yuzu-android/src/core/arm/dynarmic/arm_dynarmic.cpp
bunnei 28538bba9c
Merge pull request #2574 from DarkLordZach/dynarmic-jit-nullptr
arm_dynarmic: Check if jit is nullptr when preparing reschedule
2019-09-29 21:44:10 -04:00

310 lines
9.7 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <memory>
#include <dynarmic/A64/a64.h>
#include <dynarmic/A64/config.h>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Core {
using Vector = Dynarmic::A64::Vector;
class ARM_Dynarmic_Callbacks : public Dynarmic::A64::UserCallbacks {
public:
explicit ARM_Dynarmic_Callbacks(ARM_Dynarmic& parent) : parent(parent) {}
u8 MemoryRead8(u64 vaddr) override {
return Memory::Read8(vaddr);
}
u16 MemoryRead16(u64 vaddr) override {
return Memory::Read16(vaddr);
}
u32 MemoryRead32(u64 vaddr) override {
return Memory::Read32(vaddr);
}
u64 MemoryRead64(u64 vaddr) override {
return Memory::Read64(vaddr);
}
Vector MemoryRead128(u64 vaddr) override {
return {Memory::Read64(vaddr), Memory::Read64(vaddr + 8)};
}
void MemoryWrite8(u64 vaddr, u8 value) override {
Memory::Write8(vaddr, value);
}
void MemoryWrite16(u64 vaddr, u16 value) override {
Memory::Write16(vaddr, value);
}
void MemoryWrite32(u64 vaddr, u32 value) override {
Memory::Write32(vaddr, value);
}
void MemoryWrite64(u64 vaddr, u64 value) override {
Memory::Write64(vaddr, value);
}
void MemoryWrite128(u64 vaddr, Vector value) override {
Memory::Write64(vaddr, value[0]);
Memory::Write64(vaddr + 8, value[1]);
}
void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
LOG_INFO(Core_ARM, "Unicorn fallback @ 0x{:X} for {} instructions (instr = {:08X})", pc,
num_instructions, MemoryReadCode(pc));
ARM_Interface::ThreadContext ctx;
parent.SaveContext(ctx);
parent.inner_unicorn.LoadContext(ctx);
parent.inner_unicorn.ExecuteInstructions(static_cast<int>(num_instructions));
parent.inner_unicorn.SaveContext(ctx);
parent.LoadContext(ctx);
num_interpreted_instructions += num_instructions;
}
void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
switch (exception) {
case Dynarmic::A64::Exception::WaitForInterrupt:
case Dynarmic::A64::Exception::WaitForEvent:
case Dynarmic::A64::Exception::SendEvent:
case Dynarmic::A64::Exception::SendEventLocal:
case Dynarmic::A64::Exception::Yield:
return;
case Dynarmic::A64::Exception::Breakpoint:
if (GDBStub::IsServerEnabled()) {
parent.jit->HaltExecution();
parent.SetPC(pc);
Kernel::Thread* thread = Kernel::GetCurrentThread();
parent.SaveContext(thread->GetContext());
GDBStub::Break();
GDBStub::SendTrap(thread, 5);
return;
}
[[fallthrough]];
default:
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:X})",
static_cast<std::size_t>(exception), pc);
}
}
void CallSVC(u32 swi) override {
Kernel::CallSVC(parent.system, swi);
}
void AddTicks(u64 ticks) override {
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
// rough approximation of the amount of executed ticks in the system, it may be thrown off
// if not all cores are doing a similar amount of work. Instead of doing this, we should
// device a way so that timing is consistent across all cores without increasing the ticks 4
// times.
u64 amortized_ticks = (ticks - num_interpreted_instructions) / Core::NUM_CPU_CORES;
// Always execute at least one tick.
amortized_ticks = std::max<u64>(amortized_ticks, 1);
parent.system.CoreTiming().AddTicks(amortized_ticks);
num_interpreted_instructions = 0;
}
u64 GetTicksRemaining() override {
return std::max(parent.system.CoreTiming().GetDowncount(), 0);
}
u64 GetCNTPCT() override {
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
}
ARM_Dynarmic& parent;
std::size_t num_interpreted_instructions = 0;
u64 tpidrro_el0 = 0;
u64 tpidr_el0 = 0;
};
std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit(Common::PageTable& page_table,
std::size_t address_space_bits) const {
Dynarmic::A64::UserConfig config;
// Callbacks
config.callbacks = cb.get();
// Memory
config.page_table = reinterpret_cast<void**>(page_table.pointers.data());
config.page_table_address_space_bits = address_space_bits;
config.silently_mirror_page_table = false;
// Multi-process state
config.processor_id = core_index;
config.global_monitor = &exclusive_monitor.monitor;
// System registers
config.tpidrro_el0 = &cb->tpidrro_el0;
config.tpidr_el0 = &cb->tpidr_el0;
config.dczid_el0 = 4;
config.ctr_el0 = 0x8444c004;
config.cntfrq_el0 = Timing::CNTFREQ;
// Unpredictable instructions
config.define_unpredictable_behaviour = true;
return std::make_unique<Dynarmic::A64::Jit>(config);
}
MICROPROFILE_DEFINE(ARM_Jit_Dynarmic, "ARM JIT", "Dynarmic", MP_RGB(255, 64, 64));
void ARM_Dynarmic::Run() {
MICROPROFILE_SCOPE(ARM_Jit_Dynarmic);
jit->Run();
}
void ARM_Dynarmic::Step() {
cb->InterpreterFallback(jit->GetPC(), 1);
}
ARM_Dynarmic::ARM_Dynarmic(System& system, ExclusiveMonitor& exclusive_monitor,
std::size_t core_index)
: cb(std::make_unique<ARM_Dynarmic_Callbacks>(*this)), inner_unicorn{system},
core_index{core_index}, system{system},
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
ARM_Dynarmic::~ARM_Dynarmic() = default;
void ARM_Dynarmic::SetPC(u64 pc) {
jit->SetPC(pc);
}
u64 ARM_Dynarmic::GetPC() const {
return jit->GetPC();
}
u64 ARM_Dynarmic::GetReg(int index) const {
return jit->GetRegister(index);
}
void ARM_Dynarmic::SetReg(int index, u64 value) {
jit->SetRegister(index, value);
}
u128 ARM_Dynarmic::GetVectorReg(int index) const {
return jit->GetVector(index);
}
void ARM_Dynarmic::SetVectorReg(int index, u128 value) {
jit->SetVector(index, value);
}
u32 ARM_Dynarmic::GetPSTATE() const {
return jit->GetPstate();
}
void ARM_Dynarmic::SetPSTATE(u32 pstate) {
jit->SetPstate(pstate);
}
u64 ARM_Dynarmic::GetTlsAddress() const {
return cb->tpidrro_el0;
}
void ARM_Dynarmic::SetTlsAddress(VAddr address) {
cb->tpidrro_el0 = address;
}
u64 ARM_Dynarmic::GetTPIDR_EL0() const {
return cb->tpidr_el0;
}
void ARM_Dynarmic::SetTPIDR_EL0(u64 value) {
cb->tpidr_el0 = value;
}
void ARM_Dynarmic::SaveContext(ThreadContext& ctx) {
ctx.cpu_registers = jit->GetRegisters();
ctx.sp = jit->GetSP();
ctx.pc = jit->GetPC();
ctx.pstate = jit->GetPstate();
ctx.vector_registers = jit->GetVectors();
ctx.fpcr = jit->GetFpcr();
ctx.fpsr = jit->GetFpsr();
ctx.tpidr = cb->tpidr_el0;
}
void ARM_Dynarmic::LoadContext(const ThreadContext& ctx) {
jit->SetRegisters(ctx.cpu_registers);
jit->SetSP(ctx.sp);
jit->SetPC(ctx.pc);
jit->SetPstate(ctx.pstate);
jit->SetVectors(ctx.vector_registers);
jit->SetFpcr(ctx.fpcr);
jit->SetFpsr(ctx.fpsr);
SetTPIDR_EL0(ctx.tpidr);
}
void ARM_Dynarmic::PrepareReschedule() {
if (jit == nullptr)
return;
jit->HaltExecution();
}
void ARM_Dynarmic::ClearInstructionCache() {
jit->ClearCache();
}
void ARM_Dynarmic::ClearExclusiveState() {
jit->ClearExclusiveState();
}
void ARM_Dynarmic::PageTableChanged(Common::PageTable& page_table,
std::size_t new_address_space_size_in_bits) {
jit = MakeJit(page_table, new_address_space_size_in_bits);
}
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(std::size_t core_count) : monitor(core_count) {}
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;
void DynarmicExclusiveMonitor::SetExclusive(std::size_t core_index, VAddr addr) {
// Size doesn't actually matter.
monitor.Mark(core_index, addr, 16);
}
void DynarmicExclusiveMonitor::ClearExclusive() {
monitor.Clear();
}
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 1,
[&] { Memory::Write8(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 2,
[&] { Memory::Write16(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 4,
[&] { Memory::Write32(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 8,
[&] { Memory::Write64(vaddr, value); });
}
bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
return monitor.DoExclusiveOperation(core_index, vaddr, 16, [&] {
Memory::Write64(vaddr + 0, value[0]);
Memory::Write64(vaddr + 8, value[1]);
});
}
} // namespace Core