mirror of
https://github.com/yuzu-emu/yuzu-android.git
synced 2025-01-10 13:45:40 +00:00
baed7e1fba
Many of the member variables of the thread class aren't even used outside of the class itself, so there's no need to make those variables public. This change follows in the steps of the previous changes that made other kernel types' members private. The main motivation behind this is that the Thread class will likely change in the future as emulation becomes more accurate, and letting random bits of the emulator access data members of the Thread class directly makes it a pain to shuffle around and/or modify internals. Having all data members public like this also makes it difficult to reason about certain bits of behavior without first verifying what parts of the core actually use them. Everything being public also generally follows the tendency for changes to be introduced in completely different translation units that would otherwise be better introduced as an addition to the Thread class' public interface.
331 lines
12 KiB
C++
331 lines
12 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include "common/assert.h"
|
|
#include "common/common_funcs.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/core.h"
|
|
#include "core/file_sys/program_metadata.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/resource_limit.h"
|
|
#include "core/hle/kernel/scheduler.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
SharedPtr<CodeSet> CodeSet::Create(KernelCore& kernel, std::string name) {
|
|
SharedPtr<CodeSet> codeset(new CodeSet(kernel));
|
|
codeset->name = std::move(name);
|
|
return codeset;
|
|
}
|
|
|
|
CodeSet::CodeSet(KernelCore& kernel) : Object{kernel} {}
|
|
CodeSet::~CodeSet() = default;
|
|
|
|
SharedPtr<Process> Process::Create(KernelCore& kernel, std::string&& name) {
|
|
SharedPtr<Process> process(new Process(kernel));
|
|
|
|
process->name = std::move(name);
|
|
process->flags.raw = 0;
|
|
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
|
|
process->resource_limit = kernel.ResourceLimitForCategory(ResourceLimitCategory::APPLICATION);
|
|
process->status = ProcessStatus::Created;
|
|
process->program_id = 0;
|
|
process->process_id = kernel.CreateNewProcessID();
|
|
process->svc_access_mask.set();
|
|
|
|
kernel.AppendNewProcess(process);
|
|
return process;
|
|
}
|
|
|
|
void Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
|
|
program_id = metadata.GetTitleID();
|
|
is_64bit_process = metadata.Is64BitProgram();
|
|
vm_manager.Reset(metadata.GetAddressSpaceType());
|
|
}
|
|
|
|
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
|
|
for (std::size_t i = 0; i < len; ++i) {
|
|
u32 descriptor = kernel_caps[i];
|
|
u32 type = descriptor >> 20;
|
|
|
|
if (descriptor == 0xFFFFFFFF) {
|
|
// Unused descriptor entry
|
|
continue;
|
|
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
|
|
// Allowed interrupts list
|
|
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
|
|
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
|
|
// Allowed syscalls mask
|
|
unsigned int index = ((descriptor >> 24) & 7) * 24;
|
|
u32 bits = descriptor & 0xFFFFFF;
|
|
|
|
while (bits && index < svc_access_mask.size()) {
|
|
svc_access_mask.set(index, bits & 1);
|
|
++index;
|
|
bits >>= 1;
|
|
}
|
|
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
|
|
// Handle table size
|
|
handle_table_size = descriptor & 0x3FF;
|
|
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
|
|
// Misc. flags
|
|
flags.raw = descriptor & 0xFFFF;
|
|
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
|
|
// Mapped memory range
|
|
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
|
|
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
|
|
continue;
|
|
}
|
|
u32 end_desc = kernel_caps[i + 1];
|
|
++i; // Skip over the second descriptor on the next iteration
|
|
|
|
AddressMapping mapping;
|
|
mapping.address = descriptor << 12;
|
|
VAddr end_address = end_desc << 12;
|
|
|
|
if (mapping.address < end_address) {
|
|
mapping.size = end_address - mapping.address;
|
|
} else {
|
|
mapping.size = 0;
|
|
}
|
|
|
|
mapping.read_only = (descriptor & (1 << 20)) != 0;
|
|
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
|
|
|
|
address_mappings.push_back(mapping);
|
|
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
|
|
// Mapped memory page
|
|
AddressMapping mapping;
|
|
mapping.address = descriptor << 12;
|
|
mapping.size = Memory::PAGE_SIZE;
|
|
mapping.read_only = false;
|
|
mapping.unk_flag = false;
|
|
|
|
address_mappings.push_back(mapping);
|
|
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
|
|
// Kernel version
|
|
kernel_version = descriptor & 0xFFFF;
|
|
|
|
int minor = kernel_version & 0xFF;
|
|
int major = (kernel_version >> 8) & 0xFF;
|
|
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
|
|
} else {
|
|
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
|
|
// Allocate and map the main thread stack
|
|
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
|
|
// of the user address space.
|
|
vm_manager
|
|
.MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size,
|
|
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
|
|
MemoryState::Mapped)
|
|
.Unwrap();
|
|
|
|
vm_manager.LogLayout();
|
|
status = ProcessStatus::Running;
|
|
|
|
Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this);
|
|
}
|
|
|
|
void Process::PrepareForTermination() {
|
|
status = ProcessStatus::Exited;
|
|
|
|
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
|
|
for (auto& thread : thread_list) {
|
|
if (thread->GetOwnerProcess() != this)
|
|
continue;
|
|
|
|
if (thread == GetCurrentThread())
|
|
continue;
|
|
|
|
// TODO(Subv): When are the other running/ready threads terminated?
|
|
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny ||
|
|
thread->GetStatus() == ThreadStatus::WaitSynchAll,
|
|
"Exiting processes with non-waiting threads is currently unimplemented");
|
|
|
|
thread->Stop();
|
|
}
|
|
};
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
stop_threads(system.Scheduler(0)->GetThreadList());
|
|
stop_threads(system.Scheduler(1)->GetThreadList());
|
|
stop_threads(system.Scheduler(2)->GetThreadList());
|
|
stop_threads(system.Scheduler(3)->GetThreadList());
|
|
}
|
|
|
|
/**
|
|
* Finds a free location for the TLS section of a thread.
|
|
* @param tls_slots The TLS page array of the thread's owner process.
|
|
* Returns a tuple of (page, slot, alloc_needed) where:
|
|
* page: The index of the first allocated TLS page that has free slots.
|
|
* slot: The index of the first free slot in the indicated page.
|
|
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
|
|
*/
|
|
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
|
|
const std::vector<std::bitset<8>>& tls_slots) {
|
|
// Iterate over all the allocated pages, and try to find one where not all slots are used.
|
|
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
|
|
const auto& page_tls_slots = tls_slots[page];
|
|
if (!page_tls_slots.all()) {
|
|
// We found a page with at least one free slot, find which slot it is
|
|
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
|
|
if (!page_tls_slots.test(slot)) {
|
|
return std::make_tuple(page, slot, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(0, 0, true);
|
|
}
|
|
|
|
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
|
|
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
|
|
const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();
|
|
|
|
if (needs_allocation) {
|
|
tls_slots.emplace_back(0); // The page is completely available at the start
|
|
available_page = tls_slots.size() - 1;
|
|
available_slot = 0; // Use the first slot in the new page
|
|
|
|
// Allocate some memory from the end of the linear heap for this region.
|
|
auto& tls_memory = thread.GetTLSMemory();
|
|
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
|
|
|
|
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
|
|
|
|
vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
|
|
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
|
|
}
|
|
|
|
tls_slots[available_page].set(available_slot);
|
|
|
|
return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
|
|
}
|
|
|
|
void Process::FreeTLSSlot(VAddr tls_address) {
|
|
const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
|
|
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
|
|
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
|
|
|
|
tls_slots[tls_page].reset(tls_slot);
|
|
}
|
|
|
|
void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
|
|
const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
|
|
MemoryState memory_state) {
|
|
auto vma = vm_manager
|
|
.MapMemoryBlock(segment.addr + base_addr, module_->memory, segment.offset,
|
|
segment.size, memory_state)
|
|
.Unwrap();
|
|
vm_manager.Reprotect(vma, permissions);
|
|
};
|
|
|
|
// Map CodeSet segments
|
|
MapSegment(module_->CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic);
|
|
MapSegment(module_->RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable);
|
|
MapSegment(module_->DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable);
|
|
}
|
|
|
|
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
|
|
if (target < vm_manager.GetHeapRegionBaseAddress() ||
|
|
target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (heap_memory == nullptr) {
|
|
// Initialize heap
|
|
heap_memory = std::make_shared<std::vector<u8>>();
|
|
heap_start = heap_end = target;
|
|
} else {
|
|
vm_manager.UnmapRange(heap_start, heap_end - heap_start);
|
|
}
|
|
|
|
// If necessary, expand backing vector to cover new heap extents.
|
|
if (target < heap_start) {
|
|
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
|
|
heap_start = target;
|
|
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
|
|
}
|
|
if (target + size > heap_end) {
|
|
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
|
|
heap_end = target + size;
|
|
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
|
|
}
|
|
ASSERT(heap_end - heap_start == heap_memory->size());
|
|
|
|
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
|
|
size, MemoryState::Heap));
|
|
vm_manager.Reprotect(vma, perms);
|
|
|
|
heap_used = size;
|
|
|
|
return MakeResult<VAddr>(heap_end - size);
|
|
}
|
|
|
|
ResultCode Process::HeapFree(VAddr target, u32 size) {
|
|
if (target < vm_manager.GetHeapRegionBaseAddress() ||
|
|
target + size > vm_manager.GetHeapRegionEndAddress() || target + size < target) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode result = vm_manager.UnmapRange(target, size);
|
|
if (result.IsError())
|
|
return result;
|
|
|
|
heap_used -= size;
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
|
|
auto vma = vm_manager.FindVMA(src_addr);
|
|
|
|
ASSERT_MSG(vma != vm_manager.vma_map.end(), "Invalid memory address");
|
|
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
|
|
|
|
// The returned VMA might be a bigger one encompassing the desired address.
|
|
auto vma_offset = src_addr - vma->first;
|
|
ASSERT_MSG(vma_offset + size <= vma->second.size,
|
|
"Shared memory exceeds bounds of mapped block");
|
|
|
|
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
|
|
std::size_t backing_block_offset = vma->second.offset + vma_offset;
|
|
|
|
CASCADE_RESULT(auto new_vma,
|
|
vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size,
|
|
MemoryState::Mapped));
|
|
// Protect mirror with permissions from old region
|
|
vm_manager.Reprotect(new_vma, vma->second.permissions);
|
|
// Remove permissions from old region
|
|
vm_manager.Reprotect(vma, VMAPermission::None);
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) {
|
|
return vm_manager.UnmapRange(dst_addr, size);
|
|
}
|
|
|
|
Kernel::Process::Process(KernelCore& kernel) : Object{kernel} {}
|
|
Kernel::Process::~Process() {}
|
|
|
|
} // namespace Kernel
|