yuzu-android/src/shader_recompiler/backend/glasm/emit_glasm.cpp
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

495 lines
17 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <string>
#include <tuple>
#include "common/div_ceil.h"
#include "common/settings.h"
#include "shader_recompiler/backend/bindings.h"
#include "shader_recompiler/backend/glasm/emit_glasm.h"
#include "shader_recompiler/backend/glasm/emit_glasm_instructions.h"
#include "shader_recompiler/backend/glasm/glasm_emit_context.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/ir/program.h"
#include "shader_recompiler/profile.h"
#include "shader_recompiler/runtime_info.h"
namespace Shader::Backend::GLASM {
namespace {
template <class Func>
struct FuncTraits {};
template <class ReturnType_, class... Args>
struct FuncTraits<ReturnType_ (*)(Args...)> {
using ReturnType = ReturnType_;
static constexpr size_t NUM_ARGS = sizeof...(Args);
template <size_t I>
using ArgType = std::tuple_element_t<I, std::tuple<Args...>>;
};
template <typename T>
struct Identity {
Identity(T data_) : data{data_} {}
T Extract() {
return data;
}
T data;
};
template <bool scalar>
class RegWrapper {
public:
RegWrapper(EmitContext& ctx, const IR::Value& ir_value) : reg_alloc{ctx.reg_alloc} {
const Value value{reg_alloc.Peek(ir_value)};
if (value.type == Type::Register) {
inst = ir_value.InstRecursive();
reg = Register{value};
} else {
reg = value.type == Type::U64 ? reg_alloc.AllocLongReg() : reg_alloc.AllocReg();
}
switch (value.type) {
case Type::Register:
case Type::Void:
break;
case Type::U32:
ctx.Add("MOV.U {}.x,{};", reg, value.imm_u32);
break;
case Type::U64:
ctx.Add("MOV.U64 {}.x,{};", reg, value.imm_u64);
break;
}
}
auto Extract() {
if (inst) {
reg_alloc.Unref(*inst);
} else {
reg_alloc.FreeReg(reg);
}
return std::conditional_t<scalar, ScalarRegister, Register>{Value{reg}};
}
private:
RegAlloc& reg_alloc;
IR::Inst* inst{};
Register reg{};
};
template <typename ArgType>
class ValueWrapper {
public:
ValueWrapper(EmitContext& ctx, const IR::Value& ir_value_)
: reg_alloc{ctx.reg_alloc}, ir_value{ir_value_}, value{reg_alloc.Peek(ir_value)} {}
ArgType Extract() {
if (!ir_value.IsImmediate()) {
reg_alloc.Unref(*ir_value.InstRecursive());
}
return value;
}
private:
RegAlloc& reg_alloc;
const IR::Value& ir_value;
ArgType value;
};
template <typename ArgType>
auto Arg(EmitContext& ctx, const IR::Value& arg) {
if constexpr (std::is_same_v<ArgType, Register>) {
return RegWrapper<false>{ctx, arg};
} else if constexpr (std::is_same_v<ArgType, ScalarRegister>) {
return RegWrapper<true>{ctx, arg};
} else if constexpr (std::is_base_of_v<Value, ArgType>) {
return ValueWrapper<ArgType>{ctx, arg};
} else if constexpr (std::is_same_v<ArgType, const IR::Value&>) {
return Identity<const IR::Value&>{arg};
} else if constexpr (std::is_same_v<ArgType, u32>) {
return Identity{arg.U32()};
} else if constexpr (std::is_same_v<ArgType, IR::Attribute>) {
return Identity{arg.Attribute()};
} else if constexpr (std::is_same_v<ArgType, IR::Patch>) {
return Identity{arg.Patch()};
} else if constexpr (std::is_same_v<ArgType, IR::Reg>) {
return Identity{arg.Reg()};
}
}
template <auto func, bool is_first_arg_inst>
struct InvokeCall {
template <typename... Args>
InvokeCall(EmitContext& ctx, IR::Inst* inst, Args&&... args) {
if constexpr (is_first_arg_inst) {
func(ctx, *inst, args.Extract()...);
} else {
func(ctx, args.Extract()...);
}
}
};
template <auto func, bool is_first_arg_inst, size_t... I>
void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) {
using Traits = FuncTraits<decltype(func)>;
if constexpr (is_first_arg_inst) {
InvokeCall<func, is_first_arg_inst>{
ctx, inst, Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...};
} else {
InvokeCall<func, is_first_arg_inst>{
ctx, inst, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...};
}
}
template <auto func>
void Invoke(EmitContext& ctx, IR::Inst* inst) {
using Traits = FuncTraits<decltype(func)>;
static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments");
if constexpr (Traits::NUM_ARGS == 1) {
Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{});
} else {
using FirstArgType = typename Traits::template ArgType<1>;
static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst&>;
using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>;
Invoke<func, is_first_arg_inst>(ctx, inst, Indices{});
}
}
void EmitInst(EmitContext& ctx, IR::Inst* inst) {
switch (inst->GetOpcode()) {
#define OPCODE(name, result_type, ...) \
case IR::Opcode::name: \
return Invoke<&Emit##name>(ctx, inst);
#include "shader_recompiler/frontend/ir/opcodes.inc"
#undef OPCODE
}
throw LogicError("Invalid opcode {}", inst->GetOpcode());
}
bool IsReference(IR::Inst& inst) {
return inst.GetOpcode() == IR::Opcode::Reference;
}
void PrecolorInst(IR::Inst& phi) {
// Insert phi moves before references to avoid overwritting other phis
const size_t num_args{phi.NumArgs()};
for (size_t i = 0; i < num_args; ++i) {
IR::Block& phi_block{*phi.PhiBlock(i)};
auto it{std::find_if_not(phi_block.rbegin(), phi_block.rend(), IsReference).base()};
IR::IREmitter ir{phi_block, it};
const IR::Value arg{phi.Arg(i)};
if (arg.IsImmediate()) {
ir.PhiMove(phi, arg);
} else {
ir.PhiMove(phi, IR::Value{&RegAlloc::AliasInst(*arg.Inst())});
}
}
for (size_t i = 0; i < num_args; ++i) {
IR::IREmitter{*phi.PhiBlock(i)}.Reference(IR::Value{&phi});
}
}
void Precolor(const IR::Program& program) {
for (IR::Block* const block : program.blocks) {
for (IR::Inst& phi : block->Instructions()) {
if (!IR::IsPhi(phi)) {
break;
}
PrecolorInst(phi);
}
}
}
void EmitCode(EmitContext& ctx, const IR::Program& program) {
const auto eval{
[&](const IR::U1& cond) { return ScalarS32{ctx.reg_alloc.Consume(IR::Value{cond})}; }};
for (const IR::AbstractSyntaxNode& node : program.syntax_list) {
switch (node.type) {
case IR::AbstractSyntaxNode::Type::Block:
for (IR::Inst& inst : node.data.block->Instructions()) {
EmitInst(ctx, &inst);
}
break;
case IR::AbstractSyntaxNode::Type::If:
ctx.Add("MOV.S.CC RC,{};"
"IF NE.x;",
eval(node.data.if_node.cond));
break;
case IR::AbstractSyntaxNode::Type::EndIf:
ctx.Add("ENDIF;");
break;
case IR::AbstractSyntaxNode::Type::Loop:
ctx.Add("REP;");
break;
case IR::AbstractSyntaxNode::Type::Repeat:
if (!Settings::values.disable_shader_loop_safety_checks) {
const u32 loop_index{ctx.num_safety_loop_vars++};
const u32 vector_index{loop_index / 4};
const char component{"xyzw"[loop_index % 4]};
ctx.Add("SUB.S.CC loop{}.{},loop{}.{},1;"
"BRK(LT.{});",
vector_index, component, vector_index, component, component);
}
if (node.data.repeat.cond.IsImmediate()) {
if (node.data.repeat.cond.U1()) {
ctx.Add("ENDREP;");
} else {
ctx.Add("BRK;"
"ENDREP;");
}
} else {
ctx.Add("MOV.S.CC RC,{};"
"BRK(EQ.x);"
"ENDREP;",
eval(node.data.repeat.cond));
}
break;
case IR::AbstractSyntaxNode::Type::Break:
if (node.data.break_node.cond.IsImmediate()) {
if (node.data.break_node.cond.U1()) {
ctx.Add("BRK;");
}
} else {
ctx.Add("MOV.S.CC RC,{};"
"BRK (NE.x);",
eval(node.data.break_node.cond));
}
break;
case IR::AbstractSyntaxNode::Type::Return:
case IR::AbstractSyntaxNode::Type::Unreachable:
ctx.Add("RET;");
break;
}
}
if (!ctx.reg_alloc.IsEmpty()) {
LOG_WARNING(Shader_GLASM, "Register leak after generating code");
}
}
void SetupOptions(const IR::Program& program, const Profile& profile,
const RuntimeInfo& runtime_info, std::string& header) {
const Info& info{program.info};
const Stage stage{program.stage};
// TODO: Track the shared atomic ops
header += "OPTION NV_internal;"
"OPTION NV_shader_storage_buffer;"
"OPTION NV_gpu_program_fp64;";
if (info.uses_int64_bit_atomics) {
header += "OPTION NV_shader_atomic_int64;";
}
if (info.uses_atomic_f32_add) {
header += "OPTION NV_shader_atomic_float;";
}
if (info.uses_atomic_f16x2_add || info.uses_atomic_f16x2_min || info.uses_atomic_f16x2_max) {
header += "OPTION NV_shader_atomic_fp16_vector;";
}
if (info.uses_subgroup_invocation_id || info.uses_subgroup_mask || info.uses_subgroup_vote ||
info.uses_fswzadd) {
header += "OPTION NV_shader_thread_group;";
}
if (info.uses_subgroup_shuffles) {
header += "OPTION NV_shader_thread_shuffle;";
}
if (info.uses_sparse_residency) {
header += "OPTION EXT_sparse_texture2;";
}
const bool stores_viewport_layer{info.stores[IR::Attribute::ViewportIndex] ||
info.stores[IR::Attribute::Layer]};
if ((stage != Stage::Geometry && stores_viewport_layer) ||
info.stores[IR::Attribute::ViewportMask]) {
if (profile.support_viewport_index_layer_non_geometry) {
header += "OPTION NV_viewport_array2;";
}
}
if (program.is_geometry_passthrough && profile.support_geometry_shader_passthrough) {
header += "OPTION NV_geometry_shader_passthrough;";
}
if (info.uses_typeless_image_reads && profile.support_typeless_image_loads) {
header += "OPTION EXT_shader_image_load_formatted;";
}
if (profile.support_derivative_control) {
header += "OPTION ARB_derivative_control;";
}
if (stage == Stage::Fragment && runtime_info.force_early_z != 0) {
header += "OPTION NV_early_fragment_tests;";
}
if (stage == Stage::Fragment) {
header += "OPTION ARB_draw_buffers;";
}
}
std::string_view StageHeader(Stage stage) {
switch (stage) {
case Stage::VertexA:
case Stage::VertexB:
return "!!NVvp5.0\n";
case Stage::TessellationControl:
return "!!NVtcp5.0\n";
case Stage::TessellationEval:
return "!!NVtep5.0\n";
case Stage::Geometry:
return "!!NVgp5.0\n";
case Stage::Fragment:
return "!!NVfp5.0\n";
case Stage::Compute:
return "!!NVcp5.0\n";
}
throw InvalidArgument("Invalid stage {}", stage);
}
std::string_view InputPrimitive(InputTopology topology) {
switch (topology) {
case InputTopology::Points:
return "POINTS";
case InputTopology::Lines:
return "LINES";
case InputTopology::LinesAdjacency:
return "LINES_ADJACENCY";
case InputTopology::Triangles:
return "TRIANGLES";
case InputTopology::TrianglesAdjacency:
return "TRIANGLES_ADJACENCY";
}
throw InvalidArgument("Invalid input topology {}", topology);
}
std::string_view OutputPrimitive(OutputTopology topology) {
switch (topology) {
case OutputTopology::PointList:
return "POINTS";
case OutputTopology::LineStrip:
return "LINE_STRIP";
case OutputTopology::TriangleStrip:
return "TRIANGLE_STRIP";
}
throw InvalidArgument("Invalid output topology {}", topology);
}
std::string_view GetTessMode(TessPrimitive primitive) {
switch (primitive) {
case TessPrimitive::Triangles:
return "TRIANGLES";
case TessPrimitive::Quads:
return "QUADS";
case TessPrimitive::Isolines:
return "ISOLINES";
}
throw InvalidArgument("Invalid tessellation primitive {}", primitive);
}
std::string_view GetTessSpacing(TessSpacing spacing) {
switch (spacing) {
case TessSpacing::Equal:
return "EQUAL";
case TessSpacing::FractionalOdd:
return "FRACTIONAL_ODD";
case TessSpacing::FractionalEven:
return "FRACTIONAL_EVEN";
}
throw InvalidArgument("Invalid tessellation spacing {}", spacing);
}
} // Anonymous namespace
std::string EmitGLASM(const Profile& profile, const RuntimeInfo& runtime_info, IR::Program& program,
Bindings& bindings) {
EmitContext ctx{program, bindings, profile, runtime_info};
Precolor(program);
EmitCode(ctx, program);
std::string header{StageHeader(program.stage)};
SetupOptions(program, profile, runtime_info, header);
switch (program.stage) {
case Stage::TessellationControl:
header += fmt::format("VERTICES_OUT {};", program.invocations);
break;
case Stage::TessellationEval:
header += fmt::format("TESS_MODE {};"
"TESS_SPACING {};"
"TESS_VERTEX_ORDER {};",
GetTessMode(runtime_info.tess_primitive),
GetTessSpacing(runtime_info.tess_spacing),
runtime_info.tess_clockwise ? "CW" : "CCW");
break;
case Stage::Geometry:
header += fmt::format("PRIMITIVE_IN {};", InputPrimitive(runtime_info.input_topology));
if (program.is_geometry_passthrough) {
if (profile.support_geometry_shader_passthrough) {
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
if (program.info.passthrough.Generic(index)) {
header += fmt::format("PASSTHROUGH result.attrib[{}];", index);
}
}
if (program.info.passthrough.AnyComponent(IR::Attribute::PositionX)) {
header += "PASSTHROUGH result.position;";
}
} else {
LOG_WARNING(Shader_GLASM, "Passthrough geometry program used but not supported");
}
} else {
header +=
fmt::format("VERTICES_OUT {};"
"PRIMITIVE_OUT {};",
program.output_vertices, OutputPrimitive(program.output_topology));
}
break;
case Stage::Compute:
header += fmt::format("GROUP_SIZE {} {} {};", program.workgroup_size[0],
program.workgroup_size[1], program.workgroup_size[2]);
break;
default:
break;
}
if (program.shared_memory_size > 0) {
header += fmt::format("SHARED_MEMORY {};", program.shared_memory_size);
header += fmt::format("SHARED shared_mem[]={{program.sharedmem}};");
}
if (program.info.uses_rescaling_uniform) {
header += "PARAM scaling[1]={program.local[0..0]};";
}
header += "TEMP ";
for (size_t index = 0; index < ctx.reg_alloc.NumUsedRegisters(); ++index) {
header += fmt::format("R{},", index);
}
if (program.local_memory_size > 0) {
header += fmt::format("lmem[{}],", program.local_memory_size);
}
if (program.info.uses_fswzadd) {
header += "FSWZA[4],FSWZB[4],";
}
const u32 num_safety_loop_vectors{Common::DivCeil(ctx.num_safety_loop_vars, 4u)};
for (u32 index = 0; index < num_safety_loop_vectors; ++index) {
header += fmt::format("loop{},", index);
}
header += "RC;"
"LONG TEMP ";
for (size_t index = 0; index < ctx.reg_alloc.NumUsedLongRegisters(); ++index) {
header += fmt::format("D{},", index);
}
header += "DC;";
if (program.info.uses_fswzadd) {
header += "MOV.F FSWZA[0],-1;"
"MOV.F FSWZA[1],1;"
"MOV.F FSWZA[2],-1;"
"MOV.F FSWZA[3],0;"
"MOV.F FSWZB[0],-1;"
"MOV.F FSWZB[1],-1;"
"MOV.F FSWZB[2],1;"
"MOV.F FSWZB[3],-1;";
}
for (u32 index = 0; index < num_safety_loop_vectors; ++index) {
header += fmt::format("MOV.S loop{},{{0x2000,0x2000,0x2000,0x2000}};", index);
}
if (ctx.uses_y_direction) {
header += "PARAM y_direction[1]={state.material.front.ambient};";
}
ctx.code.insert(0, header);
ctx.code += "END";
return ctx.code;
}
} // namespace Shader::Backend::GLASM