mirror of
https://github.com/yuzu-emu/yuzu-android.git
synced 2025-01-25 13:51:10 +00:00
602 lines
20 KiB
C++
602 lines
20 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <ctime>
|
|
#include <memory>
|
|
#include <random>
|
|
#include "common/alignment.h"
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/scope_exit.h"
|
|
#include "common/settings.h"
|
|
#include "core/core.h"
|
|
#include "core/device_memory.h"
|
|
#include "core/file_sys/program_metadata.h"
|
|
#include "core/hle/kernel/code_set.h"
|
|
#include "core/hle/kernel/k_memory_block_manager.h"
|
|
#include "core/hle/kernel/k_page_table.h"
|
|
#include "core/hle/kernel/k_process.h"
|
|
#include "core/hle/kernel/k_resource_limit.h"
|
|
#include "core/hle/kernel/k_scheduler.h"
|
|
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
|
#include "core/hle/kernel/k_shared_memory.h"
|
|
#include "core/hle/kernel/k_shared_memory_info.h"
|
|
#include "core/hle/kernel/k_slab_heap.h"
|
|
#include "core/hle/kernel/k_thread.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/svc_results.h"
|
|
#include "core/hle/lock.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
namespace {
|
|
/**
|
|
* Sets up the primary application thread
|
|
*
|
|
* @param system The system instance to create the main thread under.
|
|
* @param owner_process The parent process for the main thread
|
|
* @param priority The priority to give the main thread
|
|
*/
|
|
void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority, VAddr stack_top) {
|
|
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
|
|
ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::Threads, 1));
|
|
|
|
KThread* thread = KThread::Create(system.Kernel());
|
|
SCOPE_EXIT({ thread->Close(); });
|
|
|
|
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
|
|
owner_process.GetIdealCoreId(), &owner_process)
|
|
.IsSuccess());
|
|
|
|
// Register 1 must be a handle to the main thread
|
|
Handle thread_handle{};
|
|
owner_process.GetHandleTable().Add(&thread_handle, thread);
|
|
|
|
thread->SetName("main");
|
|
thread->GetContext32().cpu_registers[0] = 0;
|
|
thread->GetContext64().cpu_registers[0] = 0;
|
|
thread->GetContext32().cpu_registers[1] = thread_handle;
|
|
thread->GetContext64().cpu_registers[1] = thread_handle;
|
|
thread->DisableDispatch();
|
|
|
|
auto& kernel = system.Kernel();
|
|
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
|
{
|
|
KScopedSchedulerLock lock{kernel};
|
|
thread->SetState(ThreadState::Runnable);
|
|
}
|
|
}
|
|
} // Anonymous namespace
|
|
|
|
// Represents a page used for thread-local storage.
|
|
//
|
|
// Each TLS page contains slots that may be used by processes and threads.
|
|
// Every process and thread is created with a slot in some arbitrary page
|
|
// (whichever page happens to have an available slot).
|
|
class TLSPage {
|
|
public:
|
|
static constexpr std::size_t num_slot_entries =
|
|
Core::Memory::PAGE_SIZE / Core::Memory::TLS_ENTRY_SIZE;
|
|
|
|
explicit TLSPage(VAddr address) : base_address{address} {}
|
|
|
|
bool HasAvailableSlots() const {
|
|
return !is_slot_used.all();
|
|
}
|
|
|
|
VAddr GetBaseAddress() const {
|
|
return base_address;
|
|
}
|
|
|
|
std::optional<VAddr> ReserveSlot() {
|
|
for (std::size_t i = 0; i < is_slot_used.size(); i++) {
|
|
if (is_slot_used[i]) {
|
|
continue;
|
|
}
|
|
|
|
is_slot_used[i] = true;
|
|
return base_address + (i * Core::Memory::TLS_ENTRY_SIZE);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
void ReleaseSlot(VAddr address) {
|
|
// Ensure that all given addresses are consistent with how TLS pages
|
|
// are intended to be used when releasing slots.
|
|
ASSERT(IsWithinPage(address));
|
|
ASSERT((address % Core::Memory::TLS_ENTRY_SIZE) == 0);
|
|
|
|
const std::size_t index = (address - base_address) / Core::Memory::TLS_ENTRY_SIZE;
|
|
is_slot_used[index] = false;
|
|
}
|
|
|
|
private:
|
|
bool IsWithinPage(VAddr address) const {
|
|
return base_address <= address && address < base_address + Core::Memory::PAGE_SIZE;
|
|
}
|
|
|
|
VAddr base_address;
|
|
std::bitset<num_slot_entries> is_slot_used;
|
|
};
|
|
|
|
ResultCode KProcess::Initialize(KProcess* process, Core::System& system, std::string process_name,
|
|
ProcessType type) {
|
|
auto& kernel = system.Kernel();
|
|
|
|
process->name = std::move(process_name);
|
|
|
|
process->resource_limit = kernel.GetSystemResourceLimit();
|
|
process->status = ProcessStatus::Created;
|
|
process->program_id = 0;
|
|
process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
|
|
: kernel.CreateNewUserProcessID();
|
|
process->capabilities.InitializeForMetadatalessProcess();
|
|
process->is_initialized = true;
|
|
|
|
std::mt19937 rng(Settings::values.rng_seed.GetValue().value_or(std::time(nullptr)));
|
|
std::uniform_int_distribution<u64> distribution;
|
|
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
|
|
[&] { return distribution(rng); });
|
|
|
|
kernel.AppendNewProcess(process);
|
|
|
|
// Open a reference to the resource limit.
|
|
process->resource_limit->Open();
|
|
|
|
return ResultSuccess;
|
|
}
|
|
|
|
KResourceLimit* KProcess::GetResourceLimit() const {
|
|
return resource_limit;
|
|
}
|
|
|
|
void KProcess::IncrementThreadCount() {
|
|
ASSERT(num_threads >= 0);
|
|
num_created_threads++;
|
|
|
|
if (const auto count = ++num_threads; count > peak_num_threads) {
|
|
peak_num_threads = count;
|
|
}
|
|
}
|
|
|
|
void KProcess::DecrementThreadCount() {
|
|
ASSERT(num_threads > 0);
|
|
|
|
if (const auto count = --num_threads; count == 0) {
|
|
LOG_WARNING(Kernel, "Process termination is not fully implemented.");
|
|
}
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryAvailable() const {
|
|
const u64 capacity{resource_limit->GetFreeValue(LimitableResource::PhysicalMemory) +
|
|
page_table->GetTotalHeapSize() + GetSystemResourceSize() + image_size +
|
|
main_thread_stack_size};
|
|
if (const auto pool_size = kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
|
|
capacity != pool_size) {
|
|
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
|
|
}
|
|
if (capacity < memory_usage_capacity) {
|
|
return capacity;
|
|
}
|
|
return memory_usage_capacity;
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() const {
|
|
return GetTotalPhysicalMemoryAvailable() - GetSystemResourceSize();
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryUsed() const {
|
|
return image_size + main_thread_stack_size + page_table->GetTotalHeapSize() +
|
|
GetSystemResourceSize();
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() const {
|
|
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
|
|
}
|
|
|
|
bool KProcess::ReleaseUserException(KThread* thread) {
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
if (exception_thread == thread) {
|
|
exception_thread = nullptr;
|
|
|
|
// Remove waiter thread.
|
|
s32 num_waiters{};
|
|
if (KThread* next = thread->RemoveWaiterByKey(
|
|
std::addressof(num_waiters),
|
|
reinterpret_cast<uintptr_t>(std::addressof(exception_thread)));
|
|
next != nullptr) {
|
|
next->SetState(ThreadState::Runnable);
|
|
}
|
|
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void KProcess::PinCurrentThread() {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the current thread.
|
|
const s32 core_id = GetCurrentCoreId(kernel);
|
|
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
|
|
|
// If the thread isn't terminated, pin it.
|
|
if (!cur_thread->IsTerminationRequested()) {
|
|
// Pin it.
|
|
PinThread(core_id, cur_thread);
|
|
cur_thread->Pin();
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
}
|
|
|
|
void KProcess::UnpinCurrentThread() {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the current thread.
|
|
const s32 core_id = GetCurrentCoreId(kernel);
|
|
KThread* cur_thread = GetCurrentThreadPointer(kernel);
|
|
|
|
// Unpin it.
|
|
cur_thread->Unpin();
|
|
UnpinThread(core_id, cur_thread);
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
|
|
void KProcess::UnpinThread(KThread* thread) {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the thread's core id.
|
|
const auto core_id = thread->GetActiveCore();
|
|
|
|
// Unpin it.
|
|
UnpinThread(core_id, thread);
|
|
thread->Unpin();
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
|
|
ResultCode KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
|
|
[[maybe_unused]] size_t size) {
|
|
// Lock ourselves, to prevent concurrent access.
|
|
KScopedLightLock lk(state_lock);
|
|
|
|
// Try to find an existing info for the memory.
|
|
KSharedMemoryInfo* shemen_info = nullptr;
|
|
const auto iter = std::find_if(
|
|
shared_memory_list.begin(), shared_memory_list.end(),
|
|
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
|
|
if (iter != shared_memory_list.end()) {
|
|
shemen_info = *iter;
|
|
}
|
|
|
|
if (shemen_info == nullptr) {
|
|
shemen_info = KSharedMemoryInfo::Allocate(kernel);
|
|
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
|
|
|
|
shemen_info->Initialize(shmem);
|
|
shared_memory_list.push_back(shemen_info);
|
|
}
|
|
|
|
// Open a reference to the shared memory and its info.
|
|
shmem->Open();
|
|
shemen_info->Open();
|
|
|
|
return ResultSuccess;
|
|
}
|
|
|
|
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
|
|
[[maybe_unused]] size_t size) {
|
|
// Lock ourselves, to prevent concurrent access.
|
|
KScopedLightLock lk(state_lock);
|
|
|
|
KSharedMemoryInfo* shemen_info = nullptr;
|
|
const auto iter = std::find_if(
|
|
shared_memory_list.begin(), shared_memory_list.end(),
|
|
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
|
|
if (iter != shared_memory_list.end()) {
|
|
shemen_info = *iter;
|
|
}
|
|
|
|
ASSERT(shemen_info != nullptr);
|
|
|
|
if (shemen_info->Close()) {
|
|
shared_memory_list.erase(iter);
|
|
KSharedMemoryInfo::Free(kernel, shemen_info);
|
|
}
|
|
|
|
// Close a reference to the shared memory.
|
|
shmem->Close();
|
|
}
|
|
|
|
void KProcess::RegisterThread(const KThread* thread) {
|
|
thread_list.push_back(thread);
|
|
}
|
|
|
|
void KProcess::UnregisterThread(const KThread* thread) {
|
|
thread_list.remove(thread);
|
|
}
|
|
|
|
ResultCode KProcess::Reset() {
|
|
// Lock the process and the scheduler.
|
|
KScopedLightLock lk(state_lock);
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
// Validate that we're in a state that we can reset.
|
|
R_UNLESS(status != ProcessStatus::Exited, ResultInvalidState);
|
|
R_UNLESS(is_signaled, ResultInvalidState);
|
|
|
|
// Clear signaled.
|
|
is_signaled = false;
|
|
return ResultSuccess;
|
|
}
|
|
|
|
ResultCode KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata,
|
|
std::size_t code_size) {
|
|
program_id = metadata.GetTitleID();
|
|
ideal_core = metadata.GetMainThreadCore();
|
|
is_64bit_process = metadata.Is64BitProgram();
|
|
system_resource_size = metadata.GetSystemResourceSize();
|
|
image_size = code_size;
|
|
|
|
KScopedResourceReservation memory_reservation(resource_limit, LimitableResource::PhysicalMemory,
|
|
code_size + system_resource_size);
|
|
if (!memory_reservation.Succeeded()) {
|
|
LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
|
|
code_size + system_resource_size);
|
|
return ResultLimitReached;
|
|
}
|
|
// Initialize proces address space
|
|
if (const ResultCode result{
|
|
page_table->InitializeForProcess(metadata.GetAddressSpaceType(), false, 0x8000000,
|
|
code_size, KMemoryManager::Pool::Application)};
|
|
result.IsError()) {
|
|
return result;
|
|
}
|
|
|
|
// Map process code region
|
|
if (const ResultCode result{page_table->MapProcessCode(page_table->GetCodeRegionStart(),
|
|
code_size / PageSize, KMemoryState::Code,
|
|
KMemoryPermission::None)};
|
|
result.IsError()) {
|
|
return result;
|
|
}
|
|
|
|
// Initialize process capabilities
|
|
const auto& caps{metadata.GetKernelCapabilities()};
|
|
if (const ResultCode result{
|
|
capabilities.InitializeForUserProcess(caps.data(), caps.size(), *page_table)};
|
|
result.IsError()) {
|
|
return result;
|
|
}
|
|
|
|
// Set memory usage capacity
|
|
switch (metadata.GetAddressSpaceType()) {
|
|
case FileSys::ProgramAddressSpaceType::Is32Bit:
|
|
case FileSys::ProgramAddressSpaceType::Is36Bit:
|
|
case FileSys::ProgramAddressSpaceType::Is39Bit:
|
|
memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart();
|
|
break;
|
|
|
|
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
|
|
memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart() +
|
|
page_table->GetAliasRegionEnd() - page_table->GetAliasRegionStart();
|
|
break;
|
|
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Create TLS region
|
|
tls_region_address = CreateTLSRegion();
|
|
memory_reservation.Commit();
|
|
|
|
return handle_table.Initialize(capabilities.GetHandleTableSize());
|
|
}
|
|
|
|
void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
|
|
AllocateMainThreadStack(stack_size);
|
|
resource_limit->Reserve(LimitableResource::Threads, 1);
|
|
resource_limit->Reserve(LimitableResource::PhysicalMemory, main_thread_stack_size);
|
|
|
|
const std::size_t heap_capacity{memory_usage_capacity - main_thread_stack_size - image_size};
|
|
ASSERT(!page_table->SetHeapCapacity(heap_capacity).IsError());
|
|
|
|
ChangeStatus(ProcessStatus::Running);
|
|
|
|
SetupMainThread(kernel.System(), *this, main_thread_priority, main_thread_stack_top);
|
|
}
|
|
|
|
void KProcess::PrepareForTermination() {
|
|
ChangeStatus(ProcessStatus::Exiting);
|
|
|
|
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
|
|
for (auto& thread : in_thread_list) {
|
|
if (thread->GetOwnerProcess() != this)
|
|
continue;
|
|
|
|
if (thread == kernel.CurrentScheduler()->GetCurrentThread())
|
|
continue;
|
|
|
|
// TODO(Subv): When are the other running/ready threads terminated?
|
|
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
|
|
"Exiting processes with non-waiting threads is currently unimplemented");
|
|
|
|
thread->Exit();
|
|
}
|
|
};
|
|
|
|
stop_threads(kernel.System().GlobalSchedulerContext().GetThreadList());
|
|
|
|
FreeTLSRegion(tls_region_address);
|
|
tls_region_address = 0;
|
|
|
|
if (resource_limit) {
|
|
resource_limit->Release(LimitableResource::PhysicalMemory,
|
|
main_thread_stack_size + image_size);
|
|
}
|
|
|
|
ChangeStatus(ProcessStatus::Exited);
|
|
}
|
|
|
|
void KProcess::Finalize() {
|
|
// Finalize the handle table and close any open handles.
|
|
handle_table.Finalize();
|
|
|
|
// Free all shared memory infos.
|
|
{
|
|
auto it = shared_memory_list.begin();
|
|
while (it != shared_memory_list.end()) {
|
|
KSharedMemoryInfo* info = *it;
|
|
KSharedMemory* shmem = info->GetSharedMemory();
|
|
|
|
while (!info->Close()) {
|
|
shmem->Close();
|
|
}
|
|
|
|
shmem->Close();
|
|
|
|
it = shared_memory_list.erase(it);
|
|
KSharedMemoryInfo::Free(kernel, info);
|
|
}
|
|
}
|
|
|
|
// Release memory to the resource limit.
|
|
if (resource_limit != nullptr) {
|
|
resource_limit->Close();
|
|
resource_limit = nullptr;
|
|
}
|
|
|
|
// Perform inherited finalization.
|
|
KAutoObjectWithSlabHeapAndContainer<KProcess, KSynchronizationObject>::Finalize();
|
|
}
|
|
|
|
/**
|
|
* Attempts to find a TLS page that contains a free slot for
|
|
* use by a thread.
|
|
*
|
|
* @returns If a page with an available slot is found, then an iterator
|
|
* pointing to the page is returned. Otherwise the end iterator
|
|
* is returned instead.
|
|
*/
|
|
static auto FindTLSPageWithAvailableSlots(std::vector<TLSPage>& tls_pages) {
|
|
return std::find_if(tls_pages.begin(), tls_pages.end(),
|
|
[](const auto& page) { return page.HasAvailableSlots(); });
|
|
}
|
|
|
|
VAddr KProcess::CreateTLSRegion() {
|
|
KScopedSchedulerLock lock(kernel);
|
|
if (auto tls_page_iter{FindTLSPageWithAvailableSlots(tls_pages)};
|
|
tls_page_iter != tls_pages.cend()) {
|
|
return *tls_page_iter->ReserveSlot();
|
|
}
|
|
|
|
Page* const tls_page_ptr{kernel.GetUserSlabHeapPages().Allocate()};
|
|
ASSERT(tls_page_ptr);
|
|
|
|
const VAddr start{page_table->GetKernelMapRegionStart()};
|
|
const VAddr size{page_table->GetKernelMapRegionEnd() - start};
|
|
const PAddr tls_map_addr{kernel.System().DeviceMemory().GetPhysicalAddr(tls_page_ptr)};
|
|
const VAddr tls_page_addr{page_table
|
|
->AllocateAndMapMemory(1, PageSize, true, start, size / PageSize,
|
|
KMemoryState::ThreadLocal,
|
|
KMemoryPermission::ReadAndWrite,
|
|
tls_map_addr)
|
|
.ValueOr(0)};
|
|
|
|
ASSERT(tls_page_addr);
|
|
|
|
std::memset(tls_page_ptr, 0, PageSize);
|
|
tls_pages.emplace_back(tls_page_addr);
|
|
|
|
const auto reserve_result{tls_pages.back().ReserveSlot()};
|
|
ASSERT(reserve_result.has_value());
|
|
|
|
return *reserve_result;
|
|
}
|
|
|
|
void KProcess::FreeTLSRegion(VAddr tls_address) {
|
|
KScopedSchedulerLock lock(kernel);
|
|
const VAddr aligned_address = Common::AlignDown(tls_address, Core::Memory::PAGE_SIZE);
|
|
auto iter =
|
|
std::find_if(tls_pages.begin(), tls_pages.end(), [aligned_address](const auto& page) {
|
|
return page.GetBaseAddress() == aligned_address;
|
|
});
|
|
|
|
// Something has gone very wrong if we're freeing a region
|
|
// with no actual page available.
|
|
ASSERT(iter != tls_pages.cend());
|
|
|
|
iter->ReleaseSlot(tls_address);
|
|
}
|
|
|
|
void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
|
|
std::lock_guard lock{HLE::g_hle_lock};
|
|
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
|
|
KMemoryPermission permission) {
|
|
page_table->SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
|
|
};
|
|
|
|
kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
|
|
code_set.memory.size());
|
|
|
|
ReprotectSegment(code_set.CodeSegment(), KMemoryPermission::ReadAndExecute);
|
|
ReprotectSegment(code_set.RODataSegment(), KMemoryPermission::Read);
|
|
ReprotectSegment(code_set.DataSegment(), KMemoryPermission::ReadAndWrite);
|
|
}
|
|
|
|
bool KProcess::IsSignaled() const {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
return is_signaled;
|
|
}
|
|
|
|
KProcess::KProcess(KernelCore& kernel_)
|
|
: KAutoObjectWithSlabHeapAndContainer{kernel_},
|
|
page_table{std::make_unique<KPageTable>(kernel_.System())}, handle_table{kernel_},
|
|
address_arbiter{kernel_.System()}, condition_var{kernel_.System()}, state_lock{kernel_} {}
|
|
|
|
KProcess::~KProcess() = default;
|
|
|
|
void KProcess::ChangeStatus(ProcessStatus new_status) {
|
|
if (status == new_status) {
|
|
return;
|
|
}
|
|
|
|
status = new_status;
|
|
is_signaled = true;
|
|
NotifyAvailable();
|
|
}
|
|
|
|
ResultCode KProcess::AllocateMainThreadStack(std::size_t stack_size) {
|
|
ASSERT(stack_size);
|
|
|
|
// The kernel always ensures that the given stack size is page aligned.
|
|
main_thread_stack_size = Common::AlignUp(stack_size, PageSize);
|
|
|
|
const VAddr start{page_table->GetStackRegionStart()};
|
|
const std::size_t size{page_table->GetStackRegionEnd() - start};
|
|
|
|
CASCADE_RESULT(main_thread_stack_top,
|
|
page_table->AllocateAndMapMemory(
|
|
main_thread_stack_size / PageSize, PageSize, false, start, size / PageSize,
|
|
KMemoryState::Stack, KMemoryPermission::ReadAndWrite));
|
|
|
|
main_thread_stack_top += main_thread_stack_size;
|
|
|
|
return ResultSuccess;
|
|
}
|
|
|
|
} // namespace Kernel
|