yuzu-mainline/src/video_core/memory_manager.cpp

371 lines
12 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
namespace Tegra {
MemoryManager::MemoryManager(Core::System& system_)
: system{system_}, page_table(page_table_size) {}
MemoryManager::~MemoryManager() = default;
void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
GPUVAddr MemoryManager::UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
u64 remaining_size{size};
for (u64 offset{}; offset < size; offset += page_size) {
if (remaining_size < page_size) {
SetPageEntry(gpu_addr + offset, page_entry + offset, remaining_size);
} else {
SetPageEntry(gpu_addr + offset, page_entry + offset);
}
remaining_size -= page_size;
}
return gpu_addr;
}
GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) {
const auto it = std::ranges::lower_bound(map_ranges, gpu_addr, {}, &MapRange::first);
if (it != map_ranges.end() && it->first == gpu_addr) {
it->second = size;
} else {
map_ranges.insert(it, MapRange{gpu_addr, size});
}
return UpdateRange(gpu_addr, cpu_addr, size);
}
GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
return Map(cpu_addr, *FindFreeRange(size, align), size);
}
GPUVAddr MemoryManager::MapAllocate32(VAddr cpu_addr, std::size_t size) {
const std::optional<GPUVAddr> gpu_addr = FindFreeRange(size, 1, true);
ASSERT(gpu_addr);
return Map(cpu_addr, *gpu_addr, size);
}
void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
if (size == 0) {
return;
}
const auto it = std::ranges::lower_bound(map_ranges, gpu_addr, {}, &MapRange::first);
if (it != map_ranges.end()) {
ASSERT(it->first == gpu_addr);
map_ranges.erase(it);
} else {
UNREACHABLE_MSG("Unmapping non-existent GPU address=0x{:x}", gpu_addr);
}
// Flush and invalidate through the GPU interface, to be asynchronous if possible.
const std::optional<VAddr> cpu_addr = GpuToCpuAddress(gpu_addr);
ASSERT(cpu_addr);
rasterizer->UnmapMemory(*cpu_addr, size);
UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
}
std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
for (u64 offset{}; offset < size; offset += page_size) {
if (!GetPageEntry(gpu_addr + offset).IsUnmapped()) {
return std::nullopt;
}
}
return UpdateRange(gpu_addr, PageEntry::State::Allocated, size);
}
GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
return *AllocateFixed(*FindFreeRange(size, align), size);
}
void MemoryManager::TryLockPage(PageEntry page_entry, std::size_t size) {
if (!page_entry.IsValid()) {
return;
}
ASSERT(system.CurrentProcess()
->PageTable()
.LockForDeviceAddressSpace(page_entry.ToAddress(), size)
.IsSuccess());
}
void MemoryManager::TryUnlockPage(PageEntry page_entry, std::size_t size) {
if (!page_entry.IsValid()) {
return;
}
ASSERT(system.CurrentProcess()
->PageTable()
.UnlockForDeviceAddressSpace(page_entry.ToAddress(), size)
.IsSuccess());
}
PageEntry MemoryManager::GetPageEntry(GPUVAddr gpu_addr) const {
return page_table[PageEntryIndex(gpu_addr)];
}
void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
// TODO(bunnei): We should lock/unlock device regions. This currently causes issues due to
// improper tracking, but should be fixed in the future.
//// Unlock the old page
// TryUnlockPage(page_table[PageEntryIndex(gpu_addr)], size);
//// Lock the new page
// TryLockPage(page_entry, size);
page_table[PageEntryIndex(gpu_addr)] = page_entry;
}
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align,
bool start_32bit_address) const {
if (!align) {
align = page_size;
} else {
align = Common::AlignUp(align, page_size);
}
u64 available_size{};
GPUVAddr gpu_addr{start_32bit_address ? address_space_start_low : address_space_start};
while (gpu_addr + available_size < address_space_size) {
if (GetPageEntry(gpu_addr + available_size).IsUnmapped()) {
available_size += page_size;
if (available_size >= size) {
return gpu_addr;
}
} else {
gpu_addr += available_size + page_size;
available_size = 0;
const auto remainder{gpu_addr % align};
if (remainder) {
gpu_addr = (gpu_addr - remainder) + align;
}
}
}
return std::nullopt;
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
const auto page_entry{GetPageEntry(gpu_addr)};
if (!page_entry.IsValid()) {
return std::nullopt;
}
return page_entry.ToAddress() + (gpu_addr & page_mask);
}
template <typename T>
T MemoryManager::Read(GPUVAddr addr) const {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, page_pointer, sizeof(T));
return value;
}
UNREACHABLE();
return {};
}
template <typename T>
void MemoryManager::Write(GPUVAddr addr, T data) {
if (auto page_pointer{GetPointer(addr)}; page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(page_pointer, &data, sizeof(T));
return;
}
UNREACHABLE();
}
template u8 MemoryManager::Read<u8>(GPUVAddr addr) const;
template u16 MemoryManager::Read<u16>(GPUVAddr addr) const;
template u32 MemoryManager::Read<u32>(GPUVAddr addr) const;
template u64 MemoryManager::Read<u64>(GPUVAddr addr) const;
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return system.Memory().GetPointer(*address);
}
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
if (!GetPageEntry(gpu_addr).IsValid()) {
return {};
}
const auto address{GpuToCpuAddress(gpu_addr)};
if (!address) {
return {};
}
return system.Memory().GetPointer(*address);
}
size_t MemoryManager::BytesToMapEnd(GPUVAddr gpu_addr) const noexcept {
auto it = std::ranges::upper_bound(map_ranges, gpu_addr, {}, &MapRange::first);
--it;
return it->second - (gpu_addr - it->first);
}
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto src_addr{*page_addr + page_offset};
// Flush must happen on the rasterizer interface, such that memory is always synchronous
// when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
rasterizer->FlushRegion(src_addr, copy_amount);
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
const std::size_t size) const {
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto src_addr{*page_addr + page_offset};
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto dest_addr{*page_addr + page_offset};
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer->InvalidateRegion(dest_addr, copy_amount);
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
std::size_t size) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
const auto dest_addr{*page_addr + page_offset};
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size) const {
size_t remaining_size{size};
size_t page_index{gpu_addr >> page_bits};
size_t page_offset{gpu_addr & page_mask};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
rasterizer->FlushRegion(*page_addr + page_offset, num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
}
}
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
std::vector<u8> tmp_buffer(size);
ReadBlock(gpu_src_addr, tmp_buffer.data(), size);
// The output block must be flushed in case it has data modified from the GPU.
// Fixes NPC geometry in Zombie Panic in Wonderland DX
FlushRegion(gpu_dest_addr, size);
WriteBlock(gpu_dest_addr, tmp_buffer.data(), size);
}
bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
const auto cpu_addr{GpuToCpuAddress(gpu_addr)};
if (!cpu_addr) {
return false;
}
const std::size_t page{(*cpu_addr & Core::Memory::PAGE_MASK) + size};
return page <= Core::Memory::PAGE_SIZE;
}
} // namespace Tegra