These values are not equivalent, based off RE. The internal value is put
into a lookup table with the following values:
[3, 0, 1, 2, 4]
So the values absolutely do not map 1:1 like the comment was indicating.
Avoids entangling the IPC buffer appending with the actual operation of
converting the scaling values over. This also inserts the proper error
handling for invalid scaling values.
This appears to only check if the scaling mode can actually be
handled, rather than actually setting the scaling mode for the layer.
This implements the same error handling performed on the passed in
values.
Within the actual service, it makes no distinguishing between docked and
undocked modes. This will always return the constants values reporting
1280x720 as the dimensions.
This IPC command is simply a stub inside the actual service itself, and
just returns a successful error code regardless of input. This is likely
only retained in the service interface to not break older code that relied
upon it succeeding in some way.
In many cases, we didn't bother to log out any of the popped data
members. This logs them out to the console within the logging call to
provide more contextual information.
Internally within the vi services, this is essentially all that
OpenDefaultDisplay does, so it's trivial to just do the same, and
forward the default display string into the function.
It appears that the two members indicate whether a display has a bounded
number of layers (and if set, the second member indicates the total
number of layers).
This is a bounds check to ensure that the thread priority is within the
valid range of 0-64. If it exceeds 64, that doesn't necessarily mean
that an actual priority of 64 was expected (it actually means whoever
called the function screwed up their math).
Instead clarify the message to indicate the allowed range of thread
priorities.
Now that we handle the kernel capability descriptors we can correct
CreateThread to properly check against the core and priority masks
like the actual kernel does.
This makes the naming more closely match its meaning. It's just a
preferred core, not a required default core. This also makes the usages
of this term consistent across the thread and process implementations.
This function isn't a general purpose function that should be exposed to
everything, given it's specific to initializing the main thread for a
Process instance.
Given that, it's a tad bit more sensible to place this within
process.cpp, which keeps it visible only to the code that actually needs
it.
Provides extra information that makes it easier to tell if an executable
being run is using a 36-bit address space or a 39-bit address space.
While we don't support AArch32 executables yet, this also puts in
distinguishing information for the 32-bit address space types as well.