mirror of
https://github.com/yuzu-emu/yuzu-mainline.git
synced 2025-01-06 09:05:35 +00:00
181 lines
8.6 KiB
C++
181 lines
8.6 KiB
C++
|
// Copyright 2014 Citra Emulator Project
|
||
|
// Licensed under GPLv2
|
||
|
// Refer to the license.txt file included.
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "common/common_types.h"
|
||
|
|
||
|
#include "math.h"
|
||
|
#include "pica.h"
|
||
|
#include "rasterizer.h"
|
||
|
#include "vertex_shader.h"
|
||
|
|
||
|
namespace Pica {
|
||
|
|
||
|
namespace Rasterizer {
|
||
|
|
||
|
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
|
||
|
u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress());
|
||
|
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
|
||
|
|
||
|
// Assuming RGBA8 format until actual framebuffer format handling is implemented
|
||
|
*(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
|
||
|
}
|
||
|
|
||
|
static u32 GetDepth(int x, int y) {
|
||
|
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
|
||
|
|
||
|
// Assuming 16-bit depth buffer format until actual format handling is implemented
|
||
|
return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2);
|
||
|
}
|
||
|
|
||
|
static void SetDepth(int x, int y, u16 value) {
|
||
|
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
|
||
|
|
||
|
// Assuming 16-bit depth buffer format until actual format handling is implemented
|
||
|
*(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
|
||
|
}
|
||
|
|
||
|
void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
||
|
const VertexShader::OutputVertex& v1,
|
||
|
const VertexShader::OutputVertex& v2)
|
||
|
{
|
||
|
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
|
||
|
struct Fix12P4 {
|
||
|
Fix12P4() {}
|
||
|
Fix12P4(u16 val) : val(val) {}
|
||
|
|
||
|
static u16 FracMask() { return 0xF; }
|
||
|
static u16 IntMask() { return (u16)~0xF; }
|
||
|
|
||
|
operator u16() const {
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
bool operator < (const Fix12P4& oth) const {
|
||
|
return (u16)*this < (u16)oth;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
u16 val;
|
||
|
};
|
||
|
|
||
|
// vertex positions in rasterizer coordinates
|
||
|
auto FloatToFix = [](float24 flt) {
|
||
|
return Fix12P4(flt.ToFloat32() * 16.0f);
|
||
|
};
|
||
|
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
|
||
|
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
|
||
|
};
|
||
|
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
|
||
|
ScreenToRasterizerCoordinates(v1.screenpos),
|
||
|
ScreenToRasterizerCoordinates(v2.screenpos) };
|
||
|
|
||
|
// TODO: Proper scissor rect test!
|
||
|
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||
|
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||
|
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
|
||
|
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
|
||
|
|
||
|
min_x = min_x & Fix12P4::IntMask();
|
||
|
min_y = min_y & Fix12P4::IntMask();
|
||
|
max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
|
||
|
max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();
|
||
|
|
||
|
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
|
||
|
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
|
||
|
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
|
||
|
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
|
||
|
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
|
||
|
const Math::Vec2<Fix12P4>& line1,
|
||
|
const Math::Vec2<Fix12P4>& line2)
|
||
|
{
|
||
|
if (line1.y == line2.y) {
|
||
|
// just check if vertex is above us => bottom line parallel to x-axis
|
||
|
return vtx.y < line1.y;
|
||
|
} else {
|
||
|
// check if vertex is on our left => right side
|
||
|
// TODO: Not sure how likely this is to overflow
|
||
|
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
|
||
|
}
|
||
|
};
|
||
|
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
|
||
|
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
|
||
|
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||
|
|
||
|
// TODO: Not sure if looping through x first might be faster
|
||
|
for (u16 y = min_y; y < max_y; y += 0x10) {
|
||
|
for (u16 x = min_x; x < max_x; x += 0x10) {
|
||
|
|
||
|
// Calculate the barycentric coordinates w0, w1 and w2
|
||
|
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
|
||
|
const Math::Vec2<Fix12P4>& vtx2,
|
||
|
const Math::Vec2<Fix12P4>& vtx3) {
|
||
|
const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
|
||
|
const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
|
||
|
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
|
||
|
return Cross(vec1, vec2).z;
|
||
|
};
|
||
|
|
||
|
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
|
||
|
int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
|
||
|
int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
|
||
|
int wsum = w0 + w1 + w2;
|
||
|
|
||
|
// If current pixel is not covered by the current primitive
|
||
|
if (w0 < 0 || w1 < 0 || w2 < 0)
|
||
|
continue;
|
||
|
|
||
|
// Perspective correct attribute interpolation:
|
||
|
// Attribute values cannot be calculated by simple linear interpolation since
|
||
|
// they are not linear in screen space. For example, when interpolating a
|
||
|
// texture coordinate across two vertices, something simple like
|
||
|
// u = (u0*w0 + u1*w1)/(w0+w1)
|
||
|
// will not work. However, the attribute value divided by the
|
||
|
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
|
||
|
// in screenspace. Hence, we can linearly interpolate these two independently and
|
||
|
// calculate the interpolated attribute by dividing the results.
|
||
|
// I.e.
|
||
|
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
|
||
|
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
|
||
|
// u = u_over_w / one_over_w
|
||
|
//
|
||
|
// The generalization to three vertices is straightforward in baricentric coordinates.
|
||
|
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
|
||
|
auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
|
||
|
attr1 / v1.pos.w,
|
||
|
attr2 / v2.pos.w);
|
||
|
auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
|
||
|
float24::FromFloat32(1.f) / v1.pos.w,
|
||
|
float24::FromFloat32(1.f) / v2.pos.w);
|
||
|
auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
|
||
|
float24::FromFloat32(w1),
|
||
|
float24::FromFloat32(w2));
|
||
|
|
||
|
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
|
||
|
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);
|
||
|
return interpolated_attr_over_w / interpolated_w_inverse;
|
||
|
};
|
||
|
|
||
|
Math::Vec4<u8> primary_color{
|
||
|
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
|
||
|
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
|
||
|
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
|
||
|
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
|
||
|
};
|
||
|
|
||
|
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
|
||
|
(float)v1.screenpos[2].ToFloat32() * w1 +
|
||
|
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
|
||
|
SetDepth(x >> 4, y >> 4, z);
|
||
|
|
||
|
DrawPixel(x >> 4, y >> 4, primary_color);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace Rasterizer
|
||
|
|
||
|
} // namespace Pica
|