace Decoder } // namespace Decoders
} // namespace Tegra } // namespace Tegra

View file

@ -4,12 +4,13 @@
#include <algorithm> // for std::copy #include <algorithm> // for std::copy
#include <numeric> #include <numeric>
#include "common/alignment.h"
#include "common/assert.h" #include "common/assert.h"
#include "video_core/host1x/codecs/vp9.h" #include "video_core/host1x/codecs/vp9.h"
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
namespace Tegra::Decoder { namespace Tegra::Decoders {
namespace { namespace {
constexpr u32 diff_update_probability = 252; constexpr u32 diff_update_probability = 252;
constexpr u32 frame_sync_code = 0x498342; constexpr u32 frame_sync_code = 0x498342;
@ -237,7 +238,12 @@ constexpr std::array<u8, 254> map_lut{
} }
} // Anonymous namespace } // Anonymous namespace
VP9::VP9(Host1x::Host1x& host1x_) : host1x{host1x_} {} VP9::VP9(Host1x::Host1x& host1x_, const Host1x::NvdecCommon::NvdecRegisters& regs_, s32 id_,
Host1x::FrameQueue& frame_queue_)
: Decoder{host1x_, id_, regs_, frame_queue_} {
codec = Host1x::NvdecCommon::VideoCodec::VP9;
initialized = decode_api.Initialize(codec);
}
VP9::~VP9() = default; VP9::~VP9() = default;
@ -356,35 +362,113 @@ void VP9::WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_
} }
} }
Vp9PictureInfo VP9::GetVp9PictureInfo(const Host1x::NvdecCommon::NvdecRegisters& state) { void VP9::WriteSegmentation(VpxBitStreamWriter& writer) {
PictureInfo picture_info; bool enabled = current_picture_info.segmentation.enabled != 0;
host1x.GMMU().ReadBlock(state.picture_info_offset, &picture_info, sizeof(PictureInfo)); writer.WriteBit(enabled);
Vp9PictureInfo vp9_info = picture_info.Convert(); if (!enabled) {
return;
}
InsertEntropy(state.vp9_entropy_probs_offset, vp9_info.entropy); auto update_map = current_picture_info.segmentation.update_map != 0;
writer.WriteBit(update_map);
if (update_map) {
EntropyProbs entropy_probs{};
memory_manager.ReadBlock(regs.vp9_prob_tab_buffer_offset.Address(), &entropy_probs,
sizeof(entropy_probs));
auto WriteProb = [&](u8 prob) {
bool coded = prob != 255;
writer.WriteBit(coded);
if (coded) {
writer.WriteU(prob, 8);
}
};
for (size_t i = 0; i < entropy_probs.mb_segment_tree_probs.size(); i++) {
WriteProb(entropy_probs.mb_segment_tree_probs[i]);
}
auto temporal_update = current_picture_info.segmentation.temporal_update != 0;
writer.WriteBit(temporal_update);
if (temporal_update) {
for (s32 i = 0; i < 3; i++) {
WriteProb(entropy_probs.segment_pred_probs[i]);
}
}
}
if (last_segmentation == current_picture_info.segmentation) {
writer.WriteBit(false);
return;
}
last_segmentation = current_picture_info.segmentation;
writer.WriteBit(true);
writer.WriteBit(current_picture_info.segmentation.abs_delta != 0);
constexpr s32 MAX_SEGMENTS = 8;
constexpr std::array SegmentationFeatureBits = {8, 6, 2, 0};
for (s32 i = 0; i < MAX_SEGMENTS; i++) {
auto q_enabled = current_picture_info.segmentation.feature_enabled[i][0] != 0;
writer.WriteBit(q_enabled);
if (q_enabled) {
writer.WriteS(current_picture_info.segmentation.feature_data[i][0],
SegmentationFeatureBits[0]);
}
auto lf_enabled = current_picture_info.segmentation.feature_enabled[i][1] != 0;
writer.WriteBit(lf_enabled);
if (lf_enabled) {
writer.WriteS(current_picture_info.segmentation.feature_data[i][1],
SegmentationFeatureBits[1]);
}
auto ref_enabled = current_picture_info.segmentation.feature_enabled[i][2] != 0;
writer.WriteBit(ref_enabled);
if (ref_enabled) {
writer.WriteU(current_picture_info.segmentation.feature_data[i][2],
SegmentationFeatureBits[2]);
}
auto skip_enabled = current_picture_info.segmentation.feature_enabled[i][3] != 0;
writer.WriteBit(skip_enabled);
}
}
Vp9PictureInfo VP9::GetVp9PictureInfo() {
memory_manager.ReadBlock(regs.picture_info_offset.Address(), &current_picture_info,
sizeof(PictureInfo));
Vp9PictureInfo vp9_info = current_picture_info.Convert();
InsertEntropy(regs.vp9_prob_tab_buffer_offset.Address(), vp9_info.entropy);
// surface_luma_offset[0:3] contains the address of the reference frame offsets in the following // surface_luma_offset[0:3] contains the address of the reference frame offsets in the following
// order: last, golden, altref, current. // order: last, golden, altref, current.
std::copy(state.surface_luma_offset.begin(), state.surface_luma_offset.begin() + 4, for (size_t i = 0; i < 4; i++) {
vp9_info.frame_offsets.begin()); vp9_info.frame_offsets[i] = regs.surface_luma_offsets[i].Address();
}
return vp9_info; return vp9_info;
} }
void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) { void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) {
EntropyProbs entropy; EntropyProbs entropy;
host1x.GMMU().ReadBlock(offset, &entropy, sizeof(EntropyProbs)); memory_manager.ReadBlock(offset, &entropy, sizeof(EntropyProbs));
entropy.Convert(dst); entropy.Convert(dst);
} }
Vp9FrameContainer VP9::GetCurrentFrame(const Host1x::NvdecCommon::NvdecRegisters& state) { Vp9FrameContainer VP9::GetCurrentFrame() {
Vp9FrameContainer current_frame{}; Vp9FrameContainer current_frame{};
{ {
// gpu.SyncGuestHost(); epic, why? // gpu.SyncGuestHost(); epic, why?
current_frame.info = GetVp9PictureInfo(state); current_frame.info = GetVp9PictureInfo();
current_frame.bit_stream.resize(current_frame.info.bitstream_size); current_frame.bit_stream.resize(current_frame.info.bitstream_size);
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, current_frame.bit_stream.data(), memory_manager.ReadBlock(regs.frame_bitstream_offset.Address(),
current_frame.info.bitstream_size); current_frame.bit_stream.data(),
current_frame.info.bitstream_size);
} }
if (!next_frame.bit_stream.empty()) { if (!next_frame.bit_stream.empty()) {
Vp9FrameContainer temp{ Vp9FrameContainer temp{
@ -742,8 +826,7 @@ VpxBitStreamWriter VP9::ComposeUncompressedHeader() {
uncomp_writer.WriteDeltaQ(current_frame_info.uv_dc_delta_q); uncomp_writer.WriteDeltaQ(current_frame_info.uv_dc_delta_q);
uncomp_writer.WriteDeltaQ(current_frame_info.uv_ac_delta_q); uncomp_writer.WriteDeltaQ(current_frame_info.uv_ac_delta_q);
ASSERT(!current_frame_info.segment_enabled); WriteSegmentation(uncomp_writer);
uncomp_writer.WriteBit(false); // Segmentation enabled (TODO).
const s32 min_tile_cols_log2 = CalcMinLog2TileCols(current_frame_info.frame_size.width); const s32 min_tile_cols_log2 = CalcMinLog2TileCols(current_frame_info.frame_size.width);
const s32 max_tile_cols_log2 = CalcMaxLog2TileCols(current_frame_info.frame_size.width); const s32 max_tile_cols_log2 = CalcMaxLog2TileCols(current_frame_info.frame_size.width);
@ -770,10 +853,29 @@ VpxBitStreamWriter VP9::ComposeUncompressedHeader() {
return uncomp_writer; return uncomp_writer;
} }
void VP9::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state) { std::tuple<u64, u64> VP9::GetProgressiveOffsets() {
auto luma{regs.surface_luma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
auto chroma{regs.surface_chroma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
return {luma, chroma};
}
std::tuple<u64, u64, u64, u64> VP9::GetInterlacedOffsets() {
auto luma_top{regs.surface_luma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
auto luma_bottom{
regs.surface_luma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
auto chroma_top{
regs.surface_chroma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
auto chroma_bottom{
regs.surface_chroma_offsets[static_cast<u32>(Vp9SurfaceIndex::Current)].Address()};
return {luma_top, luma_bottom, chroma_top, chroma_bottom};
}
std::span<const u8> VP9::ComposeFrame() {
vp9_hidden_frame = false;
std::vector<u8> bitstream; std::vector<u8> bitstream;
{ {
Vp9FrameContainer curr_frame = GetCurrentFrame(state); Vp9FrameContainer curr_frame = GetCurrentFrame();
current_frame_info = curr_frame.info; current_frame_info = curr_frame.info;
bitstream = std::move(curr_frame.bit_stream); bitstream = std::move(curr_frame.bit_stream);
} }
@ -786,12 +888,16 @@ void VP9::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state) {
std::vector<u8> uncompressed_header = uncomp_writer.GetByteArray(); std::vector<u8> uncompressed_header = uncomp_writer.GetByteArray();
// Write headers and frame to buffer // Write headers and frame to buffer
frame.resize(uncompressed_header.size() + compressed_header.size() + bitstream.size()); frame_scratch.resize(uncompressed_header.size() + compressed_header.size() + bitstream.size());
std::copy(uncompressed_header.begin(), uncompressed_header.end(), frame.begin()); std::copy(uncompressed_header.begin(), uncompressed_header.end(), frame_scratch.begin());
std::copy(compressed_header.begin(), compressed_header.end(), std::copy(compressed_header.begin(), compressed_header.end(),
frame.begin() + uncompressed_header.size()); frame_scratch.begin() + uncompressed_header.size());
std::copy(bitstream.begin(), bitstream.end(), std::copy(bitstream.begin(), bitstream.end(),
frame.begin() + uncompressed_header.size() + compressed_header.size()); frame_scratch.begin() + uncompressed_header.size() + compressed_header.size());
vp9_hidden_frame = WasFrameHidden();
return GetFrameBytes();
} }
VpxRangeEncoder::VpxRangeEncoder() { VpxRangeEncoder::VpxRangeEncoder() {
@ -944,4 +1050,4 @@ const std::vector<u8>& VpxBitStreamWriter::GetByteArray() const {
return byte_array; return byte_array;
} }
} // namespace Tegra::Decoder } // namespace Tegra::Decoders

View file

@ -10,6 +10,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "common/stream.h" #include "common/stream.h"
#include "video_core/host1x/codecs/decoder.h"
#include "video_core/host1x/codecs/vp9_types.h" #include "video_core/host1x/codecs/vp9_types.h"
#include "video_core/host1x/nvdec_common.h" #include "video_core/host1x/nvdec_common.h"
@ -19,7 +20,7 @@ namespace Host1x {
class Host1x; class Host1x;
} // namespace Host1x } // namespace Host1x
namespace Decoder { namespace Decoders {
/// The VpxRangeEncoder, and VpxBitStreamWriter classes are used to compose the /// The VpxRangeEncoder, and VpxBitStreamWriter classes are used to compose the
/// VP9 header bitstreams. /// VP9 header bitstreams.
@ -110,21 +111,32 @@ private:
std::vector<u8> byte_array; std::vector<u8> byte_array;
}; };
class VP9 { class VP9 final : public Decoder {
public: public:
explicit VP9(Host1x::Host1x& host1x); explicit VP9(Host1x::Host1x& host1x, const Host1x::NvdecCommon::NvdecRegisters& regs, s32 id,
~VP9(); Host1x::FrameQueue& frame_queue);
~VP9() override;
VP9(const VP9&) = delete; VP9(const VP9&) = delete;
VP9& operator=(const VP9&) = delete; VP9& operator=(const VP9&) = delete;
VP9(VP9&&) = default; VP9(VP9&&) = delete;
VP9& operator=(VP9&&) = delete; VP9& operator=(VP9&&) = delete;
/// Composes the VP9 frame from the GPU state information. [[nodiscard]] std::span<const u8> ComposeFrame() override;
/// Based on the official VP9 spec documentation
void ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state);
std::tuple<u64, u64> GetProgressiveOffsets() override;
std::tuple<u64, u64, u64, u64> GetInterlacedOffsets() override;
bool IsInterlaced() override {
return false;
}
std::string_view GetCurrentCodecName() const override {
return "VP9";
}
private:
/// Returns true if the most recent frame was a hidden frame. /// Returns true if the most recent frame was a hidden frame.
[[nodiscard]] bool WasFrameHidden() const { [[nodiscard]] bool WasFrameHidden() const {
return !current_frame_info.show_frame; return !current_frame_info.show_frame;
@ -132,10 +144,9 @@ public:
/// Returns a const span to the composed frame data. /// Returns a const span to the composed frame data.
[[nodiscard]] std::span<const u8> GetFrameBytes() const { [[nodiscard]] std::span<const u8> GetFrameBytes() const {
return frame; return frame_scratch;
} }
private:
/// Generates compressed header probability updates in the bitstream writer /// Generates compressed header probability updates in the bitstream writer
template <typename T, std::size_t N> template <typename T, std::size_t N>
void WriteProbabilityUpdate(VpxRangeEncoder& writer, const std::array<T, N>& new_prob, void WriteProbabilityUpdate(VpxRangeEncoder& writer, const std::array<T, N>& new_prob,
@ -167,23 +178,22 @@ private:
/// Write motion vector probability updates. 6.3.17 in the spec /// Write motion vector probability updates. 6.3.17 in the spec
void WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_prob); void WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_prob);
void WriteSegmentation(VpxBitStreamWriter& writer);
/// Returns VP9 information from NVDEC provided offset and size /// Returns VP9 information from NVDEC provided offset and size
[[nodiscard]] Vp9PictureInfo GetVp9PictureInfo( [[nodiscard]] Vp9PictureInfo GetVp9PictureInfo();
const Host1x::NvdecCommon::NvdecRegisters& state);
/// Read and convert NVDEC provided entropy probs to Vp9EntropyProbs struct /// Read and convert NVDEC provided entropy probs to Vp9EntropyProbs struct
void InsertEntropy(u64 offset, Vp9EntropyProbs& dst); void InsertEntropy(u64 offset, Vp9EntropyProbs& dst);
/// Returns frame to be decoded after buffering /// Returns frame to be decoded after buffering
[[nodiscard]] Vp9FrameContainer GetCurrentFrame( [[nodiscard]] Vp9FrameContainer GetCurrentFrame();
const Host1x::NvdecCommon::NvdecRegisters& state);
/// Use NVDEC providied information to compose the headers for the current frame /// Use NVDEC providied information to compose the headers for the current frame
[[nodiscard]] std::vector<u8> ComposeCompressedHeader(); [[nodiscard]] std::vector<u8> ComposeCompressedHeader();
[[nodiscard]] VpxBitStreamWriter ComposeUncompressedHeader(); [[nodiscard]] VpxBitStreamWriter ComposeUncompressedHeader();
Host1x::Host1x& host1x; Common::ScratchBuffer<u8> frame_scratch;
Common::ScratchBuffer<u8> frame;
std::array<s8, 4> loop_filter_ref_deltas{}; std::array<s8, 4> loop_filter_ref_deltas{};
std::array<s8, 2> loop_filter_mode_deltas{}; std::array<s8, 2> loop_filter_mode_deltas{};
@ -192,9 +202,11 @@ private:
std::array<Vp9EntropyProbs, 4> frame_ctxs{}; std::array<Vp9EntropyProbs, 4> frame_ctxs{};
bool swap_ref_indices{}; bool swap_ref_indices{};
Segmentation last_segmentation{};
PictureInfo current_picture_info{};
Vp9PictureInfo current_frame_info{}; Vp9PictureInfo current_frame_info{};
Vp9EntropyProbs prev_frame_probs{}; Vp9EntropyProbs prev_frame_probs{};
}; };
} // namespace Decoder } // namespace Decoders
} // namespace Tegra } // namespace Tegra

View file

@ -11,7 +11,14 @@
namespace Tegra { namespace Tegra {
namespace Decoder { namespace Decoders {
enum class Vp9SurfaceIndex : u32 {
Last = 0,
Golden = 1,
AltRef = 2,
Current = 3,
};
struct Vp9FrameDimensions { struct Vp9FrameDimensions {
s16 width; s16 width;
s16 height; s16 height;
@ -48,11 +55,13 @@ enum class TxMode {
}; };
struct Segmentation { struct Segmentation {
constexpr bool operator==(const Segmentation& rhs) const = default;
u8 enabled; u8 enabled;
u8 update_map; u8 update_map;
u8 temporal_update; u8 temporal_update;
u8 abs_delta; u8 abs_delta;
std::array<u32, 8> feature_mask; std::array<std::array<u8, 4>, 8> feature_enabled;
std::array<std::array<s16, 4>, 8> feature_data; std::array<std::array<s16, 4>, 8> feature_data;
}; };
static_assert(sizeof(Segmentation) == 0x64, "Segmentation is an invalid size"); static_assert(sizeof(Segmentation) == 0x64, "Segmentation is an invalid size");
@ -190,7 +199,17 @@ struct PictureInfo {
static_assert(sizeof(PictureInfo) == 0x100, "PictureInfo is an invalid size"); static_assert(sizeof(PictureInfo) == 0x100, "PictureInfo is an invalid size");
struct EntropyProbs { struct EntropyProbs {
INSERT_PADDING_BYTES_NOINIT(1024); ///< 0x0000 std::array<u8, 10 * 10 * 8> kf_bmode_prob; ///< 0x0000
std::array<u8, 10 * 10 * 1> kf_bmode_probB; ///< 0x0320
std::array<u8, 3> ref_pred_probs; ///< 0x0384
std::array<u8, 7> mb_segment_tree_probs; ///< 0x0387
std::array<u8, 3> segment_pred_probs; ///< 0x038E
std::array<u8, 4> ref_scores; ///< 0x0391
std::array<u8, 2> prob_comppred; ///< 0x0395
INSERT_PADDING_BYTES_NOINIT(9); ///< 0x0397
std::array<u8, 10 * 8> kf_uv_mode_prob; ///< 0x03A0
std::array<u8, 10 * 1> kf_uv_mode_probB; ///< 0x03F0
INSERT_PADDING_BYTES_NOINIT(6); ///< 0x03FA
std::array<u8, 28> inter_mode_prob; ///< 0x0400 std::array<u8, 28> inter_mode_prob; ///< 0x0400
std::array<u8, 4> intra_inter_prob; ///< 0x041C std::array<u8, 4> intra_inter_prob; ///< 0x041C
INSERT_PADDING_BYTES_NOINIT(80); ///< 0x0420 INSERT_PADDING_BYTES_NOINIT(80); ///< 0x0420
@ -302,5 +321,5 @@ ASSERT_POSITION(class_0_fr, 0x560);
ASSERT_POSITION(coef_probs, 0x5A0); ASSERT_POSITION(coef_probs, 0x5A0);
#undef ASSERT_POSITION #undef ASSERT_POSITION
}; // namespace Decoder }; // namespace Decoders
}; // namespace Tegra }; // namespace Tegra

View file

@ -27,6 +27,7 @@ void Control::ProcessMethod(Method method, u32 argument) {
} }
void Control::Execute(u32 data) { void Control::Execute(u32 data) {
LOG_TRACE(Service_NVDRV, "Control wait syncpt {} value {}", data, syncpoint_value);
host1x.GetSyncpointManager().WaitHost(data, syncpoint_value); host1x.GetSyncpointManager().WaitHost(data, syncpoint_value);
} }

View file

@ -6,9 +6,7 @@
#include "common/common_types.h" #include "common/common_types.h"
namespace Tegra { namespace Tegra::Host1x {
namespace Host1x {
class Host1x; class Host1x;
class Nvdec; class Nvdec;
@ -31,10 +29,8 @@ private:
/// For Host1x, execute is waiting on a syncpoint previously written into the state /// For Host1x, execute is waiting on a syncpoint previously written into the state
void Execute(u32 data); void Execute(u32 data);
u32 syncpoint_value{};
Host1x& host1x; Host1x& host1x;
u32 syncpoint_value{};
}; };
} // namespace Host1x } // namespace Tegra::Host1x
} // namespace Tegra

View file

@ -5,7 +5,9 @@
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/scope_exit.h" #include "common/scope_exit.h"
#include "common/settings.h" #include "common/settings.h"
#include "core/memory.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h" #include "video_core/host1x/ffmpeg/ffmpeg.h"
#include "video_core/memory_manager.h"
extern "C" { extern "C" {
#ifdef LIBVA_FOUND #ifdef LIBVA_FOUND
@ -149,6 +151,7 @@ bool HardwareContext::InitializeForDecoder(DecoderContext& decoder_context,
} }
} }
LOG_INFO(HW_GPU, "Hardware decoding is disabled due to implementation issues, using CPU.");
return false; return false;
} }
@ -183,8 +186,8 @@ bool HardwareContext::InitializeWithType(AVHWDeviceType type) {
return true; return true;
} }
DecoderContext::DecoderContext(const Decoder& decoder) { DecoderContext::DecoderContext(const Decoder& decoder) : m_decoder{decoder} {
m_codec_context = avcodec_alloc_context3(decoder.GetCodec()); m_codec_context = avcodec_alloc_context3(m_decoder.GetCodec());
av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0); av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0);
m_codec_context->thread_count = 0; m_codec_context->thread_count = 0;
m_codec_context->thread_type &= ~FF_THREAD_FRAME; m_codec_context->thread_type &= ~FF_THREAD_FRAME;
@ -216,6 +219,25 @@ bool DecoderContext::OpenContext(const Decoder& decoder) {
} }
bool DecoderContext::SendPacket(const Packet& packet) { bool DecoderContext::SendPacket(const Packet& packet) {
m_temp_frame = std::make_shared<Frame>();
m_got_frame = 0;
// Android can randomly crash when calling decode directly, so skip.
// TODO update ffmpeg and hope that fixes it.
#ifndef ANDROID
if (!m_codec_context->hw_device_ctx && m_codec_context->codec_id == AV_CODEC_ID_H264) {
m_decode_order = true;
auto* codec{ffcodec(m_decoder.GetCodec())};
if (const int ret = codec->cb.decode(m_codec_context, m_temp_frame->GetFrame(),
&m_got_frame, packet.GetPacket());
ret < 0) {
LOG_DEBUG(Service_NVDRV, "avcodec_send_packet error {}", AVError(ret));
return false;
}
return true;
}
#endif
if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) { if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret)); LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret));
return false; return false;
@ -224,139 +246,73 @@ bool DecoderContext::SendPacket(const Packet& packet) {
return true; return true;
} }
std::unique_ptr<Frame> DecoderContext::ReceiveFrame(bool* out_is_interlaced) { std::shared_ptr<Frame> DecoderContext::ReceiveFrame() {
auto dst_frame = std::make_unique<Frame>(); // Android can randomly crash when calling decode directly, so skip.
// TODO update ffmpeg and hope that fixes it.
#ifndef ANDROID
if (!m_codec_context->hw_device_ctx && m_codec_context->codec_id == AV_CODEC_ID_H264) {
m_decode_order = true;
auto* codec{ffcodec(m_decoder.GetCodec())};
int ret{0};
const auto ReceiveImpl = [&](AVFrame* frame) { if (m_got_frame == 0) {
if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) { Packet packet{{}};
LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret)); auto* pkt = packet.GetPacket();
return false; pkt->data = nullptr;
pkt->size = 0;
ret = codec->cb.decode(m_codec_context, m_temp_frame->GetFrame(), &m_got_frame, pkt);
m_codec_context->has_b_frames = 0;
} }
*out_is_interlaced = if (m_got_frame == 0 || ret < 0) {
#if defined(FF_API_INTERLACED_FRAME) || LIBAVUTIL_VERSION_MAJOR >= 59 LOG_ERROR(Service_NVDRV, "Failed to receive a frame! error {}", ret);
(frame->flags & AV_FRAME_FLAG_INTERLACED) != 0; return {};
#else }
frame->interlaced_frame != 0; } else
#endif #endif
return true; {
};
if (m_codec_context->hw_device_ctx) { const auto ReceiveImpl = [&](AVFrame* frame) {
// If we have a hardware context, make a separate frame here to receive the if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) {
// hardware result before sending it to the output. LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret));
Frame intermediate_frame; return false;
}
if (!ReceiveImpl(intermediate_frame.GetFrame())) { return true;
return {}; };
}
dst_frame->SetFormat(PreferredGpuFormat); if (m_codec_context->hw_device_ctx) {
if (const int ret = // If we have a hardware context, make a separate frame here to receive the
av_hwframe_transfer_data(dst_frame->GetFrame(), intermediate_frame.GetFrame(), 0); // hardware result before sending it to the output.
ret < 0) { Frame intermediate_frame;
LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
return {}; if (!ReceiveImpl(intermediate_frame.GetFrame())) {
} return {};
} else { }
// Otherwise, decode the frame as normal.
if (!ReceiveImpl(dst_frame->GetFrame())) { m_temp_frame->SetFormat(PreferredGpuFormat);
return {}; if (const int ret = av_hwframe_transfer_data(m_temp_frame->GetFrame(),
intermediate_frame.GetFrame(), 0);
ret < 0) {
LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
return {};
}
} else {
// Otherwise, decode the frame as normal.
if (!ReceiveImpl(m_temp_frame->GetFrame())) {
return {};
}
} }
} }
return dst_frame; #if defined(FF_API_INTERLACED_FRAME) || LIBAVUTIL_VERSION_MAJOR >= 59
} m_temp_frame->GetFrame()->interlaced_frame =
(m_temp_frame->GetFrame()->flags & AV_FRAME_FLAG_INTERLACED) != 0;
DeinterlaceFilter::DeinterlaceFilter(const Frame& frame) { #endif
const AVFilter* buffer_src = avfilter_get_by_name("buffer"); return std::move(m_temp_frame);
const AVFilter* buffer_sink = avfilter_get_by_name("buffersink");
AVFilterInOut* inputs = avfilter_inout_alloc();
AVFilterInOut* outputs = avfilter_inout_alloc();
SCOPE_EXIT {
avfilter_inout_free(&inputs);
avfilter_inout_free(&outputs);
};
// Don't know how to get the accurate time_base but it doesn't matter for yadif filter
// so just use 1/1 to make buffer filter happy
std::string args = fmt::format("video_size={}x{}:pix_fmt={}:time_base=1/1", frame.GetWidth(),
frame.GetHeight(), static_cast<int>(frame.GetPixelFormat()));
m_filter_graph = avfilter_graph_alloc();
int ret = avfilter_graph_create_filter(&m_source_context, buffer_src, "in", args.c_str(),
nullptr, m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter source error: {}", AVError(ret));
return;
}
ret = avfilter_graph_create_filter(&m_sink_context, buffer_sink, "out", nullptr, nullptr,
m_filter_graph);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_create_filter sink error: {}", AVError(ret));
return;
}
inputs->name = av_strdup("out");
inputs->filter_ctx = m_sink_context;
inputs->pad_idx = 0;
inputs->next = nullptr;
outputs->name = av_strdup("in");
outputs->filter_ctx = m_source_context;
outputs->pad_idx = 0;
outputs->next = nullptr;
const char* description = "yadif=1:-1:0";
ret = avfilter_graph_parse_ptr(m_filter_graph, description, &inputs, &outputs, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_parse_ptr error: {}", AVError(ret));
return;
}
ret = avfilter_graph_config(m_filter_graph, nullptr);
if (ret < 0) {
LOG_ERROR(HW_GPU, "avfilter_graph_config error: {}", AVError(ret));
return;
}
m_initialized = true;
}
bool DeinterlaceFilter::AddSourceFrame(const Frame& frame) {
if (const int ret = av_buffersrc_add_frame_flags(m_source_context, frame.GetFrame(),
AV_BUFFERSRC_FLAG_KEEP_REF);
ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersrc_add_frame_flags error: {}", AVError(ret));
return false;
}
return true;
}
std::unique_ptr<Frame> DeinterlaceFilter::DrainSinkFrame() {
auto dst_frame = std::make_unique<Frame>();
const int ret = av_buffersink_get_frame(m_sink_context, dst_frame->GetFrame());
if (ret == AVERROR(EAGAIN) || ret == AVERROR(AVERROR_EOF)) {
return {};
}
if (ret < 0) {
LOG_ERROR(HW_GPU, "av_buffersink_get_frame error: {}", AVError(ret));
return {};
}
return dst_frame;
}
DeinterlaceFilter::~DeinterlaceFilter() {
avfilter_graph_free(&m_filter_graph);
} }
void DecodeApi::Reset() { void DecodeApi::Reset() {
m_deinterlace_filter.reset();
m_hardware_context.reset(); m_hardware_context.reset();
m_decoder_context.reset(); m_decoder_context.reset();
m_decoder.reset(); m_decoder.reset();
@ -382,43 +338,14 @@ bool DecodeApi::Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
return true; return true;
} }
bool DecodeApi::SendPacket(std::span<const u8> packet_data, size_t configuration_size) { bool DecodeApi::SendPacket(std::span<const u8> packet_data) {
FFmpeg::Packet packet(packet_data); FFmpeg::Packet packet(packet_data);
return m_decoder_context->SendPacket(packet); return m_decoder_context->SendPacket(packet);
} }
void DecodeApi::ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue) { std::shared_ptr<Frame> DecodeApi::ReceiveFrame() {
// Receive raw frame from decoder. // Receive raw frame from decoder.
bool is_interlaced; return m_decoder_context->ReceiveFrame();
auto frame = m_decoder_context->ReceiveFrame(&is_interlaced);
if (!frame) {
return;
}
if (!is_interlaced) {
// If the frame is not interlaced, we can pend it now.
frame_queue.push(std::move(frame));
} else {
// Create the deinterlacer if needed.
if (!m_deinterlace_filter) {
m_deinterlace_filter.emplace(*frame);
}
// Add the frame we just received.
if (!m_deinterlace_filter->AddSourceFrame(*frame)) {
return;
}
// Pend output fields.
while (true) {
auto filter_frame = m_deinterlace_filter->DrainSinkFrame();
if (!filter_frame) {
break;
}
frame_queue.push(std::move(filter_frame));
}
}
} }
} // namespace FFmpeg } // namespace FFmpeg

View file

@ -20,17 +20,20 @@ extern "C" {
#endif #endif
#include <libavcodec/avcodec.h> #include <libavcodec/avcodec.h>
#include <libavfilter/avfilter.h>
#include <libavfilter/buffersink.h>
#include <libavfilter/buffersrc.h>
#include <libavutil/avutil.h>
#include <libavutil/opt.h> #include <libavutil/opt.h>
#ifndef ANDROID
#include <libavcodec/codec_internal.h>
#endif
#if defined(__GNUC__) || defined(__clang__) #if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
#endif #endif
} }
namespace Tegra {
class MemoryManager;
}
namespace FFmpeg { namespace FFmpeg {
class Packet; class Packet;
@ -90,6 +93,10 @@ public:
return m_frame->data[plane]; return m_frame->data[plane];
} }
const u8* GetPlane(int plane) const {
return m_frame->data[plane];
}
u8** GetPlanes() const { u8** GetPlanes() const {
return m_frame->data; return m_frame->data;
} }
@ -98,6 +105,14 @@ public:
m_frame->format = format; m_frame->format = format;
} }
bool IsInterlaced() const {
return m_frame->interlaced_frame != 0;
}
bool IsHardwareDecoded() const {
return m_frame->hw_frames_ctx != nullptr;
}
AVFrame* GetFrame() const { AVFrame* GetFrame() const {
return m_frame; return m_frame;
} }
@ -160,33 +175,22 @@ public:
void InitializeHardwareDecoder(const HardwareContext& context, AVPixelFormat hw_pix_fmt); void InitializeHardwareDecoder(const HardwareContext& context, AVPixelFormat hw_pix_fmt);
bool OpenContext(const Decoder& decoder); bool OpenContext(const Decoder& decoder);
bool SendPacket(const Packet& packet); bool SendPacket(const Packet& packet);
std::unique_ptr<Frame> ReceiveFrame(bool* out_is_interlaced); std::shared_ptr<Frame> ReceiveFrame();
AVCodecContext* GetCodecContext() const { AVCodecContext* GetCodecContext() const {
return m_codec_context; return m_codec_context;
} }
bool UsingDecodeOrder() const {
return m_decode_order;
}
private: private:
const Decoder& m_decoder;
AVCodecContext* m_codec_context{}; AVCodecContext* m_codec_context{};
}; s32 m_got_frame{};
std::shared_ptr<Frame> m_temp_frame{};
// Wraps an AVFilterGraph. bool m_decode_order{};
class DeinterlaceFilter {
public:
YUZU_NON_COPYABLE(DeinterlaceFilter);
YUZU_NON_MOVEABLE(DeinterlaceFilter);
explicit DeinterlaceFilter(const Frame& frame);
~DeinterlaceFilter();
bool AddSourceFrame(const Frame& frame);
std::unique_ptr<Frame> DrainSinkFrame();
private:
AVFilterGraph* m_filter_graph{};
AVFilterContext* m_source_context{};
AVFilterContext* m_sink_context{};
bool m_initialized{};
}; };
class DecodeApi { class DecodeApi {
@ -200,14 +204,17 @@ public:
bool Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec); bool Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec);
void Reset(); void Reset();
bool SendPacket(std::span<const u8> packet_data, size_t configuration_size); bool UsingDecodeOrder() const {
void ReceiveFrames(std::queue<std::unique_ptr<Frame>>& frame_queue); return m_decoder_context->UsingDecodeOrder();
}
bool SendPacket(std::span<const u8> packet_data);
std::shared_ptr<Frame> ReceiveFrame();
private: private:
std::optional<FFmpeg::Decoder> m_decoder; std::optional<FFmpeg::Decoder> m_decoder;
std::optional<FFmpeg::DecoderContext> m_decoder_context; std::optional<FFmpeg::DecoderContext> m_decoder_context;
std::optional<FFmpeg::HardwareContext> m_hardware_context; std::optional<FFmpeg::HardwareContext> m_hardware_context;
std::optional<FFmpeg::DeinterlaceFilter> m_deinterlace_filter;
}; };
} // namespace FFmpeg } // namespace FFmpeg

View file

@ -3,10 +3,10 @@
#include "core/core.h" #include "core/core.h"
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/host1x/nvdec.h"
#include "video_core/host1x/vic.h"
namespace Tegra { namespace Tegra::Host1x {
namespace Host1x {
Host1x::Host1x(Core::System& system_) Host1x::Host1x(Core::System& system_)
: system{system_}, syncpoint_manager{}, : system{system_}, syncpoint_manager{},
@ -15,6 +15,22 @@ Host1x::Host1x(Core::System& system_)
Host1x::~Host1x() = default; Host1x::~Host1x() = default;
} // namespace Host1x void Host1x::StartDevice(s32 fd, ChannelType type, u32 syncpt) {
switch (type) {
case ChannelType::NvDec:
devices[fd] = std::make_unique<Tegra::Host1x::Nvdec>(*this, fd, syncpt, frame_queue);
break;
case ChannelType::VIC:
devices[fd] = std::make_unique<Tegra::Host1x::Vic>(*this, fd, syncpt, frame_queue);
break;
default:
LOG_ERROR(HW_GPU, "Unimplemented host1x device {}", static_cast<u32>(type));
break;
}
}
} // namespace Tegra void Host1x::StopDevice(s32 fd, ChannelType type) {
devices.erase(fd);
}
} // namespace Tegra::Host1x

View file

@ -3,9 +3,14 @@
#pragma once #pragma once
#include <unordered_map>
#include <unordered_set>
#include <queue>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/address_space.h" #include "common/address_space.h"
#include "video_core/cdma_pusher.h"
#include "video_core/host1x/gpu_device_memory_manager.h" #include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/host1x/syncpoint_manager.h" #include "video_core/host1x/syncpoint_manager.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
@ -14,15 +19,137 @@ namespace Core {
class System; class System;
} // namespace Core } // namespace Core
namespace Tegra { namespace FFmpeg {
class Frame;
} // namespace FFmpeg
namespace Host1x { namespace Tegra::Host1x {
class Nvdec;
class FrameQueue {
public:
void Open(s32 fd) {
std::scoped_lock l{m_mutex};
m_presentation_order.insert({fd, {}});
m_decode_order.insert({fd, {}});
}
void Close(s32 fd) {
std::scoped_lock l{m_mutex};
m_presentation_order.erase(fd);
m_decode_order.erase(fd);
}
s32 VicFindNvdecFdFromOffset(u64 search_offset) {
std::scoped_lock l{m_mutex};
// Vic does not know which nvdec is producing frames for it, so search all the fds here for
// the given offset.
for (auto& map : m_presentation_order) {
for (auto& [offset, frame] : map.second) {
if (offset == search_offset) {
return map.first;
}
}
}
for (auto& map : m_decode_order) {
for (auto& [offset, frame] : map.second) {
if (offset == search_offset) {
return map.first;
}
}
}
return -1;
}
void PushPresentOrder(s32 fd, u64 offset, std::shared_ptr<FFmpeg::Frame>&& frame) {
std::scoped_lock l{m_mutex};
auto map = m_presentation_order.find(fd);
if (map == m_presentation_order.end()) {
return;
}
map->second.emplace_back(offset, std::move(frame));
}
void PushDecodeOrder(s32 fd, u64 offset, std::shared_ptr<FFmpeg::Frame>&& frame) {
std::scoped_lock l{m_mutex};
auto map = m_decode_order.find(fd);
if (map == m_decode_order.end()) {
return;
}
map->second.insert_or_assign(offset, std::move(frame));
}
std::shared_ptr<FFmpeg::Frame> GetFrame(s32 fd, u64 offset) {
if (fd == -1) {
return {};
}
std::scoped_lock l{m_mutex};
auto present_map = m_presentation_order.find(fd);
if (present_map != m_presentation_order.end() && present_map->second.size() > 0) {
return GetPresentOrderLocked(fd);
}
auto decode_map = m_decode_order.find(fd);
if (decode_map != m_decode_order.end() && decode_map->second.size() > 0) {
return GetDecodeOrderLocked(fd, offset);
}
return {};
}
private:
std::shared_ptr<FFmpeg::Frame> GetPresentOrderLocked(s32 fd) {
auto map = m_presentation_order.find(fd);
if (map == m_presentation_order.end() || map->second.size() == 0) {
return {};
}
auto frame = std::move(map->second.front().second);
map->second.pop_front();
return frame;
}
std::shared_ptr<FFmpeg::Frame> GetDecodeOrderLocked(s32 fd, u64 offset) {
auto map = m_decode_order.find(fd);
if (map == m_decode_order.end() || map->second.size() == 0) {
return {};
}
auto it = map->second.find(offset);
if (it == map->second.end()) {
return {};
}
return std::move(map->second.extract(it).mapped());
}
using FramePtr = std::shared_ptr<FFmpeg::Frame>;
std::mutex m_mutex{};
std::unordered_map<s32, std::deque<std::pair<u64, FramePtr>>> m_presentation_order;
std::unordered_map<s32, std::unordered_map<u64, FramePtr>> m_decode_order;
};
enum class ChannelType : u32 {
MsEnc = 0,
VIC = 1,
GPU = 2,
NvDec = 3,
Display = 4,
NvJpg = 5,
TSec = 6,
Max = 7,
};
class Host1x { class Host1x {
public: public:
explicit Host1x(Core::System& system); explicit Host1x(Core::System& system);
~Host1x(); ~Host1x();
Core::System& System() {
return system;
}
SyncpointManager& GetSyncpointManager() { SyncpointManager& GetSyncpointManager() {
return syncpoint_manager; return syncpoint_manager;
} }
@ -55,14 +182,25 @@ public:
return *allocator; return *allocator;
} }
void StartDevice(s32 fd, ChannelType type, u32 syncpt);
void StopDevice(s32 fd, ChannelType type);
void PushEntries(s32 fd, ChCommandHeaderList&& entries) {
auto it = devices.find(fd);
if (it == devices.end()) {
return;
}
it->second->PushEntries(std::move(entries));
}
private: private:
Core::System& system; Core::System& system;
SyncpointManager syncpoint_manager; SyncpointManager syncpoint_manager;
Tegra::MaxwellDeviceMemoryManager memory_manager; Tegra::MaxwellDeviceMemoryManager memory_manager;
Tegra::MemoryManager gmmu_manager; Tegra::MemoryManager gmmu_manager;
std::unique_ptr<Common::FlatAllocator<u32, 0, 32>> allocator; std::unique_ptr<Common::FlatAllocator<u32, 0, 32>> allocator;
FrameQueue frame_queue;
std::unordered_map<s32, std::unique_ptr<CDmaPusher>> devices;
}; };
} // namespace Host1x } // namespace Tegra::Host1x
} // namespace Tegra

View file

@ -2,6 +2,12 @@
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h" #include "common/assert.h"
#include "common/polyfill_thread.h"
#include "common/settings.h"
#include "video_core/host1x/codecs/h264.h"
#include "video_core/host1x/codecs/vp8.h"
#include "video_core/host1x/codecs/vp9.h"
#include "video_core/host1x/host1x.h" #include "video_core/host1x/host1x.h"
#include "video_core/host1x/nvdec.h" #include "video_core/host1x/nvdec.h"
@ -10,37 +16,69 @@ namespace Tegra::Host1x {
#define NVDEC_REG_INDEX(field_name) \ #define NVDEC_REG_INDEX(field_name) \
(offsetof(NvdecCommon::NvdecRegisters, field_name) / sizeof(u64)) (offsetof(NvdecCommon::NvdecRegisters, field_name) / sizeof(u64))
Nvdec::Nvdec(Host1x& host1x_) Nvdec::Nvdec(Host1x& host1x_, s32 id_, u32 syncpt, FrameQueue& frame_queue_)
: host1x(host1x_), state{}, codec(std::make_unique<Codec>(host1x, state)) {} : CDmaPusher{host1x_, id_}, id{id_}, syncpoint{syncpt}, frame_queue{frame_queue_} {
LOG_INFO(HW_GPU, "Created nvdec {}", id);
frame_queue.Open(id);
}
Nvdec::~Nvdec() = default; Nvdec::~Nvdec() {
LOG_INFO(HW_GPU, "Destroying nvdec {}", id);
}
void Nvdec::ProcessMethod(u32 method, u32 argument) { void Nvdec::ProcessMethod(u32 method, u32 argument) {
state.reg_array[method] = static_cast<u64>(argument) << 8; regs.reg_array[method] = argument;
switch (method) { switch (method) {
case NVDEC_REG_INDEX(set_codec_id): case NVDEC_REG_INDEX(set_codec_id):
codec->SetTargetCodec(static_cast<NvdecCommon::VideoCodec>(argument)); CreateDecoder(static_cast<NvdecCommon::VideoCodec>(argument));
break; break;
case NVDEC_REG_INDEX(execute): case NVDEC_REG_INDEX(execute): {
if (wait_needed) {
std::this_thread::sleep_for(std::chrono::milliseconds(32));
wait_needed = false;
}
Execute(); Execute();
break; } break;
} }
} }
std::unique_ptr<FFmpeg::Frame> Nvdec::GetFrame() { void Nvdec::CreateDecoder(NvdecCommon::VideoCodec codec) {
return codec->GetCurrentFrame(); if (decoder.get()) {
return;
}
switch (codec) {
case NvdecCommon::VideoCodec::H264:
decoder = std::make_unique<Decoders::H264>(host1x, regs, id, frame_queue);
break;
case NvdecCommon::VideoCodec::VP8:
decoder = std::make_unique<Decoders::VP8>(host1x, regs, id, frame_queue);
break;
case NvdecCommon::VideoCodec::VP9:
decoder = std::make_unique<Decoders::VP9>(host1x, regs, id, frame_queue);
break;
default:
UNIMPLEMENTED_MSG("Codec {}", decoder->GetCurrentCodecName());
break;
}
LOG_INFO(HW_GPU, "Created decoder {} for id {}", decoder->GetCurrentCodecName(), id);
} }
void Nvdec::Execute() { void Nvdec::Execute() {
switch (codec->GetCurrentCodec()) { if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Off) [[unlikely]] {
// Signalling syncpts too fast can cause games to get stuck as they don't expect a <1ms
// execution time. Sleep for half of a 60 fps frame just in case.
std::this_thread::sleep_for(std::chrono::milliseconds(8));
return;
}
switch (decoder->GetCurrentCodec()) {
case NvdecCommon::VideoCodec::H264: case NvdecCommon::VideoCodec::H264:
case NvdecCommon::VideoCodec::VP8: case NvdecCommon::VideoCodec::VP8:
case NvdecCommon::VideoCodec::VP9: case NvdecCommon::VideoCodec::VP9:
codec->Decode(); decoder->Decode();
break; break;
default: default:
UNIMPLEMENTED_MSG("Codec {}", codec->GetCurrentCodecName()); UNIMPLEMENTED_MSG("Codec {}", decoder->GetCurrentCodecName());
break; break;
} }
} }

View file

@ -5,33 +5,47 @@
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/host1x/codecs/codec.h" #include "video_core/cdma_pusher.h"
#include "video_core/host1x/codecs/decoder.h"
namespace Tegra { namespace Tegra {
namespace Host1x { namespace Host1x {
class Host1x; class Host1x;
class FrameQueue;
class Nvdec { class Nvdec final : public CDmaPusher {
public: public:
explicit Nvdec(Host1x& host1x); explicit Nvdec(Host1x& host1x, s32 id, u32 syncpt, FrameQueue& frame_queue_);
~Nvdec(); ~Nvdec();
/// Writes the method into the state, Invoke Execute() if encountered /// Writes the method into the state, Invoke Execute() if encountered
void ProcessMethod(u32 method, u32 argument); void ProcessMethod(u32 method, u32 arg) override;
/// Return most recently decoded frame u32 GetSyncpoint() const {
[[nodiscard]] std::unique_ptr<FFmpeg::Frame> GetFrame(); return syncpoint;
}
void SetWait() {
wait_needed = true;
}
private: private:
/// Create the decoder when the codec id is set
void CreateDecoder(NvdecCommon::VideoCodec codec);
/// Invoke codec to decode a frame /// Invoke codec to decode a frame
void Execute(); void Execute();
Host1x& host1x; s32 id;
NvdecCommon::NvdecRegisters state; u32 syncpoint;
std::unique_ptr<Codec> codec; FrameQueue& frame_queue;
NvdecCommon::NvdecRegisters regs{};
std::unique_ptr<Decoder> decoder;
bool wait_needed{false};
}; };
} // namespace Host1x } // namespace Host1x

View file

@ -17,6 +17,17 @@ enum class VideoCodec : u64 {
VP9 = 0x9, VP9 = 0x9,
}; };
struct Offset {
constexpr u64 Address() const noexcept {
return offset << 8;
}
private:
u64 offset;
};
static_assert(std::is_trivial_v<Offset>, "Offset must be trivial");
static_assert(sizeof(Offset) == 0x8, "Offset has the wrong size!");
// NVDEC should use a 32-bit address space, but is mapped to 64-bit, // NVDEC should use a 32-bit address space, but is mapped to 64-bit,
// doubling the sizes here is compensating for that. // doubling the sizes here is compensating for that.
struct NvdecRegisters { struct NvdecRegisters {
@ -38,29 +49,40 @@ struct NvdecRegisters {
BitField<17, 1, u64> all_intra_frame; BitField<17, 1, u64> all_intra_frame;
}; };
} control_params; } control_params;
u64 picture_info_offset; ///< 0x0808 Offset picture_info_offset; ///< 0x0808
u64 frame_bitstream_offset; ///< 0x0810 Offset frame_bitstream_offset; ///< 0x0810
u64 frame_number; ///< 0x0818 u64 frame_number; ///< 0x0818
u64 h264_slice_data_offsets; ///< 0x0820 Offset h264_slice_data_offsets; ///< 0x0820
u64 h264_mv_dump_offset; ///< 0x0828 Offset h264_mv_dump_offset; ///< 0x0828
INSERT_PADDING_WORDS_NOINIT(6); ///< 0x0830 INSERT_PADDING_WORDS_NOINIT(6); ///< 0x0830
u64 frame_stats_offset; ///< 0x0848 Offset frame_stats_offset; ///< 0x0848
u64 h264_last_surface_luma_offset; ///< 0x0850 Offset h264_last_surface_luma_offset; ///< 0x0850
u64 h264_last_surface_chroma_offset; ///< 0x0858 Offset h264_last_surface_chroma_offset; ///< 0x0858
std::array<u64, 17> surface_luma_offset; ///< 0x0860 std::array<Offset, 17> surface_luma_offsets; ///< 0x0860
std::array<u64, 17> surface_chroma_offset; ///< 0x08E8 std::array<Offset, 17> surface_chroma_offsets; ///< 0x08E8
INSERT_PADDING_WORDS_NOINIT(68); ///< 0x0970 Offset pic_scratch_buf_offset; ///< 0x0970
u64 vp8_prob_data_offset; ///< 0x0A80 Offset external_mvbuffer_offset; ///< 0x0978
u64 vp8_header_partition_buf_offset; ///< 0x0A88 INSERT_PADDING_WORDS_NOINIT(32); ///< 0x0980
INSERT_PADDING_WORDS_NOINIT(60); ///< 0x0A90 Offset h264_mbhist_buffer_offset; ///< 0x0A00
u64 vp9_entropy_probs_offset; ///< 0x0B80 INSERT_PADDING_WORDS_NOINIT(30); ///< 0x0A08
u64 vp9_backward_updates_offset; ///< 0x0B88 Offset vp8_prob_data_offset; ///< 0x0A80
u64 vp9_last_frame_segmap_offset; ///< 0x0B90 Offset vp8_header_partition_buf_offset; ///< 0x0A88
u64 vp9_curr_frame_segmap_offset; ///< 0x0B98 INSERT_PADDING_WORDS_NOINIT(28); ///< 0x0A90
INSERT_PADDING_WORDS_NOINIT(2); ///< 0x0BA0 Offset hvec_scalist_list_offset; ///< 0x0B00
u64 vp9_last_frame_mvs_offset; ///< 0x0BA8 Offset hvec_tile_sizes_offset; ///< 0x0B08
u64 vp9_curr_frame_mvs_offset; ///< 0x0BB0 Offset hvec_filter_buffer_offset; ///< 0x0B10
INSERT_PADDING_WORDS_NOINIT(2); ///< 0x0BB8 Offset hvec_sao_buffer_offset; ///< 0x0B18
Offset hvec_slice_info_buffer_offset; ///< 0x0B20
Offset hvec_slice_group_index_offset; ///< 0x0B28
INSERT_PADDING_WORDS_NOINIT(20); ///< 0x0B30
Offset vp9_prob_tab_buffer_offset; ///< 0x0B80
Offset vp9_ctx_counter_buffer_offset; ///< 0x0B88
Offset vp9_segment_read_buffer_offset; ///< 0x0B90
Offset vp9_segment_write_buffer_offset; ///< 0x0B98
Offset vp9_tile_size_buffer_offset; ///< 0x0BA0
Offset vp9_col_mvwrite_buffer_offset; ///< 0x0BA8
Offset vp9_col_mvread_buffer_offset; ///< 0x0BB0
Offset vp9_filter_buffer_offset; ///< 0x0BB8
}; };
std::array<u64, NUM_REGS> reg_array; std::array<u64, NUM_REGS> reg_array;
}; };
@ -81,16 +103,16 @@ ASSERT_REG_POSITION(h264_slice_data_offsets, 0x104);
ASSERT_REG_POSITION(frame_stats_offset, 0x109); ASSERT_REG_POSITION(frame_stats_offset, 0x109);
ASSERT_REG_POSITION(h264_last_surface_luma_offset, 0x10A); ASSERT_REG_POSITION(h264_last_surface_luma_offset, 0x10A);
ASSERT_REG_POSITION(h264_last_surface_chroma_offset, 0x10B); ASSERT_REG_POSITION(h264_last_surface_chroma_offset, 0x10B);
ASSERT_REG_POSITION(surface_luma_offset, 0x10C); ASSERT_REG_POSITION(surface_luma_offsets, 0x10C);
ASSERT_REG_POSITION(surface_chroma_offset, 0x11D); ASSERT_REG_POSITION(surface_chroma_offsets, 0x11D);
ASSERT_REG_POSITION(vp8_prob_data_offset, 0x150); ASSERT_REG_POSITION(vp8_prob_data_offset, 0x150);
ASSERT_REG_POSITION(vp8_header_partition_buf_offset, 0x151); ASSERT_REG_POSITION(vp8_header_partition_buf_offset, 0x151);
ASSERT_REG_POSITION(vp9_entropy_probs_offset, 0x170); ASSERT_REG_POSITION(vp9_prob_tab_buffer_offset, 0x170);
ASSERT_REG_POSITION(vp9_backward_updates_offset, 0x171); ASSERT_REG_POSITION(vp9_ctx_counter_buffer_offset, 0x171);
ASSERT_REG_POSITION(vp9_last_frame_segmap_offset, 0x172); ASSERT_REG_POSITION(vp9_segment_read_buffer_offset, 0x172);
ASSERT_REG_POSITION(vp9_curr_frame_segmap_offset, 0x173); ASSERT_REG_POSITION(vp9_segment_write_buffer_offset, 0x173);
ASSERT_REG_POSITION(vp9_last_frame_mvs_offset, 0x175); ASSERT_REG_POSITION(vp9_col_mvwrite_buffer_offset, 0x175);
ASSERT_REG_POSITION(vp9_curr_frame_mvs_offset, 0x176); ASSERT_REG_POSITION(vp9_col_mvread_buffer_offset, 0x176);
#undef ASSERT_REG_POSITION #undef ASSERT_REG_POSITION

View file

@ -1,50 +0,0 @@
// SPDX-FileCopyrightText: Ryujinx Team and Contributors
// SPDX-License-Identifier: MIT
#include <algorithm>
#include "sync_manager.h"
#include "video_core/host1x/host1x.h"
#include "video_core/host1x/syncpoint_manager.h"
namespace Tegra {
namespace Host1x {
SyncptIncrManager::SyncptIncrManager(Host1x& host1x_) : host1x(host1x_) {}
SyncptIncrManager::~SyncptIncrManager() = default;
void SyncptIncrManager::Increment(u32 id) {
increments.emplace_back(0, 0, id, true);
IncrementAllDone();
}
u32 SyncptIncrManager::IncrementWhenDone(u32 class_id, u32 id) {
const u32 handle = current_id++;
increments.emplace_back(handle, class_id, id);
return handle;
}
void SyncptIncrManager::SignalDone(u32 handle) {
const auto done_incr =
std::find_if(increments.begin(), increments.end(),
[handle](const SyncptIncr& incr) { return incr.id == handle; });
if (done_incr != increments.cend()) {
done_incr->complete = true;
}
IncrementAllDone();
}
void SyncptIncrManager::IncrementAllDone() {
std::size_t done_count = 0;
for (; done_count < increments.size(); ++done_count) {
if (!increments[done_count].complete) {
break;
}
auto& syncpoint_manager = host1x.GetSyncpointManager();
syncpoint_manager.IncrementGuest(increments[done_count].syncpt_id);
syncpoint_manager.IncrementHost(increments[done_count].syncpt_id);
}
increments.erase(increments.begin(), increments.begin() + done_count);
}
} // namespace Host1x
} // namespace Tegra

View file

@ -1,53 +0,0 @@
// SPDX-FileCopyrightText: Ryujinx Team and Contributors
// SPDX-License-Identifier: MIT
#pragma once
#include <mutex>
#include <vector>
#include "common/common_types.h"
namespace Tegra {
namespace Host1x {
class Host1x;
struct SyncptIncr {
u32 id;
u32 class_id;
u32 syncpt_id;
bool complete;
SyncptIncr(u32 id_, u32 class_id_, u32 syncpt_id_, bool done = false)
: id(id_), class_id(class_id_), syncpt_id(syncpt_id_), complete(done) {}
};
class SyncptIncrManager {
public:
explicit SyncptIncrManager(Host1x& host1x);
~SyncptIncrManager();
/// Add syncpoint id and increment all
void Increment(u32 id);
/// Returns a handle to increment later
u32 IncrementWhenDone(u32 class_id, u32 id);
/// IncrememntAllDone, including handle
void SignalDone(u32 handle);
/// Increment all sequential pending increments that are already done.
void IncrementAllDone();
private:
std::vector<SyncptIncr> increments;
std::mutex increment_lock;
u32 current_id{};
Host1x& host1x;
};
} // namespace Host1x
} // namespace Tegra

View file

@ -18,7 +18,7 @@ SyncpointManager::ActionHandle SyncpointManager::RegisterAction(
return {}; return {};
} }
std::unique_lock lk(guard); std::scoped_lock lk(guard);
if (syncpoint.load(std::memory_order_relaxed) >= expected_value) { if (syncpoint.load(std::memory_order_relaxed) >= expected_value) {
action(); action();
return {}; return {};
@ -35,7 +35,7 @@ SyncpointManager::ActionHandle SyncpointManager::RegisterAction(
void SyncpointManager::DeregisterAction(std::list<RegisteredAction>& action_storage, void SyncpointManager::DeregisterAction(std::list<RegisteredAction>& action_storage,
const ActionHandle& handle) { const ActionHandle& handle) {
std::unique_lock lk(guard); std::scoped_lock lk(guard);
// We want to ensure the iterator still exists prior to erasing it // We want to ensure the iterator still exists prior to erasing it
// Otherwise, if an invalid iterator was passed in then it could lead to UB // Otherwise, if an invalid iterator was passed in then it could lead to UB
@ -78,7 +78,7 @@ void SyncpointManager::Increment(std::atomic<u32>& syncpoint, std::condition_var
std::list<RegisteredAction>& action_storage) { std::list<RegisteredAction>& action_storage) {
auto new_value{syncpoint.fetch_add(1, std::memory_order_acq_rel) + 1}; auto new_value{syncpoint.fetch_add(1, std::memory_order_acq_rel) + 1};
std::unique_lock lk(guard); std::scoped_lock lk(guard);
auto it = action_storage.begin(); auto it = action_storage.begin();
while (it != action_storage.end()) { while (it != action_storage.end()) {
if (it->expected_value > new_value) { if (it->expected_value > new_value) {

File diff suppressed because it is too large Load diff

View file

@ -3,65 +3,646 @@
#pragma once #pragma once
#include <condition_variable>
#include <functional>
#include <memory> #include <memory>
#include <mutex>
#include <thread>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "video_core/cdma_pusher.h"
struct SwsContext; namespace Tegra::Host1x {
namespace Tegra {
namespace Host1x {
class Host1x; class Host1x;
class Nvdec; class Nvdec;
union VicConfig;
class Vic { struct Pixel {
u16 r;
u16 g;
u16 b;
u16 a;
};
// One underscore represents separate pixels.
// Double underscore represents separate planes.
// _N represents chroma subsampling, not a separate pixel.
enum class VideoPixelFormat : u32 {
A8 = 0,
L8 = 1,
A4L4 = 2,
L4A4 = 3,
R8 = 4,
A8L8 = 5,
L8A8 = 6,
R8G8 = 7,
G8R8 = 8,
B5G6R5 = 9,
R5G6B5 = 10,
B6G5R5 = 11,
R5G5B6 = 12,
A1B5G5R5 = 13,
A1R5G5B5 = 14,
B5G5R5A1 = 15,
R5G5B5A1 = 16,
A5B5G5R1 = 17,
A5R1G5B5 = 18,
B5G5R1A5 = 19,
R1G5B5A5 = 20,
X1B5G5R5 = 21,
X1R5G5B5 = 22,
B5G5R5X1 = 23,
R5G5B5X1 = 24,
A4B4G5R4 = 25,
A4R4G4B4 = 26,
B4G4R4A4 = 27,
R4G4B4A4 = 28,
B8G8R8 = 29,
R8G8B8 = 30,
A8B8G8R8 = 31,
A8R8G8B8 = 32,
B8G8R8A8 = 33,
R8G8B8A8 = 34,
X8B8G8R8 = 35,
X8R8G8B8 = 36,
B8G8R8X8 = 37,
R8G8B8X8 = 38,
A8B10G10R10 = 39,
A2R10G10B10 = 40,
B10G10R10A2 = 41,
R10G10B10A2 = 42,
A4P4 = 43,
P4A4 = 44,
P8A8 = 45,
A8P8 = 46,
P8 = 47,
P1 = 48,
U8V8 = 49,
V8U8 = 50,
A8Y8U8V8 = 51,
V8U8Y8A8 = 52,
Y8U8V8 = 53,
Y8V8U8 = 54,
U8V8Y8 = 55,
V8U8Y8 = 56,
Y8U8_Y8V8 = 57,
Y8V8_Y8U8 = 58,
U8Y8_V8Y8 = 59,
V8Y8_U8Y8 = 60,
Y8__U8V8_N444 = 61,
Y8__V8U8_N444 = 62,
Y8__U8V8_N422 = 63,
Y8__V8U8_N422 = 64,
Y8__U8V8_N422R = 65,
Y8__V8U8_N422R = 66,
Y8__U8V8_N420 = 67,
Y8__V8U8_N420 = 68,
Y8__U8__V8_N444 = 69,
Y8__U8__V8_N422 = 70,
Y8__U8__V8_N422R = 71,
Y8__U8__V8_N420 = 72,
U8 = 73,
V8 = 74,
};
struct Offset {
constexpr u32 Address() const noexcept {
return offset << 8;
}
private:
u32 offset;
};
static_assert(std::is_trivial_v<Offset>, "Offset must be trivial");
static_assert(sizeof(Offset) == 0x4, "Offset has the wrong size!");
struct PlaneOffsets {
Offset luma;
Offset chroma_u;
Offset chroma_v;
};
static_assert(sizeof(PlaneOffsets) == 0xC, "PlaneOffsets has the wrong size!");
enum SurfaceIndex : u32 {
Current = 0,
Previous = 1,
Next = 2,
NextNoiseReduced = 3,
CurrentMotion = 4,
PreviousMotion = 5,
PreviousPreviousMotion = 6,
CombinedMotion = 7,
};
enum class DXVAHD_ALPHA_FILL_MODE : u32 {
OPAQUE = 0,
BACKGROUND = 1,
DESTINATION = 2,
SOURCE_STREAM = 3,
COMPOSITED = 4,
SOURCE_ALPHA = 5,
};
enum class DXVAHD_FRAME_FORMAT : u64 {
PROGRESSIVE = 0,
INTERLACED_TOP_FIELD_FIRST = 1,
INTERLACED_BOTTOM_FIELD_FIRST = 2,
TOP_FIELD = 3,
BOTTOM_FIELD = 4,
SUBPIC_PROGRESSIVE = 5,
SUBPIC_INTERLACED_TOP_FIELD_FIRST = 6,
SUBPIC_INTERLACED_BOTTOM_FIELD_FIRST = 7,
SUBPIC_TOP_FIELD = 8,
SUBPIC_BOTTOM_FIELD = 9,
TOP_FIELD_CHROMA_BOTTOM = 10,
BOTTOM_FIELD_CHROMA_TOP = 11,
SUBPIC_TOP_FIELD_CHROMA_BOTTOM = 12,
SUBPIC_BOTTOM_FIELD_CHROMA_TOP = 13,
};
enum class DXVAHD_DEINTERLACE_MODE_PRIVATE : u64 {
WEAVE = 0,
BOB_FIELD = 1,
BOB = 2,
NEWBOB = 3,
DISI1 = 4,
WEAVE_LUMA_BOB_FIELD_CHROMA = 5,
MAX = 0xF,
};
enum class BLK_KIND {
PITCH = 0,
GENERIC_16Bx2 = 1,
// These are unsupported in the vic
BL_NAIVE = 2,
BL_KEPLER_XBAR_RAW = 3,
VP2_TILED = 15,
};
enum class BLEND_SRCFACTC : u32 {
K1 = 0,
K1_TIMES_DST = 1,
NEG_K1_TIMES_DST = 2,
K1_TIMES_SRC = 3,
ZERO = 4,
};
enum class BLEND_DSTFACTC : u32 {
K1 = 0,
K2 = 1,
K1_TIMES_DST = 2,
NEG_K1_TIMES_DST = 3,
NEG_K1_TIMES_SRC = 4,
ZERO = 5,
ONE = 6,
};
enum class BLEND_SRCFACTA : u32 {
K1 = 0,
K2 = 1,
NEG_K1_TIMES_DST = 2,
ZERO = 3,
MAX = 7,
};
enum class BLEND_DSTFACTA : u32 {
K2 = 0,
NEG_K1_TIMES_SRC = 1,
ZERO = 2,
ONE = 3,
MAX = 7,
};
struct PipeConfig {
union {
BitField<0, 11, u32> downsample_horiz;
BitField<11, 5, u32> reserved0;
BitField<16, 11, u32> downsample_vert;
BitField<27, 5, u32> reserved1;
};
u32 reserved2;
u32 reserved3;
u32 reserved4;
};
static_assert(sizeof(PipeConfig) == 0x10, "PipeConfig has the wrong size!");
struct OutputConfig {
union {
BitField<0, 3, DXVAHD_ALPHA_FILL_MODE> alpha_fill_mode;
BitField<3, 3, u64> alpha_fill_slot;
BitField<6, 10, u64> background_a;
BitField<16, 10, u64> background_r;
BitField<26, 10, u64> background_g;
BitField<36, 10, u64> background_b;
BitField<46, 2, u64> regamma_mode;
BitField<48, 1, u64> output_flip_x;
BitField<49, 1, u64> output_flip_y;
BitField<50, 1, u64> output_transpose;
BitField<51, 1, u64> reserved1;
BitField<52, 12, u64> reserved2;
};
union {
BitField<0, 14, u32> target_rect_left;
BitField<14, 2, u32> reserved3;
BitField<16, 14, u32> target_rect_right;
BitField<30, 2, u32> reserved4;
};
union {
BitField<0, 14, u32> target_rect_top;
BitField<14, 2, u32> reserved5;
BitField<16, 14, u32> target_rect_bottom;
BitField<30, 2, u32> reserved6;
};
};
static_assert(sizeof(OutputConfig) == 0x10, "OutputConfig has the wrong size!");
struct OutputSurfaceConfig {
union {
BitField<0, 7, VideoPixelFormat> out_pixel_format;
BitField<7, 2, u32> out_chroma_loc_horiz;
BitField<9, 2, u32> out_chroma_loc_vert;
BitField<11, 4, BLK_KIND> out_block_kind;
BitField<15, 4, u32> out_block_height; // in gobs, log2
BitField<19, 3, u32> reserved0;
BitField<22, 10, u32> reserved1;
};
union {
BitField<0, 14, u32> out_surface_width; // - 1
BitField<14, 14, u32> out_surface_height; // - 1
BitField<28, 4, u32> reserved2;
};
union {
BitField<0, 14, u32> out_luma_width; // - 1
BitField<14, 14, u32> out_luma_height; // - 1
BitField<28, 4, u32> reserved3;
};
union {
BitField<0, 14, u32> out_chroma_width; // - 1
BitField<14, 14, u32> out_chroma_height; // - 1
BitField<28, 4, u32> reserved4;
};
};
static_assert(sizeof(OutputSurfaceConfig) == 0x10, "OutputSurfaceConfig has the wrong size!");
struct MatrixStruct {
union {
BitField<0, 20, s64> matrix_coeff00; // (0,0) of 4x3 conversion matrix
BitField<20, 20, s64> matrix_coeff10; // (1,0) of 4x3 conversion matrix
BitField<40, 20, s64> matrix_coeff20; // (2,0) of 4x3 conversion matrix
BitField<60, 4, u64> matrix_r_shift;
};
union {
BitField<0, 20, s64> matrix_coeff01; // (0,1) of 4x3 conversion matrix
BitField<20, 20, s64> matrix_coeff11; // (1,1) of 4x3 conversion matrix
BitField<40, 20, s64> matrix_coeff21; // (2,1) of 4x3 conversion matrix
BitField<60, 3, u64> reserved0;
BitField<63, 1, u64> matrix_enable;
};
union {
BitField<0, 20, s64> matrix_coeff02; // (0,2) of 4x3 conversion matrix
BitField<20, 20, s64> matrix_coeff12; // (1,2) of 4x3 conversion matrix
BitField<40, 20, s64> matrix_coeff22; // (2,2) of 4x3 conversion matrix
BitField<60, 4, u64> reserved1;
};
union {
BitField<0, 20, s64> matrix_coeff03; // (0,3) of 4x3 conversion matrix
BitField<20, 20, s64> matrix_coeff13; // (1,3) of 4x3 conversion matrix
BitField<40, 20, s64> matrix_coeff23; // (2,3) of 4x3 conversion matrix
BitField<60, 4, u64> reserved2;
};
};
static_assert(sizeof(MatrixStruct) == 0x20, "MatrixStruct has the wrong size!");
struct ClearRectStruct {
union {
BitField<0, 14, u32> clear_rect0_left;
BitField<14, 2, u32> reserved0;
BitField<16, 14, u32> clear_rect0_right;
BitField<30, 2, u32> reserved1;
};
union {
BitField<0, 14, u32> clear_rect0_top;
BitField<14, 2, u32> reserved2;
BitField<16, 14, u32> clear_rect0_bottom;
BitField<30, 2, u32> reserved3;
};
union {
BitField<0, 14, u32> clear_rect1_left;
BitField<14, 2, u32> reserved4;
BitField<16, 14, u32> clear_rect1_right;
BitField<30, 2, u32> reserved5;
};
union {
BitField<0, 14, u32> clear_rect1_top;
BitField<14, 2, u32> reserved6;
BitField<16, 14, u32> clear_rect1_bottom;
BitField<30, 2, u32> reserved7;
};
};
static_assert(sizeof(ClearRectStruct) == 0x10, "ClearRectStruct has the wrong size!");
struct SlotConfig {
union {
BitField<0, 1, u64> slot_enable;
BitField<1, 1, u64> denoise;
BitField<2, 1, u64> advanced_denoise;
BitField<3, 1, u64> cadence_detect;
BitField<4, 1, u64> motion_map;
BitField<5, 1, u64> motion_map_capture;
BitField<6, 1, u64> is_even;
BitField<7, 1, u64> chroma_even;
// fetch control struct
BitField<8, 1, u64> current_field_enable;
BitField<9, 1, u64> prev_field_enable;
BitField<10, 1, u64> next_field_enable;
BitField<11, 1, u64> next_nr_field_enable; // noise reduction
BitField<12, 1, u64> current_motion_field_enable;
BitField<13, 1, u64> prev_motion_field_enable;
BitField<14, 1, u64> prev_prev_motion_field_enable;
BitField<15, 1, u64> combined_motion_field_enable;
BitField<16, 4, DXVAHD_FRAME_FORMAT> frame_format;
BitField<20, 2, u64> filter_length_y; // 0: 1-tap, 1: 2-tap, 2: 5-tap, 3: 10-tap
BitField<22, 2, u64> filter_length_x;
BitField<24, 12, u64> panoramic;
BitField<36, 22, u64> reserved1;
BitField<58, 6, u64> detail_filter_clamp;
};
union {
BitField<0, 10, u64> filter_noise;
BitField<10, 10, u64> filter_detail;
BitField<20, 10, u64> chroma_noise;
BitField<30, 10, u64> chroma_detail;
BitField<40, 4, DXVAHD_DEINTERLACE_MODE_PRIVATE> deinterlace_mode;
BitField<44, 3, u64> motion_accumulation_weight;
BitField<47, 11, u64> noise_iir;
BitField<58, 4, u64> light_level;
BitField<62, 2, u64> reserved4;
};
union {
BitField<0, 10, u64> soft_clamp_low;
BitField<10, 10, u64> soft_clamp_high;
BitField<20, 3, u64> reserved5;
BitField<23, 9, u64> reserved6;
BitField<32, 10, u64> planar_alpha;
BitField<42, 1, u64> constant_alpha;
BitField<43, 3, u64> stereo_interleave;
BitField<46, 1, u64> clip_enabled;
BitField<47, 8, u64> clear_rect_mask;
BitField<55, 2, u64> degamma_mode;
BitField<57, 1, u64> reserved7;
BitField<58, 1, u64> decompress_enable;
BitField<59, 5, u64> reserved9;
};
union {
BitField<0, 8, u64> decompress_ctb_count;
BitField<8, 32, u64> decompress_zbc_count;
BitField<40, 24, u64> reserved12;
};
union {
BitField<0, 30, u64> source_rect_left;
BitField<30, 2, u64> reserved14;
BitField<32, 30, u64> source_rect_right;
BitField<62, 2, u64> reserved15;
};
union {
BitField<0, 30, u64> source_rect_top;
BitField<30, 2, u64> reserved16;
BitField<32, 30, u64> source_rect_bottom;
BitField<62, 2, u64> reserved17;
};
union {
BitField<0, 14, u64> dest_rect_left;
BitField<14, 2, u64> reserved18;
BitField<16, 14, u64> dest_rect_right;
BitField<30, 2, u64> reserved19;
BitField<32, 14, u64> dest_rect_top;
BitField<46, 2, u64> reserved20;
BitField<48, 14, u64> dest_rect_bottom;
BitField<62, 2, u64> reserved21;
};
u32 reserved22;
u32 reserved23;
};
static_assert(sizeof(SlotConfig) == 0x40, "SlotConfig has the wrong size!");
struct SlotSurfaceConfig {
union {
BitField<0, 7, VideoPixelFormat> slot_pixel_format;
BitField<7, 2, u32> slot_chroma_loc_horiz;
BitField<9, 2, u32> slot_chroma_loc_vert;
BitField<11, 4, u32> slot_block_kind;
BitField<15, 4, u32> slot_block_height;
BitField<19, 3, u32> slot_cache_width;
BitField<22, 10, u32> reserved0;
};
union {
BitField<0, 14, u32> slot_surface_width; // - 1
BitField<14, 14, u32> slot_surface_height; // - 1
BitField<28, 4, u32> reserved1;
};
union {
BitField<0, 14, u32> slot_luma_width; // padded, - 1
BitField<14, 14, u32> slot_luma_height; // padded, - 1
BitField<28, 4, u32> reserved2;
};
union {
BitField<0, 14, u32> slot_chroma_width; // padded, - 1
BitField<14, 14, u32> slot_chroma_height; // padded, - 1
BitField<28, 4, u32> reserved3;
};
};
static_assert(sizeof(SlotSurfaceConfig) == 0x10, "SlotSurfaceConfig has the wrong size!");
struct LumaKeyStruct {
union {
BitField<0, 20, u64> luma_coeff0; // (0) of 4x1 conversion matrix, S12.8 format
BitField<20, 20, u64> luma_coeff1; // (1) of 4x1 conversion matrix, S12.8 format
BitField<40, 20, u64> luma_coeff2; // (2) of 4x1 conversion matrix, S12.8 format
BitField<60, 4, u64> luma_r_shift;
};
union {
BitField<0, 20, u64> luma_coeff3; // (3) of 4x1 conversion matrix, S12.8 format
BitField<20, 10, u64> luma_key_lower;
BitField<30, 10, u64> luma_key_upper;
BitField<40, 1, u64> luma_key_enabled;
BitField<41, 2, u64> reserved0;
BitField<43, 21, u64> reserved1;
};
};
static_assert(sizeof(LumaKeyStruct) == 0x10, "LumaKeyStruct has the wrong size!");
struct BlendingSlotStruct {
union {
BitField<0, 10, u32> alpha_k1;
BitField<10, 6, u32> reserved0;
BitField<16, 10, u32> alpha_k2;
BitField<26, 6, u32> reserved1;
};
union {
BitField<0, 3, BLEND_SRCFACTC> src_factor_color_match_select;
BitField<3, 1, u32> reserved2;
BitField<4, 3, BLEND_DSTFACTC> dst_factor_color_match_select;
BitField<7, 1, u32> reserved3;
BitField<8, 3, BLEND_SRCFACTA> src_factor_a_match_select;
BitField<11, 1, u32> reserved4;
BitField<12, 3, BLEND_DSTFACTA> dst_factor_a_match_select;
BitField<15, 1, u32> reserved5;
BitField<16, 4, u32> reserved6;
BitField<20, 4, u32> reserved7;
BitField<24, 4, u32> reserved8;
BitField<28, 4, u32> reserved9;
};
union {
BitField<0, 2, u32> reserved10;
BitField<2, 10, u32> override_r;
BitField<12, 10, u32> override_g;
BitField<22, 10, u32> override_b;
};
union {
BitField<0, 10, u32> override_a;
BitField<10, 2, u32> reserved11;
BitField<12, 1, u32> use_override_r;
BitField<13, 1, u32> use_override_g;
BitField<14, 1, u32> use_override_b;
BitField<15, 1, u32> use_override_a;
BitField<16, 1, u32> mask_r;
BitField<17, 1, u32> mask_g;
BitField<18, 1, u32> mask_b;
BitField<19, 1, u32> mask_a;
BitField<20, 12, u32> reserved12;
};
};
static_assert(sizeof(BlendingSlotStruct) == 0x10, "BlendingSlotStruct has the wrong size!");
struct SlotStruct {
SlotConfig config;
SlotSurfaceConfig surface_config;
LumaKeyStruct luma_key;
MatrixStruct color_matrix;
MatrixStruct gamut_matrix;
BlendingSlotStruct blending;
};
static_assert(sizeof(SlotStruct) == 0xB0, "SlotStruct has the wrong size!");
struct ConfigStruct {
PipeConfig pipe_config;
OutputConfig output_config;
OutputSurfaceConfig output_surface_config;
MatrixStruct out_color_matrix;
std::array<ClearRectStruct, 4> clear_rects;
std::array<SlotStruct, 8> slot_structs;
};
static_assert(offsetof(ConfigStruct, pipe_config) == 0x0, "pipe_config is in the wrong place!");
static_assert(offsetof(ConfigStruct, output_config) == 0x10,
"output_config is in the wrong place!");
static_assert(offsetof(ConfigStruct, output_surface_config) == 0x20,
"output_surface_config is in the wrong place!");
static_assert(offsetof(ConfigStruct, out_color_matrix) == 0x30,
"out_color_matrix is in the wrong place!");
static_assert(offsetof(ConfigStruct, clear_rects) == 0x50, "clear_rects is in the wrong place!");
static_assert(offsetof(ConfigStruct, slot_structs) == 0x90, "slot_structs is in the wrong place!");
static_assert(sizeof(ConfigStruct) == 0x610, "ConfigStruct has the wrong size!");
struct VicRegisters {
static constexpr std::size_t NUM_REGS = 0x446;
union {
struct {
INSERT_PADDING_WORDS_NOINIT(0xC0);
u32 execute;
INSERT_PADDING_WORDS_NOINIT(0x3F);
std::array<std::array<PlaneOffsets, 8>, 8> surfaces;
u32 picture_index;
u32 control_params;
Offset config_struct_offset;
Offset filter_struct_offset;
Offset palette_offset;
Offset hist_offset;
u32 context_id;
u32 fce_ucode_size;
PlaneOffsets output_surface;
Offset fce_ucode_offset;
INSERT_PADDING_WORDS_NOINIT(0x4);
std::array<u32, 8> slot_context_ids;
std::array<Offset, 8> comp_tag_buffer_offsets;
std::array<Offset, 8> history_buffer_offset;
INSERT_PADDING_WORDS_NOINIT(0x25D);
u32 pm_trigger_end;
};
std::array<u32, NUM_REGS> reg_array;
};
};
static_assert(offsetof(VicRegisters, execute) == 0x300, "execute is in the wrong place!");
static_assert(offsetof(VicRegisters, surfaces) == 0x400, "surfaces is in the wrong place!");
static_assert(offsetof(VicRegisters, picture_index) == 0x700,
"picture_index is in the wrong place!");
static_assert(offsetof(VicRegisters, control_params) == 0x704,
"control_params is in the wrong place!");
static_assert(offsetof(VicRegisters, config_struct_offset) == 0x708,
"config_struct_offset is in the wrong place!");
static_assert(offsetof(VicRegisters, output_surface) == 0x720,
"output_surface is in the wrong place!");
static_assert(offsetof(VicRegisters, slot_context_ids) == 0x740,
"slot_context_ids is in the wrong place!");
static_assert(offsetof(VicRegisters, history_buffer_offset) == 0x780,
"history_buffer_offset is in the wrong place!");
static_assert(offsetof(VicRegisters, pm_trigger_end) == 0x1114,
"pm_trigger_end is in the wrong place!");
static_assert(sizeof(VicRegisters) == 0x1118, "VicRegisters has the wrong size!");
class Vic final : public CDmaPusher {
public: public:
enum class Method : u32 { enum class Method : u32 {
Execute = 0xc0, Execute = offsetof(VicRegisters, execute),
SetControlParams = 0x1c1, SetControlParams = offsetof(VicRegisters, control_params),
SetConfigStructOffset = 0x1c2, SetConfigStructOffset = offsetof(VicRegisters, config_struct_offset),
SetOutputSurfaceLumaOffset = 0x1c8, SetOutputSurfaceLumaOffset = offsetof(VicRegisters, output_surface.luma),
SetOutputSurfaceChromaOffset = 0x1c9, SetOutputSurfaceChromaOffset = offsetof(VicRegisters, output_surface.chroma_u),
SetOutputSurfaceChromaUnusedOffset = 0x1ca SetOutputSurfaceChromaUnusedOffset = offsetof(VicRegisters, output_surface.chroma_v)
}; };
explicit Vic(Host1x& host1x, std::shared_ptr<Nvdec> nvdec_processor); explicit Vic(Host1x& host1x, s32 id, u32 syncpt, FrameQueue& frame_queue);
~Vic(); ~Vic();
/// Write to the device state. /// Write to the device state.
void ProcessMethod(Method method, u32 argument); void ProcessMethod(u32 method, u32 arg) override;
private: private:
void Execute(); void Execute();
void WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config); void Blend(const ConfigStruct& config, const SlotStruct& slot);
void WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config); template <bool Planar, bool Interlaced = false>
void ReadProgressiveY8__V8U8_N420(const SlotStruct& slot, std::span<const PlaneOffsets> offsets,
std::shared_ptr<const FFmpeg::Frame> frame);
template <bool Planar, bool TopField>
void ReadInterlacedY8__V8U8_N420(const SlotStruct& slot, std::span<const PlaneOffsets> offsets,
std::shared_ptr<const FFmpeg::Frame> frame);
Host1x& host1x; template <bool Planar>
std::shared_ptr<Tegra::Host1x::Nvdec> nvdec_processor; void ReadY8__V8U8_N420(const SlotStruct& slot, std::span<const PlaneOffsets> offsets,
std::shared_ptr<const FFmpeg::Frame> frame);
/// Avoid reallocation of the following buffers every frame, as their void WriteY8__V8U8_N420(const OutputSurfaceConfig& output_surface_config);
/// size does not change during a stream
using AVMallocPtr = std::unique_ptr<u8, decltype(&av_free)>;
AVMallocPtr converted_frame_buffer;
Common::ScratchBuffer<u8> luma_buffer;
Common::ScratchBuffer<u8> chroma_buffer;
GPUVAddr config_struct_address{}; template <VideoPixelFormat Format>
GPUVAddr output_surface_luma_address{}; void WriteABGR(const OutputSurfaceConfig& output_surface_config);
GPUVAddr output_surface_chroma_address{};
SwsContext* scaler_ctx{}; s32 id;
s32 scaler_width{}; s32 nvdec_id{-1};
s32 scaler_height{}; u32 syncpoint;
VicRegisters regs{};
FrameQueue& frame_queue;
const bool has_sse41{false};
Common::ScratchBuffer<Pixel> output_surface;
Common::ScratchBuffer<Pixel> slot_surface;
Common::ScratchBuffer<u8> luma_scratch;
Common::ScratchBuffer<u8> chroma_scratch;
Common::ScratchBuffer<u8> swizzle_scratch;
}; };
} // namespace Host1x } // namespace Tegra::Host1x
} // namespace Tegra

View file

@ -43,6 +43,8 @@ public:
u64 big_page_bits_ = 16, u64 page_bits_ = 12); u64 big_page_bits_ = 16, u64 page_bits_ = 12);
~MemoryManager(); ~MemoryManager();
static constexpr bool HAS_FLUSH_INVALIDATION = true;
size_t GetID() const { size_t GetID() const {
return unique_identifier; return unique_identifier;
} }